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Abstract—We report on experiments with robotic neurocon-
trollers with intrinsic noise evolved for a peg pushing task.
The specific controller of the simulated robot is a feed–forward
network with noisy weights, i.e, the weight values are perturbed
by additive, normal noise. The neurocontrollers are evolved in a
noise–free environment, and the best–performing networks are
then tested in noisy environments, where peg movement and
sensor signals are afflicted by noise. We find that the internal
(robotic brain) noise is beneficial in coping with external noise,
especially, in the case of noisy sensors.

I. INTRODUCTION

Our initial motivation to investigate the effects of noise

affecting the internal computations in an Artificial Neural

Network (ANN) is based on work by Ishiguro et al. (1999),

where the authors present ANNs with simulated, artificial

neuromodulators (ANMs). The ANMs may be released by

neurons at certain events and change the weights of the

network upon reception by other neurons. With the addi-

tion of ANMs a highly dynamic system emerges, which

constantly alters its internal states. In order to generate

meaningful behavior of a robot controlled by such a network,

all the parameters related to ANMs are determined using

evolutionary computation [1].

In the latter work it has been demonstrated that a network

with ANMs is able to cope with noise from the environment,

e.g., imprecise (noisy) movement of objects pushed by the

robot, much better than an evolved network without neuro-

modulators. This even to the point that only a robot with the

ANM network could perform a task in a noisy environment,

when the network was evolved in a noise–free environment.

The respective network without ANMs failed to control the

robot correctly, and could no longer solve the task.

At first sight, it may be counter–intuitive that an instable

system (introduced by the ANMs) should be better suited

to cope with external noise. However, we came up with the

hypothesis that the ANM network intrinsically experiences

a form of noise due to its constantly changing internal

states. This internal noise is always present (also during

evolution in a noise–free environment), and thus the network

is well–prepared for external noise. It should be stressed that

diffusion and reception of ANMs are not random processes,

as the former follow given (partially evolved) rules [1], but

even in a small ANN the dynamics are such that a human

observer would attribute it to intrinsic noise.
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Consequently, in order to verify our hypothesis we investi-

gate the effects of intrinsic noise in this paper. Our networks

are not equipped with NMs, but the dynamics are introduced

by adding noise to all the weights in a network (Section II).

We evolve these networks with intrinsic noise for the same

robotic task as presented in [1] (Section IV), and compare

the performance of the noisy robotic controllers in noise–free

and noisy environments.

Certainly, the deliberate addition of noise to a technical

system is against most engineering principles, but it is

a good model for Biological Neural Networks facing the

Stability–Plasticity problem. Noise is ubiquitous in BNNs as

the physical and chemical states of cells change constantly

even without external excitation. Then, the question arises,

how the remarkable stability of biological systems can be

achieved, e.g., the precise movements of a human hand.

Actually, there is evidence that intrinsic noise may contribute

positively to stability in BNNs (Section I-A).

A. Related Work

As outlined above the work presented in [1] and [2]

demonstrates that a robotic neurocontroller with ANMs per-

forms more robustly in the presence of noise than a conven-

tional neurocontroller (both with feed–forward structure). It

should be noted that the term noise in the context of robots

is used in its computer science flavor, where noise is a broad

abstraction for imperfect information. In the specific task

used in above work the robot should learn to push a peg (in)to

a light source. When the evolved robot is confronted with a

peg with a diameter different from the training phase, the

change in diameter is also termed as noise. Most impressing

was a video demonstration at the conference 1 where the

ANM robot could solve the given task confronted with a

peg (an additional weight has been excentrically put on the

peg) it has never seen before.

Fernandez–Leon and Di Paolo (2008) presented experi-

ments with noise introduced in recurrent neurocontrollers [3].

