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ABSTRACT
Contemplating the development of the field of evolu-
tionary computation (EC), where most basic concepts
are borrowed from nature, it is remarkable that multi–
chromosomal representations present in all complex or-
ganisms have rarely been studied in the artificial domain.
Evidently, the addition of such an additional layer of
genetic code must prove to possess certain benefits be-
fore it is introduced. Thus, we present experiments with
multi–chromosomal evolution of artificial neural networks
(ANNs) on three benchmark problems with the goal to in-
vestigate potential advantages of genotypes with multiple
chromosomes. Besides the technical benefit of using differ-
ent encodings, genetic operators, and parameters for spe-
cific chromosomes, we hypothesize that the generalization
capabilities of evolved networks (or other structures) in-
crease, when their genotype is of multi–chromosomal or-
ganization.
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1 Introduction

Multi–chromosomal genotype representation is an ap-
proach not only stressing the biological roots of artificial
evolution, but also offering some potential technical ad-
vantages. As the genetic information is divided and pack-
aged on several chromosomes, a new hierarchical level of
genotype representation is introduced, which gives rise to
an additional recombination operator, i.e.Chromosome
Shuffling. In this process, complete chromosomes are ex-
changed between parents. At a certain stage of evolution,
the chromosomes may represent useful solutions for a spe-
cific sub-problem, which could be of immediate benefit in
another genome. We hypothesize that chromosomes are
evolved towards general usability in a genotype, as spe-
cialized chromosomes relying on other chromosomes to
generate a phenotype of high fitness will be weeded out
by the shuffling procedure. Consequently, evolved solu-
tions based on multi–chromosomal representations might
be more general than those employing conventional tech-
niques with single chromosomes.

To paint these theoretical considerations with some
color, imagine components of a car with the car body (chro-
mosome A), a motor (chromosome B), and wheels (chro-
mosome C). If in a car design X of high fitness, wheels and
motor are so specialized that they only fit to the specific
car body, the exchange (shuffling) of chromosomes (e.g.,
wheels) with another car design Y will leave X without
wheels. If the car body of Y accepts a variety of wheels,
Y will still represent a valid car design. Thus, in the long
run only car bodies will survive that can cope with a vari-
ety of motors and wheels (and vice versa), which in the end
makes it likely that the evolved car can also take on wheels
never tried during evolution, i.e., a general car design has
been evolved.

The above hypothesis could be confirmed in multi–
chromosomal evolution of fuzzy controllers [1]. Con-
trollers evolved to solve the inverted pendulum problem
performed better on unknown test cases: they had better
generalization capabilities when their genotype was split
into multiple chromosomes.

Another interesting property of multi–chromosomal
representations is the potential to use different encodings
in a genotype. For example, with ANN evolution, the net-
work structure can be encoded by bit strings (direct repre-
sentation), while the connection weights may be encoded
by real values in separate chromosomes.

In this work we investigate the validity of the
hypothesis (improved generalization induced by multi–
chromosomal representations) in the realm of neuroevolu-
tion. Both network structure, and connection weights of
an Artificial Neural Network(ANN) are evolved without
need for conventional training. Three benchmark prob-
lems, namely the two classification problemsGlass and
Two Spirals, and the prediction problemMackey–Glassare
utilized for evolution experiments. For each of these, the
performance of the resulting neural networks (with differ-
ent encodings) is compared on training and test sets, along
with the size (number of neurons and links) of the evolved
network structures.

Simultaneous evolution of network structure and con-
nection weights is often the method of choice when explicit
training data are not available. For example, inEvolution-
ary Roboticsthe behavior (fitness) of a robot controlled by
an ANN can be assessed, but it is mostly impossible to



provide coherent sensor–motor mappings for each situation
the robot may experience.NeuroEvolution of Augmenting
Topologies(NEAT) is a recent development in the evolu-
tion of ANN structure and weights, which has been effec-
tively applied to a pole–balancing task in [2]. However, if
training data are available, most systems incorporate con-
ventional training so as to systematically exploit the knowl-
edge contained in the teaching examples. Another system
evolving structure and weights isEPNet, which has been
applied to real–world benchmark problems, but employs
conventional (partial) training as the mutation operator of
highest priority [3]. In this work we evolve ANN structure
and weights for well–known benchmark problems without
utilizing any conventional training methods.

This paper first introduces the concepts of multi–
chromosomal neuroevolution in section 2. Section 3 de-
scribes the experimental setup and the parameters used for
each of the benchmark problems. Section 4 presents the
results of the various experiments, and section 5 concludes
with a summary and potential future work.

