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ABSTRACT
We investigate evolutionary approaches to generate well–
performing strategies for the iterated prisoner’s dilemma
(IPD) with different history lengths in static and cultural
environments. The length of the history determines the
number of the most recent moves of both players taken into
account for the current move decision. The static environ-
ment constituting the opponents of the evolved players is
made up of ten standard strategies known from the liter-
ature. The cultural environment starts with the standard
strategies and gradually increases by addition of the best
evolved players representing a culture. The performance of
the various evolved strategies is compared in specific tourna-
ments. Also, the behavior of an evolved player is analyzed in
more detail by looking at the specific game sequences (and
corresponding decisions), which out of all possible sequences
are actually utilized in a tournament.

Keywords
Iterated Prisoner’s Dilemma, Evolutionary Computation, Cul-
tural Algorithms

1. INTRODUCTION
The Prisoner’s Dilemma (PD) is a non–zero sum game

formulated by the mathematician Tucker building on the
ideas of Flood and Dresher in 1950 [2]. Since then, it has
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been discussed extensively by game theorists, economists,
mathematicians, political scientists, biologists, philosophers,
ethicists, sociologists, and computer scientists. Many vari-
ations of the Prisoner’s Dilemma have been devised, one of
them being the Iterated Prisoner’s Dilemma (IPD), which
is at the center of attention in this paper.

The original PD is the Two-Person PD, which can be
formulated as follows:

Anthony and Bertram are arrested because they are sus-
pected of committing a bank robbery. The two suspects
are charged with illegal possession of weapons. Each of the
suspects is kept in an isolation cell in order to be ques-
tioned independently. As the investigator wants Anthony
and Bertram to confess the crime, he imposes the following
conditions on both of them:

“If you confess and your accomplice denies the crime, you
will go free for your testimony, but your accomplice will
get five years prison for bank robbery. If your accomplice
confesses but you deny, it will be the other way round. If
both of you confess, you will get only three years prison for
the robbery, but if both of you deny, you will get one year
prison for illegal possession of a firearm.”

The goal of each prisoner is to minimize his or her time in
prison. At first sight, from the view of the individual pris-
oner, it seems to be evident that he should confess the crime
resulting in a maximum of three years prison. But when tak-
ing a closer look the dilemma gets revealed by the fact that
denial of both prisoners results only in one year prison. Not
only is confession of both worse than the denial of both,
mutual confession even yields the worst outcome possible,
when considering the total number of years in prison.

In general, the PD is a model for scenarios in which indi-
vidual interests lead to worse individual results for each par-
ticipant than following collective interests. In other words,
in a PD local optimization leads to the worst possible out-
come globally. As the gains of a prisoner are not balanced
by the losses of the other prisoner, the PD is a non–zero sum
game.

Commonly, the terms denial and confession are replaced
by Cooperation (C) and Defection (D), respectively, as the
prisoners are players receiving (positive) points according
to a Payoff Matrix (Table 1) instead of (negative) years in
prison.



Table 1: The prisoner’s dilemma payoff matrix.

Cooperate Defect
3 5

Cooperate 3 0
0 1

Defect 5 1

The four different game outcomes and their corresponding
payoff are often labeled as Sucker S (CD, 0 points), Punish-
ment P (DD, 1 point), Reward R (CC, 3 points), and Temp-
tation T (DC, 5 points), with points awarded to the first
player. The game constitutes a dilemma, if T > R > P > S.

In the original one–shot PD the players only make a single
decision resulting in the corresponding payoff (playing one
move). Playing a number of moves and summing up all
payoffs constitutes the iterative version of the PD. Here, the
goal of a player is to collect as many points as possible. In
order to force the players to favor cooperation (R) rather
than exploiting the opponent (T) and being exploited by
the opponent (S), the following must hold: 2R > (T + S).