The simulated robot with two light sensors should learn to

approach a light source, whose position is changed randomly

during evolution. The neurocontroller is a Continuous Time

Recurrent Neural Network (CTRNN) with two sensor neu-

rons, two motor neurons, and two internal neurons. Internal

noise is introduced by adding a uniformly distributed random

number drawn from a pre–defined interval to the neurons’

cell potential. Time constants and synaptic weights are

1IEEE Systems, Man, and Cybernetics,1999, Tokyo.



evolved using a real–valued encoding. Neurocontrollers gen-

erated with neural noise present during evolution exhibited

higher robustness against neural noise in tests after evolution.

Inspecting specific neurocontrollers the authors suggest that

evolution finds neural systems resistant to the effects of

bifurcation. Specifically, it is argued that the evolved systems

either stay within the basin of an attractor, or experience

bifurcations to attractors, which are functionally similar.

Also, it is mentioned “that evolution may find solutions for

which noise is advantageous” [3].

II. THE NOISY NEUROCONTROLLER

The neurocontroller being a sensori-motor network with

noisy weights is sketched in Figure 1.
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Fig. 1. The neurocontroller with exemplary noisy weights.

The only difference to a conventional feed–forward neu-

rocontroller are the weights, which change its value due

to noise with each update of sensor data. I.e., with every

recall of the network, the weights are floating around their

mean values. Note that in Figure 1 only a few weights

are associated with noise as an example, but in the noisy

neurocontroller all weights are affected by noise.

The noise model is based on additive normal noise, so

the noisy weight values w′ change according to w′ =
w + N(0, σ). The constant mean value w is determined

by evolution, and the standard deviation σ = νw w with

νw being the weights’ noise level, which is set by the

experimenter so as to investigate varying degrees of noise.

Note that this noise model assigns a different σ to each

weight, which arguably models noise in BNNs, where more

efficient synapses with larger amounts of neurotransmitters

may generate more noise than those with smaller amounts.

Additional biological evidence for this noise model can

be gathered from (signal–dependent) motor noise, which

increases approximately linearly with the amplitude of the

motor command signal [4].

III. GENETIC ENCODING

In many approaches evolving neurocontrollers the network

structure is pre–defined and the weights are evolved. Here,

we also subject the number of hidden neurons, and the

connectivity to evolutionary processes, hence network struc-

ture is evolved in combination with the weights. Weights,

neurons, and connections are directly encoded using bit

strings on three chromosomes, respectively.

This multi–chromosomal representation [5], technically,

eases the addition of parameter sets (e.g., activation function

parameters could be added on a fourth chromosome), and

allows different encodings on different chromosomes (e.g.,

bits for neurons and real values for weights [6]). With the

biologically motivated introduction of Chromosome Shuffling

[5] recombination is performed on two levels. First, corre-

sponding chromosomes of two parents are exchanged with a

shuffle probability ps = 0.5, then conventional crossover is

performed within the single chromosomes (Figure 2).
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Fig. 2. Multi–chromosomal representation of neurocontroller with chro-
mosome shuffling and 2–point crossover.

With chromosome shuffling complete parameter sets, e.g.,

the connectivity of the network, may be exchanged between

parents, but still, crossover (and mutation) may introduce

local alterations. The number of hidden neurons is set to

a maximal value before the start of evolution, which is

able to prune some or all hidden neurons. The number of

input and output neurons is fixed. All the possible links

(including short-cut connections from input to output) are

encoded on the links chromosome. The presence or absence

of a connection is encoded by a single bit. The weights

are encoded in a similar fashion, however, each weight is

encoded by 8 bits mapped to the real interval [−10, 10]. If

a neuron is pruned, all associated links and weights become

irrelevant.

IV. EXPERIMENTAL SETUP

Experiments with the Peg Pushing Task are executed with

a cycle time tc = 0.1s in the Java simulator framework

SIMMA developed at our institution. The task and most

parameter settings are taken from [2], as our initial intention

was to investigate, whether the performance of neurocon-

trollers with neuromodulators could be explained by the

intrinsic noise the modulators introduce.