2 Multi–chromosomal ANN Evolution

With multi–chromosomal representations, the genetic op-
erators, evolution parameters, and encoding of each chro-
mosome may be different. As an example, fig. 1 displays
the ANN genotype representations used in the experiments
below.

Figure 1: Single- and multi-chromosomal ANN genotype
representations.

The conventional genetic operators can be extended
in a straight-forward manner. Mutation is performed sepa-
rately on each chromosome, and crossover is restricted to
exchange only parts of corresponding chromosomes (such
as hidden neurons; see [4] for a different crossover ap-
proach). The additional chromosome shuffling operator
[5] enables the exchange of genetic material between in-
dividuals on the level of partial solutions. Chromosome
shuffling is motivated by the biological process ofMeio-
sis, where after crossover the recombined chromosomes of
mother or father separate randomly to different cell areas

to form a new (shuffled) set of chromosomes [6]. Simi-
larly, in the artificial domain chromosome shuffling is im-
plemented by exchanging complete chromosomes of two
parents with a shuffle rate ofps. Assume that in fig. 1 the
two multi–chromosomal encodings represent two individu-
als (each having three chromosomes) of a population. Dur-
ing shuffling each chromosome of a parent is exchanged
with the corresponding chromosome (for example, links)
of the other parent with probabilityps.

Evolutionary computation techniques allow to auto-
mate the process of ANN design (e.g., structure, weights)
and may optimize other system parameters (e.g., learn
rate, composition of training data). Usually, the evolu-
tion of the network structure is combined with conventional
ANN training, if appropriate training data sets are avail-
able. Though the latter is obviously true for the benchmark
problems utilized in this work, we also evolve the connec-
tion weights in our experiments, which is known to require
a rather large number of individuals and generations. How-
ever, having in mind the investigation of potential benefits
of multi–chromosomal representations on the generaliza-
tion capabilities of ANNs, we wanted to employ a “pure”
evolution system, as the main hypothesis (improved gen-
eralization induced by chromosome shuffling) is grounded
on evolutionary arguments.

So far, multi–chromosomal evolution has not been in
the spot light of evolutionary computation research. One
of the earliest papers using the term is by Hinterding and
Juliff (1993) describing the application on a stock cut-
ting problem [7]. Ronald et al. (1997) presented multi–
chromosomal experiments solving a modified traveling
salesperson problem [8]. Another application of multi–
chromosomal encoding is described by Bhatia and Basu
(2004) [9]. Cavill et al. (2005) explore the concepts of
polyploidy and dominance with multi–chromosomal evo-
lutionary algorithms [4].

3 Experimental Setup

In our experiments we compare ANN representations us-
ing a single bit (string) chromosome (calledsingle in the
following) with two multi–chromosomal representations,
namely, three bit chromosomes (multi–bit), and two bit
chromosomes and a real-valued chromosome (multi–real).
The corresponding encoded ANN parameters are the net-
work structure (hidden neurons, links) and the link weights.
The direct encoding of network structure, where each hid-
den neuron and link is represented by a single bit, results
in a Generalized Multi-Layer Perceptron(GMLP), which
allows any connection in the forward direction, e.g., direct
connections from input to output.

The links are encoded in a (linearized) adjacency ma-
trix describing the network structure. If a neuron is turned
off (the corresponding bit is 0), all associated connections
become obsolete. If any input or output neuron does not
have a connection to a hidden neuron, the network is ren-
dered invalid by assigning a fitness of 0.



The connection weights are encoded using 16 bits (bit
chromosome) mapped into the interval[−100,100], or a
real value (real chromosome), which adds a flavor ofEvo-
lution Strategiesto the genotype (fig. 1).

The mutation operator for the binary chromosomes
and the real number chromosome is the standard bit flip
mutation, andσ -self-adaption (σ -mutation) [10], respec-
tively. With σ -mutation each object parameterxi (here a
connection weight) has an associated strategy parameterσi

controlling mutation of the object parameter as given by

x′i = xi +σ ′i ·N(0,1), (1)

wherex′i is the mutated object parameter, andN(0,1) the
normal distribution. The strategy parametersσi are mu-
tated according to

σ ′i = σi ·e(τ ′·N(0,1)+τ ·Ni(0,1)), (2)

with τ ′ =
(√

2n
)−1

, τ =
(√

2
√

n
)−1

, n being the number

of object parameters, andNi(0,1) indicating that a new ran-
dom number is drawn from the distribution for each strat-
egy parameter.

The recombination operator for all chromosomes is
2–point crossover (occurring separately on each chromo-
some), and the selection method of choice isBinary Tour-
namentselection with replacement.