In order to collect a maximal number of points, players
can follow a strategy based on the previous decisions of their
opponent (e.g., echoing the opponent’s last move is called
Tit–For–Tat (TFT)). Of course, this implies that the player
has access to the opponent’s decision in the previous round.
The player that finishes the game with more points is said to
be the winner. We use the term game for playing a number
of moves against a fixed opponent.

If there are more than two players, the overall winner
can be determined in a tournament played in a round robin
format yielding n(n− 1)/2 games per round with n players
(excluding games of a player against itself). The player with
the highest total payoff collected in all games is the overall
winner. One could think that the (globally) optimal solution
of an IPD is a strategy beating each competitor. However,
this is incorrect, as a strategy A winning all games in a
tournament may accumulate less payoff than a strategy B
having lost against A.

For theoretical investigations of the IPD (and games in
general) some definitions have been established. A strategy
is said to be pure, if the decisions of a player depend on past
decisions of the opponent, e.g., relentlessly playing D in an
IPD is not a pure strategy. A strategy X is an Evolutionar-
ily Stable Strategy (ESS), if there is no strategy Y that can
invade it [10]. This definition comes from the realm of pop-
ulation genetics, and refers to invasion as transferring a new
strategy Y into a population of strategy X players causing
the latter on average to receive less payoff than Y . It can be
shown that no pure strategy is evolutionarily stable in the
IPD [5], which in effect rules out the possibility to discover
an unbeatable strategy generating larger payoff than “Al-
ways Defect”, which is an ESS. However, it has been pointed
out that the exact formal definitions of an ESS vary, and the
number of invading strategies plays an important role [4].

Inevitably, the success of a strategy always depends on
its opponents, which may explain why no formal criterion
for the identification of an optimal strategy exists. More-
over, the dependence on the environment leads to profound
doubts, if there exists a single globally optimal strategy at
all. Naturally, these conditions makes the IPD a promis-
ing candidate for evolutionary approaches to generate well–

performing strategies, but as we will observe in the following,
again, the evolved strategies depend on their environment.

Axelrod (1984) turned the attraction of computer scien-
tists to the IPD when generating strategies by means of
Evolutionary Computation [2]. Since then, despite or be-
cause of its simplicity, the TFT strategy has been proven to
be very efficient.

Golbeck (2002) analyzed the behavior of evolved popula-
tions with a constant history of three (the three last moves
of both players are used to decide on the current move).
She found that two important traits always emerge in the
evolved populations, namely, the ability to defend against
defectors, and to respect cooperators [6]. In this work we
are not concerned with collective traits of the population,
but in optimizing the performance of single strategies with
different history lengths.

Hingston and Kendall (2004) compared evolved strategies
to strategies acquired during play by learning. They ob-
served that the learners were able to compete at the same
level with evolved players [7].

2. EVOLUTION OF STRATEGIES
Our general concept of evolution of IPD strategies is based

on pure strategies whose fitness is assessed by playing games
against a given set of standard strategies (augmented by
fixed evolved strategies in a specific experiment). As pure
strategies use previous decisions of both players for the rules
generating the actual move, a player has to have access to
the History of moves.

2.1 Deterministic Strategies
We call a strategy deterministic, if identical move se-

quences always generate the same move. A history of one
yields 22 = 4 different game situations, as given by the bi-
nary decisions (C or D) of the players. This can be easily
generalized to 22n = 4n distinct game sequences for a history
of n.

2.1.1 Genotype Encoding
As we want to assign a move to each game situation, we

simply interpret the locus (index) of each base (decision) of
the binary chromosome as its corresponding game situation.
E.g., for a strategy with a history of six there are 46 = 212 =
4096 different sequences. Hence, the chromosome length is
4096, and the 12–bit history (read as a positive integer)
refers to the locus, while the corresponding base encodes
the decision (0 = C, 1 = D). Note that with a history of six
evolution may choose out of 24096 strategies.

With a history of four, the history 00100111 means: for
the last move both, player X, and player Y played C; for
the last but one move X chose D, and Y said C; for the last
but second move X said C, and Y chose D, and four moves
ago both opted for D.