The cylindrical robot shown in Figure 3 is equipped

with six infra-red sensors (at positions −90◦, −45◦, −10◦,

10◦, 45◦, 90◦ w.r.t. the heading direction of the robot) for

detection of the peg, and three light sensors (at positions −9◦,

0◦, and 9◦ w.r.t. heading) for detection of the light source

[2].

The infra-red sensor signal si is given by



si =
1

1 + exp (0.65 dp − 14 cos (1.3 α))
, (1)

where dp is the distance from the sensor position to the

nearest point of the peg, and α is the angle between sensor

direction and center of peg direction.

The light sensor signal sl in case of the sensor being

outside the light source is given by

sl = (rl/dl)(1−
2 α

δa
), (2)

where rl is the radius of the light source (spot), dl is the

distance from the sensor to the center of the light source,

α is the angle between sensor direction and center of light

source direction, and δa is the aperture angle of the sensor.

The aperture angle (18◦ for all light sensors) characterizes

the angular sensitivity. If light is outside the angular range

given by δa, the sensor does not detect anything. If the sensor

is inside the light source, sl becomes 1.

The basic structure of the neurocontroller is a One–Hidden

Layer network with nine input neurons (no bias, no activation

function (AF)) for the sensor signals, a maximum of four

hidden neurons (with bias and AF), and two output (motor)

neurons (no bias, with AF). The activation function is defined

to be the logistic function. The (left and right) motor values

in the range of [0.0, 1.0] generated by the network are linearly

transformed to the range [−0.5, 0.5] so as to cover both motor

directions (negative values are backward).
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Fig. 3. The cylindrical robot.

A. The Peg Pushing Task

In this task the simulated robot is placed in a rectangular

arena (1.05 × 0.70m) and should learn to move a peg into

the center of a light source. The peg is a small circular disc

with a radius r = 2 cm, and the light source is a circular

spot (r = 6 cm) emitting light.

During evolution the fitness of each controller is evaluated

in ten episodes of 30 seconds each. At the beginning of each

episode the robot is placed at (0.15, 0.35) (coordinate origin

is at upper left corner of the arena) with random orientation.

The peg at (0.23, 0.35) is in contact with the robot, while

the light source is stationary at (0.85, 0.35) (Figure 4). The

episode fitness (Equation 3) is given by the position of the

peg as

fe = (1−
dps,T
dps,0

)2, (3)

with dps,T being the distance between the centers of peg

and light source at the end of the episode, and dps,0 = 0.62
the very distance at the start of the episode. The final

fitness of a neurocontroller, then is the mean of all episode

fitness values. Note that the square function in Equation

3 (taken from [2]) does not properly discriminate between

pegs pushed further away from the light source and those

moved towards the light source, e.g., a fitness of (0.2)2

(towards light) is equal to (−0.2)2 (away from light). Still,

it is sufficient to evolve well–performing robots.

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

Robot Peg

Light Source

Fig. 4. The peg pushing task at the begin of an epsiode.

A single evolutionary run is set to 1,000 generations with

a population size of 50 individuals (neurocontrollers). Each

chromosome (Section III) experiences 2–point crossover with

a crossover rate pc = 0.6. Using binary tournament selection

the parent generation is completely replaced by its children.

In different runs we increase the noise level νw of the

neurocontroller in the range of [0.0 − 1.0] in steps of 0.05.

Each run with a specific noise level is repeated 20 times. It

is important to state that all evolutionary runs are executed

in a noise–free environment, i.e., only the weights of the

neurocontroller are affected by noise.

The best neurocontroller of each run is then tested in the

presence of noisy pegs and noisy sensors with a noise level ν
in the range of [0.0− 0.5] in steps of 0.05. The performance

is measured exactly as during evolution (same setup in ten

episodes), i.e., we again obtain fitness values, but this time

for noisy neurocontrollers in noisy environments.