Converting the binary history into a decimal index yields
36, which is the position of the bit indicating the decision of
the player. If the number of moves played is smaller than the
length of the history, the decision is generated by assuming
all C in the missing history. Though, this assumption only
affects the first moves of a game, the missing history could
be evolved additionally. E.g., in a history of three with
only one move played the history may be 01, which in our
approach is extended to 010000.

If we replace the deterministic decision (single base) at



each locus of the genotype by a probability (to play C), we
can easily evolve non–deterministic strategies. The length
of the chromosome increases to l = k ∗ 4n, where k is the
number of bits used to encode a real–valued number in the
unit interval. We did not investigate these strategies in this
work, however, preliminary results have been encouraging.

2.2 Evolution in a Static Environment
In this scenario we evolve deterministic strategies play-

ing against a fixed number of known strategies described in
the following section. We run a set of experiments evolving
strategies with histories ranging from one to six. For each
history length a number of evolutionary runs is made re-
sulting in different winning strategies emerging in each run.
The best of these strategies is selected to be the final re-
sult generated by evolution, which in total gives six evolved
players.

2.2.1 Standard Strategies
For the evolution experiments we used the following stan-

dard strategies from the IPDLX package (Section 3.1.2), and
the additional strategies Gradual [3] and Forgiving [8].

ALLC Unconditionally plays C with every move of a game.

ALLD Analogous to ALLC playing D.

RAND Plays randomly C or D with a probability of 0.5.

GRIM Grim Trigger starts by playing ALLC, but after the
first D of the opponent it switches to ALLD.

TFT Tit–For–Tat always plays the opponent’s last move.
In the first round it plays C.

STFT Suspicious–TFT is a TFT variant playing D as the
opening move.

TFTT Tit–For–Two–Tats unlike TFT forgives a single defec-
tion of the opponent, but plays D, if the the opponent
has played two Ds in a row.

Pavlov Repeats its move, if the payoff was T or R. Otherwise
(P and S payoff) it plays the opposite move.

Gradual Answers a C always with C. Gradual responds to Ds
of opponent with a fixed sequence: after the first D
Gradual plays DCC, the second D (overall) is answered
by DDCC, hence, in general the n–th overall opponent
D evokes n Ds and two Cs.

Forgiving Plays always C, if opponent did so. If opponent plays
D, then it plays one more C (two consecutive Cs) in the
next move (it forgives). If opponent continues with D,
Forgiving also plays D. After five consecutive mutual
Ds, Forgiving makes a new try and plays C, again.

2.3 Evolution in a Cultural Environment
The second approach taken in the evolution of IPD strate-

gies evolves players not only against the standard strategies,
but also evolved strategies found in previous runs. With this
technique, which may be viewed as a form of Coevolution,
a higher degree of generalization could be achieved in the
evolved players, as they do not always face the same set of
strategies. As the additional evolved strategies resemble a
Culture accumulating the knowledge of previous evolution

runs (or ancestors), this approach, inspired by the concept
of Cultural Algorithms [9], may be also termed Cultural Co-
evolution.

In more detail, this set of experiments starts using the
standard strategies augmented by the best history 1 strat-
egy generated in the static environment (Section 2.2). Then,
the best history 2 strategy is added to the pool for evolu-
tion of history 3 strategies. This scheme is repeated until a
history length of 6 is reached, hence, the result of cultural
coevolution are five strategies (with histories from 2 to 6).

3. EXPERIMENTAL SETUP
In this section we describe details of the software imple-

mentation and specific parameter values used in the evolu-
tion experiments.

3.1 Software Pieces
The technical base for our application evolving and test-

ing strategies are the two Java frameworks JEvolution sup-
porting artificial evolution, and the eXtended IPD Library
(IPDLX) 1 managing IPD tournaments.

3.1.1 JEvolution
JEvolution is a lean and compact Java framework for Evo-

lutionary Algorithms supporting standard EA components,
e.g., different genotype encodings, common mutation and re-
combination operators, and an interface for problem–specific
code, i.e., the fitness evaluation.

3.1.2 IPDLX
This framework provides the infrastructure to conduct

IPD tournaments. It supports standard strategies, a sin-
gle player environment, a multi–player environment, and a
tournament environment. Also, an interface for the imple-
mentation of new strategies is offered. Note that each player
has access to its opponent’s decision of the previous move,
hence it is able to collect the full history of moves.

3.1.3 The IPD Application
Basically, IPDLX enables the fitness evaluation of the in-

dividuals (strategies) generated in JEvolution. Each pheno-
type plays in a tournament and is assigned a fitness identical
to the total payoff earned in the game.

To avoid superfluent matches in the evolution process, we
added a specific tournament mode. It only conducts games
of the evolved strategy against all available opponents, as
all other games do not contribute to the fitness. Evidently,
when finally assessing the performance of the best evolved
strategy after a run, we have to play a (single) full tour-
nament. Eliminating the redundant games a single tourna-
ment is of linear instead of quadratic complexity speeding
up evolution considerably.

3.2 Evolution Parameters
The JEvolution framework has been parameterized with

the following values for the evolution of IPD strategies:
The chromosome length l = 4h + 1 with h >= 1, where

h is the history length and the extra–bit encodes the first
round move. The bit mutation rate pm = 1

l
with h ≤ 4

and 3
l

with h > 4. The number of generations g = 500
(h = 1), 2, 000 (h = 2), 3, 500 (h = 3), 5, 000 (h = 4), 7, 500

1
http://www.prisoners-dilemma.com/java/ipdlx/ipdlx_javadocs



(h = 5), and 10, 000 (h = 6). The population size n = 50.
2–point crossover with a crossover rate pc = 0.6 is used for
recombination. Selection is realized by binary tournament
selection without replacement. The fitness of an individual
(strategy) is the average score per move in a tournament.

A tournament consists of 20 games against each player
(Section 3.1.3) with 200 moves per game with a payoff ma-
trix according to Table 1. We repeated each evolution run
20 times to obtain more reliable results for the analysis of
evolved strategies.

4. EXPERIMENTAL RESULTS
In this section we present the results evolving strategies

with different histories in the static (Section 2.2) and the
cultural environment (Section 2.3) along with outcomes of
specific tournaments and a deeper analysis of evolved strate-
gies.

4.1 Static Environment
In Figure 1 the mean of the individuals with best fitness

per generation is shown for various history lengths.

Figure 1: Evolution of best fitness of strategies with
histories from one to six (averaged on 20 runs).

As can be seen the best strategies with history 5 collect
the most points, followed by history 4 and history 3. We
expected history 6 to end up in first place, as each strategy
with history h may emulate the strategy of a h − 1–player
with the benefit of the additional information on another
move. We could speculate that the number of generations
(10, 000) for history 6 evolution is too small considering the
huge search space. Looking at Figure 1 it seems that his-
tory 6 evolution is stagnating, however, with a fitness jump
similar to that at the end of history 5 evolution things could
have changed.

The average score per move averaged on the 20 best indi-
viduals (one of each run) from history 1 to history 6 (Fig-
ure 2) is 2.6893, 2.8304, 2.8986, 2.9470, 2.9522, and 2.8728.
Thus, the scores are slightly below 3.0, the score for perma-
nent mutual cooperation.

The single best individuals (best of 20 runs for each his-
tory) scored 2.6950, 2.8380, 2.9480, 3.0530, 3.0660, and 3.0610.
Again, history 5 is slightly above history 6, which makes the
former the overall winner amongst evolved strategies in the
static environment. The evolution of these best individuals
is depicted in Figure 3.

Figure 2: Mean score and standard deviation of the
best individuals per history (averaged on 20 runs).

Figure 3: Evolution of the best individual (out of 20
runs) for each history.