V. RESULTS

First, we present test results for the best robots of each

of 20 runs, when the evolved neurocontrollers with intrinsic

noise face a noisy peg.

A. Peg Noise

Peg noise is introduced by adding random numbers drawn

from a normal distribution N(0, σ) to the components of

the 2D peg position in each simulation step. The standard

deviation σ = νp ∗ rp, where νp is the peg noise in the range



of [0, 0.5], and rp is the radius of the peg. Though, this is not

an exact physical approach, it generally simulates irregular

peg movements due to imperfect robot-, peg-, and ground

surface.

In Figure 5 the average test fitness of the best 20 neu-

rocontrollers with (small) noise levels νw = 0.05 − 0.15
(brain noise) is shown for various degrees of peg noise.

The performance of the controllers without intrinsic noise

(νw = 0.0) serves as base line in the following figures 2.
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Fig. 5. Average test fitness of best neurocontrollers with little intrinsic
noise in the presence of peg noise.

With the exception of the controllers with νw = 0.10 the

performance is practically identical to the noise–free refer-

ence controllers. The same picture appears with increasing

brain noise, however the performance in case of a noiseless

peg drops (Figure 6).
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Fig. 6. Average test fitness of best neurocontrollers with medium intrinsic
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The latter trend continues with even larger noise levels, as

can be seen in Figure 7.

Even with large intrinsic noise levels the test fitness does

not drop for a peg noise with νp ≥ 0.15, when compared to

2Due to space requirements we only present a subset of all recorded
results.

the noise-free reference controllers. Note that the networks

with νw = 1.0 on average are even better than the base case,

however this may not be statistically significant. Considering

that the latter noise level for a weight w = 5.0 makes it float

somewhere between 0 and 10, this is a quite astonishing

result. Even more so are those for sensor noise presented in

the following section.

B. Sensor Noise

In case of noisy sensors all nine sensors (six infra–red

and three ambient light sensors) of the robot are afflicted by

noise. The noise–free sensor signal s is disturbed by additive

normal noise according to s′ = s+N(0, σ) with σ = νs s.

Again, σ is dependent on the current sensor value s and a

noise level νs generating the noisy sensor signal s′.

In Figure 8 the behavior of the best evolved robots with

sensor noise and small intrinsic noise levels is depicted.

Basically, fitness improves with noise in the neurocontroller,

when compared to the base case without intrinsic noise.

Though, increasing sensor noise degrades the robot’s fitness,

the degradation is alleviated by intrinsic noise.

A similar picture can be observed with medium (Figure

9) and heavy intrinsic noise (Figure 10), but at these higher

noise levels the robot is nearly immune to sensor noise, as

degradation is rather small. In fact, the fitness of the robotic

brains with more noise is higher at a sensor noise level of 0.5

than those with less intrinsic noise. Loosely spoken, sensor

noise is absorbed by intrinsic noise. E.g., with a brain noise

(level) of 1.0 the robots with noise–free sensors have a mean

fitness of 0.56, while the same robots with a sensor noise

level of 0.5 average a fitness of 0.49 (Figure 10). Hence, the

performance drops only slightly, when all the sensor signals

fluctuate roughly in the range of ±50%.

At low levels of sensor noise the robots with less intrinsic

noise exhibit better fitness, as all neurocontrollers have been

evolved using noise–free sensors. In simpler words, if there

is no sensor noise, the intrinsic noise cannot be compensated

(and vice versa).
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Fig. 7. Average test fitness of best neurocontrollers with heavy intrinsic
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C. Robot Behavior

When studying the behavior of the robot using the best

evolved neurocontrollers one can observe similarities and

differences among the various robots. Though, robot, peg,

and light have fixed (and identical) start positions throughout

evolution, most evolved robots can cope with random start

positions of all three objects in the arena. This is very likely

based on the fact that during pushing the robot often loses

the peg, hence it has to re–orientate in order to push the peg

again in the right direction.