4.2 Cultural Environment
In Figure 4 the mean of the best fitness during cultural

evolution of strategies with histories from 2 to 6 is shown.
Recall that with cultural evolution, the best strategy with
history h found in all evolution runs is added to the oppo-
nents for evolution of h + 1–players. Hence, we start with
history 2, as the best player with history 1 can be taken
from the static environment results. Consequently, the op-
ponents during evolution of an H6–player (history 6) are the
standard strategies (Section 2.2.1) and the five best evolved
players with lower histories.

The mean fitness of the best individuals (Figure 5) from
history 2 to history 6 are 2.8462, 2.9953, 2.9823, 3.0822,
3.1199, respectively.

For each history the fitness is above the values generated
in the static environment. However, the fitness values can-
not be directly compared as they were obtained in different
environments. Also, the fact that histories 5 and 6 exceed
the cooperation level of 3 points could mostly stem from the
more complex evolved opponents, which allows evolution of
more sophisticated strategies. The latter could be the rea-
son for the constant improvement of the best H6–players in
Figure 4, as they might elicit and exploit specific behaviors
of the other evolved players, which they do not (have to)
show against standard strategies. With a small exception
(history 3 to 4) longer histories gain more pay–off.



Figure 4: Evolution of best fitness of strategies with
histories from two to six (averaged on 20 runs).

Figure 5: Mean score and standard deviation of the
best individuals per history (averaged on 20 runs).

When looking at the evolution of the best individuals per
history length (Figure 6) we observe fitness values of 2.8527,
3.0008, 3.1012, 3.2300, and 3.1423. Though, the best H6–
players exhibit on average the highest fitness, the overall
best individual is an H5–player, as is the case in the static
environment.

4.3 Tournament with Best Static Strategies
In order to test the generalization capabilities of the evolved

strategies in the static environment, we conducted round
robin tournaments with the standard strategies and each
best individual of histories from 1–6 (Section 4.1). For reli-
able results the average point scores given in Table 2 (and
all following tournaments) are based on 1,000 rounds with
200 moves per game.

The clear winners in this tournament are Gradual and
TFT. Note that the evolved strategy StaticH1 is identi-
cal to TFT, which could be expected, as TFT is known to
be a high–performing strategy. We may conclude that the
evolved strategies, which have been exposed to the stan-
dard strategies only during evolution, are taking away from
each other at the benefit of the winning standard strate-
gies. However, at this point we do not even know, if single
evolved strategies are able to beat the standard strategies, as
we “only” maximized the average score of the evolved strat-
egy without playing a complete tournament (Section 3.1.3).
Thus, we conducted tournaments with each single best static

Figure 6: Evolution of the best individual (out of 20
runs) for each history.

Table 2: Tournament with standard strategies and
best static strategies with different histories.

Rank Score Strategy
---------------------------------------

1 2.81 Gradual
2 2.74 TFT
3 2.74 StaticH1 (=TFT)
4 2.55 STFT
5 2.475 StaticH5
6 2.47 StaticH6
7 2.405 StaticH3
8 2.345 TFTT
9 2.335 StaticH4
10 2.33 StaticH2
11 2.21 Forgiving
12 2.205 GRIM
13 1.985 Pavlov
14 1.86 ALLC
15 1.68 RAND
16 1.67 ALLD

strategy. All evolved strategies with histories larger than
1 win their respective tournaments convincingly. Roughly,
larger histories gain more payoff with the exception of his-
tory 6. The latter may be due to the huge search space,
but could be also a consequence of the specific opponents.
Table 3 shows the tournament with StaticH4 collecting the
highest payoff of all static players.

4.4 Tournament with Best Culture Strategies
Next, all the best evolved culture strategies (histories 2–

6) play a tournament with all standard strategies, whose
outcome is presented in Table 4.

Expectedly, the culture strategies exhibit improved per-
formance with increasing history length with the top strate-
gies CultureH5 and CultureH6 exceeding the three–point
limit. Though, H5 evolved to a better fitness than H6 (Sec-
tion 2.3), it is not surprising that H6 won the tournament, as
it has faced H5 during evolution (but not vice versa). Cul-
tureH4 and CultureH3 are beaten by Gradual and TFT, be-
cause H5 and H6 have learned to exploit the former. With-
out the latter two strategies H4 and H3 win the tournament
easily (Table 5).

This might lead to the conclusion that the culture strate-
gies are unstable and rely on each other for good perfor-



Table 3: Tournament with standard strategies and
the best static strategy with history 4.

Rank Score Strategy
---------------------------------------

1 3.01 StaticH4
2 2.735 Gradual
3 2.62 TFT
4 2.46 TFTT
5 2.44 Forgiving
6 2.395 GRIM
7 2.38 STFT
8 2.24 Pavlov
9 2.095 ALLC
10 2.025 RAND
11 1.995 ALLD

Table 4: Tournament with standard strategies and
best culture strategies with different histories.

Rank Score Strategy
---------------------------------------

1 3.095 CultureH6
2 3.045 CultureH5
3 2.81 Gradual
4 2.73 TFT
5 2.645 CultureH4
6 2.63 CultureH3
7 2.555 STFT
8 2.525 CultureH2
9 2.395 TFTT
10 2.36 Forgiving
11 2.29 GRIM
12 2.245 ALLC
13 2.115 Pavlov
14 1.72 ALLD
15 1.64 RAND

mance against the standard strategies. However, in tourna-
ments, where each evolved culture strategy is left on its own,
all of them outperform the standard strategies with rather
similar payoffs around 2.8. As an example the results of the
tournament with the best performing CultureH3 are shown
in Table 6.

4.5 All Star Tournament
In Table 7 the results of a tournament with all standard

and the best evolved strategies (StaticH1–H6 and CultureH2–
H5) are shown.

The standard strategies Gradual and TFT are at the top
of the field. Next come the culture strategies fairly or-
dered with respect to decreasing history length reflecting
the cultural development. The weakest culture strategy Cul-
tureH2 beats all of the static strategies except StaticH2 (and
StaticH1 being TFT). More surprisingly, the static strate-
gies with greater history perform worse than those with
shorter history lengths. This may likely be attributed to
the large variety of strategies available with greater history.
Hence, facing a culture strategy with possibly complex play
the static strategies experience game sequences (with their
corresponding decisions), which have never been activated
during evolution.

The evolved strategy CultureH5 with the best overall fit-
ness (Section 2.3) came up at sixth place beaten by Cul-

Table 5: Tournament with standard strategies and
best culture strategies with histories 2–4.

Rank Score Strategy
---------------------------------------

1 2.975 CultureH4
2 2.815 CultureH3
3 2.695 Gradual
4 2.68 TFT
5 2.575 CultureH2
6 2.485 STFT
7 2.48 Forgiving
8 2.42 TFTT
9 2.335 GRIM
10 2.265 Pavlov
11 2.245 ALLC
12 1.835 ALLD
13 1.79 RAND

Table 6: Tournament with standard strategies and
best culture strategy with history 3.

Rank Score Strategy
---------------------------------------

1 2.85 CultureH3
2 2.735 Gradual
3 2.62 TFT
4 2.495 Forgiving
5 2.485 Pavlov
6 2.46 TFTT
7 2.4 GRIM
8 2.38 STFT
9 2.25 ALLC
10 2.025 RAND
11 1.995 ALLD

tureH6 and StaticH1 (=TFT). Obviously, the evolved strate-
gies take away from each other, which enables Gradual and
TFT to win the tournament, although, with the exception
of StaticH1 (=TFT) each evolved strategy playing in a tour-
nament on its own beats the standard strategies.

4.6 Coverage Analysis
In order to get a deeper insight into evolved strategies,

we looked at the number and distribution of the specific
game sequences (and according moves) activated during a
tournament, i.e., the genes actually used (or covered). In the
exemplary tournament with our StaticH6 shown in Table 8
(1 round, 200 moves per game) we found that approximately
four percent (161 bases) of all bases have been covered.