Basically, all robots exhibit three different modes of action,

namely, i) locating the peg by rotating and moving towards

the peg as soon as it is detected (locating action), ii) pushing

the peg towards the light source (pushing action), and iii)

circling around the light source once the peg is inside the

light source (protecting action). Actually, only the pushing

action is directly assessed by the fitness function (Equation

3), while locating is the consequence of occasional peg loss,

and protecting is a by–product, which cannot be explained in

terms of fitness. As soon as the peg is inside the light source,

the only thing the robot should learn is to not touch the peg,

again. Thus, moving away from the light source would also

be a valid option, but none of all the observed robots chose

this opportunity.

Various techniques for peg pushing emerged in different

evolutionary runs. Without intrinsic noise some robots try

to push the peg in a rather straight manner towards the

light source. Though, this seems to be very efficient, it often

results in peg loss, hence the robot has to turn around and

reposition itself with respect to peg and light. A different

pushing style is created by robots with rather irregular

movements. These robots push the peg a short distance to

the left, and then to the right (or vice versa), which in sum

leads to a rather straight movement of the peg while reducing

the risk of losing control of the peg.

The latter technique is essentially used by all robots with

intrinsic noise, which in general leads to “shaky” movements.

However, these irregular movements are used in a favorable
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Fig. 8. Average test fitness of best neurocontrollers with little intrinsic
noise in the presence of sensor noise.

way to push the peg efficiently. As a consequence, even

robots with heavy brain noise are able to move the peg on a

rather straight line, though their movements would suggest

else. This kind of pushing action also helps in dealing with

peg and sensor noise (also for robots without intrinsic noise).

Still, the most interesting result of above experiments is the

huge performance difference between peg and sensor noise.

With peg noise the performance decreases comparably for all

levels of brain nose, while the latter seems to make the robots

immune to sensor noise. This is even more remarkable,

as with peg noise only the peg is a source of noise, but

with sensor noise all nine sensors are noisy. A possible

explanation to that phenomenon is that sensor noise yields

a blurred image of the scene (all sensors are equally noisy),

while peg noise produces a distorted one. Sensors close to

the peg fully transmit the noisy peg moves, while the more

distant sensors produce nearly the same signal regardless

of the noise level of the peg. In this same metaphor brain

noise also generates a blurred image, but cannot deskew a

distorted image. In other words brain noise prepares the robot

in dealing with a blurred image, as it is not really relevant,

if the blurred image stems from internal or external noise.

VI. SUMMARY

We have presented experiments with robotic neurocon-

trollers evolved for a task, where the robot should push

a peg (in)to a light source. The specific interest in this

work was the investigation of the effects of noise inside

the neurocontrollers. In a simulator we evolved neurocon-

trollers with varying degrees of intrinsic noise in a noise–

free environment, i.e., only the weights of the network were

made to be noisy. After evolution the controllers have been

tested in noisy environments by adding noise to the peg

movements or to all the nine sensor signals. With peg noise

the noisy neurocontrollers showed only slight differences to

their noise–free counterparts, hence intrinsic noise did not

degrade performance.

When confronted with sensor noise the noisy neuro-

controllers clearly outperformed the robotic brains without
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internal noise. From these results we believe that noise in a

neurocontroller prepares the robot for imprecise information

in general, as it constantly has to cope with the internal noise.

Consequently, the robot can deal with external noise more

easily, as there is no fundamental difference between external

and internal noise, i.e., the robot does not even “know”,

where the noise comes from. If these arguments also apply to

biological neural networks, the inevitable noise in biological

systems may contribute positively to the processing of noisy

sensory input.

In future work we would like to intensify our collabora-

tions with neurobiologists to potentially improve the simula-

tion of the noise sources. Among further research topics are

the effects of motor noise and a theoretical analysis of noisy

artificial neural networks.
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