50 percent of these game sequences are played more than
once. The large number of sequences occurring only a few
times is the trace of the Random player. Less than seven
percent of the covered sequences are played more than ten
times. The distribution among these sequences is depicted
in Figure 7.

Naturally, the largest portion is occupied by the sequence
with 0s (cooperate) only, as mutual cooperation emerges fre-
quently(e.g., against ALLC or TFT). The other sequences
reflect strategies of StaticH6 against individual players (re-
call that the most recent decision of the evolved player is
the left–most bit). E.g., the sixth and seventh history (both
with 5.37%) fully exploit the TTFT player, which always
forgives a single defect, hence, StaticH6 plays C and D in



Table 7: Tournament with standard, best static, and
best culture strategies.

Rank Score Strategy
---------------------------------------

1 2.82 Gradual
2 2.805 TFT
3 2.805 StaticH1 (=TFT)
4 2.69 CultureH6
5 2.66 STFT
6 2.545 CultureH5
7 2.465 CultureH3
8 2.305 CultureH4
9 2.29 StaticH2
10 2.285 TFTT
11 2.275 CultureH2
12 2.23 StaticH4
13 2.175 Forgiving
14 2.125 StaticH5
15 2.11 GRIM
16 2.06 StaticH3
17 2.055 StaticH6
18 1.925 ALLC
19 1.87 Pavlov
20 1.51 ALLD
21 1.43 RAND

Table 8: Tournament results and coverage of
StaticH6.

Rank Score Strategy
---------------------------------------
1 2.9975 StaticH6
2 2.574 TFT
3 2.4925 Gradual
4 2.394 TFTT
5 2.3785 STFT
6 2.2635 ALLC
7 2.2215 Pavlov
8 2.2095 Forgiving
9 2.189 GRIM
10 2.06 RAND
11 2.006 ALLD
Coverage for StaticH6: 161 bits

strict alternation.
In the following we take a look at games of StaticH6

against the standard strategies ALLC, ALLD, Gradual, and
TFT. Table 9 gives the details of a game against ALLC.

Recall that a specific base in the genotype encodes the
first move of the evolved player. Our StaticH6 always plays
D as its first move enabling a maximal score of five points
per move against ALLC, as it answers all of the six covered
sequences with D.

In Table 10 the evolved player plays against ALLD.
It can be seen that StaticH6 also adheres to a strict ALLD

strategy with the exception of the second move, where the
evolved player offers a C, hereby losing a point.

A game against Gradual is analyzed in Table 11.
Here, within two moves a mutual cooperation is estab-

lished giving the edge to StaticH6 due to the first move D.
Finally, the evolved player faces TFT in Table 12.
Against TFT, the evolved player again benefits from the

opening move D, but receives the sucker payoff when in
transition to mutual cooperation offers a C after two mu-

Figure 7: Distribution of game sequences played by
StaticH6 (Table 8).

Table 9: Coverage of StaticH6 vs. ALLC.

Rank Score Strategy
1 5.0 StaticH6
2 0.0 ALLC
Coverage for StaticH6: 6 bits

H: 100000000000 Decision: 1 Moves: 1
H: 101000000000 Decision: 1 Moves: 1
H: 101010000000 Decision: 1 Moves: 1
H: 101010100000 Decision: 1 Moves: 1
H: 101010101000 Decision: 1 Moves: 1
H: 101010101010 Decision: 1 Moves: 193

tual Ds. Consequently, the game ends in even point scores.
As can be seen from these examples, the evolved player is
rapidly adjusting to different standard strategies, and yields
(nearly) maximal payoff. Based on an interesting technique
presented in [1] we hope to be able to categorize the over-
all behavior of the evolved players in terms of similarity to
standard strategies in future work.

5. SUMMARY AND CONCLUSIONS
We have presented evolutionary approaches to generate

well–performing strategies for the Iterated Prisoner’s Dilemma
(IPD) considering previous decisions of both, the opponent,
and the evolved player, up to a history length of six. We also
compared evolution in a static environment, where evolved
strategies with a specific history always play tournaments
against the same standard strategies, to evolution in a cul-
tural environment. In the latter, when evolving a strat-
egy with history n, the single best evolved players from his-
tory 1 to n− 1 are additional opponents in the tournament.
Though, the single best static players (with the exception of
StaticH1 (=TFT)) win each tournament with the standard
strategies, the picture changes when all static players are
in the tournament. Then, the standard strategies Gradual,
TFT, and STFT are in front of the static players, which is
the result of specialization of the evolved static players to
the standard strategies. As soon, as they face their “col-
leagues”, whom they did not face during evolution, they
take away from each other to the benefit of the standard



Table 10: Coverage of StaticH6 vs. ALLD.

Rank Score Strategy
1 1.02 ALLD
2 0.995 StaticH6
Coverage for StaticH6: 8 bits

H: 110000000000 Decision: 0 Moves: 1
H: 011100000000 Decision: 1 Moves: 1
H: 110111000000 Decision: 1 Moves: 1
H: 111101110000 Decision: 1 Moves: 1
H: 111111011100 Decision: 1 Moves: 1
H: 111111110111 Decision: 1 Moves: 1
H: 111111111101 Decision: 1 Moves: 1
H: 111111111111 Decision: 1 Moves: 191

Table 11: Coverage of StaticH6 vs. Gradual.

Rank Score Strategy
1 3.01 StaticH6
2 2.96 Gradual
Coverage for StaticH6: 9 bits

H: 100000000000 Decision: 1 Moves: 1
H: 111000000000 Decision: 1 Moves: 1
H: 101110000000 Decision: 0 Moves: 1
H: 001011100000 Decision: 0 Moves: 1
H: 000010111000 Decision: 0 Moves: 1
H: 000000101110 Decision: 0 Moves: 1
H: 000000001011 Decision: 0 Moves: 1
H: 000000000010 Decision: 0 Moves: 1
H: 000000000000 Decision: 0 Moves: 190

strategies.
This specialization is avoided when evolving in the cul-

tural environment, where strategies are evolved also in the
presence of previously evolved players. Not surprisingly, two
evolved players (CultureH6 and CultureH5) win the tourna-
ment with all evolved cultural and the standard strategies.
However, all single best culture players also win the tourna-
ment without their ”colleagues” against the standard strate-
gies, which is a strong indication for the flexibility of these
strategies.

With the static players there is a clear trend that a greater
history length produces higher payoff, when single evolved
players are in the tournament. This is not the case for the
culture players, and in tournaments with all best evolved
culture players the fact that the longest histories win may
be mainly attributed to the evolution procedure (the longest
history facing all others during evolution).

We have also demonstrated that the problem of the large
search space induced by longer histories is alleviated by the
small coverage of game sequences. In a specific tournament
with StaticH6 only about four percent of all bases (each rep-
resenting a game sequence) have been activated. However,
the “unused” bases may be activated in games against play-
ers never seen during evolution, most likely leading to ran-
dom behavior of the evolved player in this situation. Con-
sequently, longer histories should be evolved with a large
number of opponents so as to sample the search space more
thoroughly.

In a tournament with all evolved and standard strategies
(Table 7) won by Gradual and TFT, the culture players
clearly outperform the static players, which puts cultural

Table 12: Coverage of StaticH6 vs. TFT.

Rank Score Strategy
1 2.975 StaticH6
2 2.975 TFT
Coverage for StaticH6: 10 bits

H: 100000000000 Decision: 1 Moves: 1
H: 111000000000 Decision: 1 Moves: 1
H: 111110000000 Decision: 0 Moves: 1
H: 011111100000 Decision: 0 Moves: 1
H: 000111111000 Decision: 0 Moves: 1
H: 000001111110 Decision: 0 Moves: 1
H: 000000011111 Decision: 0 Moves: 1
H: 000000000111 Decision: 0 Moves: 1
H: 000000000001 Decision: 0 Moves: 1
H: 000000000000 Decision: 0 Moves: 189

evolution in the focus of continuing work.
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