For a fair comparison of the various representations,
we need to match the crossover rates. This is done by con-
sidering the probabilitypNOR that an individual is not al-
tered under crossover and shuffling:

pNOR= [pc
s +(1− ps)c](1− pc)c (3)

whereps is the shuffle rate,pc the crossover rate, andc >
0 is the number of chromosomes. By equatingpNOR for
single- and multi–chromosomal representations, we obtain
the matched crossover rate for multiple chromosomespc,M:

pc,M = 1− c

√
1− pc,S

pc
s +(1− ps)c (4)

with pc,S being the crossover rate in the single-
chromosomal case. Note that the matched crossover rates
pc,M andpc,S are different even without shuffling (ps = 0),
as crossover is restricted to single chromosomes (the num-
ber of potential crossover events is equal to the number of
chromosomes).

Table 1 shows the various evolution parameters used
for the experiments. The values of the matched crossover
rates seem to be unusual, but a more conventional setting
of pc,S = 0.6 would result in a negativepc,M (Equation 4).

The (problem–specific) fitness functionFm (model
fitness) assesses the performance of the evolved ANN. The
model fitness is evaluated on a training set, while the final
performance of an evolved ANN is determined by using a
test set with data not presented during evolution.

Runs: 30
Generations: 1,000
Individuals: 150

Mutation Rate: 5
l (l . . .genotype length)

Crossover Rate: pc,S = 0.817
pc,M = 0.1

Shuffle Rate: ps = 0.5
Selection: Binary Tournament

Table 1: General ANN evolution parameters.

The experiments have been conducted using the Java
frameworknetJEN, an ANN evolution environment, devel-
oped by the authors and colleagues. The following three
benchmark problems have been adopted.

3.1 Glass

Glassis a classification problem from the PROBEN1 neu-
ral benchmark suite [11]. The problem stems from crimi-
nology, where glass splinters need to be analyzed and cat-
egorized into different types of glass, e.g., window glass.
An input pattern is made of values for the refractive index,
and concentrations of eight chemical elements in the ana-
lyzed splinters (nine parameters). The six output classes
are float- and non–float processed building window glass,
vehicle window glass, container, tableware, and headlamp
glass. For the experiments, theglass2data set with 161
training and 53 test patterns is used. The maximal number
of hidden neurons is set to 20.

The fitness functionFm used for the Glass (and the
Two Spirals) problem is simply the classification accuracy
Fm = 1− Nerr

Npat
with Npat being the number of patterns in the

training set, andNerr the number of incorrectly classified
patterns.

3.2 Two Spirals

The Two Spiralsproblem is a well–known classification
benchmark from the CMU neural benchmark repository
[12], which is known to be hard to solve for neural net-
works. The goal is to discriminate between two spirals
coiled inside each other inside the unit square. The 388
training and 194 test patterns with two inputs (for x– and
y–coordinates of a point) and two outputs (one for each spi-
ral) are generated by adding constant (small) noise terms to
the points on the spirals. The maximal number of hidden
neurons is defined to be 20.

3.3 Mackey–Glass

The Mackey–Glasschaotic time series is a function pre-
diction problem, again, from the CMU neural benchmark
repository [12]. The Mackey–Glass time series [13] is
represented by the ANN input vector of{x(t − 18),x(t −
12),x(t − 6),x(t)} used to predict a future valuex(t + P)



(the single output neuron has linear activation function).
Since the function is chaotic, this task is more difficult for
values ofP greater than its characteristic period of approx-
imately 50.

For the experiments a value ofP = 84 is used for the
3,001 training and 501 test patterns. The maximal number
of hidden neurons is 20. The fitness function is given by
Fm = 1

1+SSE, whereSSEis theSum Square Erroron the
training set.

4 Experimental Results

From the 30 evolutionary runs the performance of the over-
all best ANN and mean classification errors (with standard
deviation) of the best ANNs of each run are presented.

4.1 Glass Results

Table 2 gives statistical details on the results for the Glass
problem. Training and test set errors are the percentage
of incorrectly classified patterns. TheNeuronsvalue is the
number of hidden neurons.

Best Net single multi–bit multi–real

Train error 18.63 20.5 24.22
Test error 28.3 32.08 32.08
Neurons 7 11 9
Links 66 122 114

Means

Train error 24.82 25.73 29.75
StdDev. 5.86 6.07 5.38

Test error 41.64 41.76 43.9
StdDev. 7.01 5.59 6.44

Neurons 7.33 8.53 9.13
StdDev. 2.05 3.66 2.51

Links 82.9 125.23 116.13
StdDev. 26.16 47.1 33.74

Table 2: Glass Evolution Statistics (averaged on 30 runs).

Avg StdDev Best Worst

Training 19.63 1.92 16.82 23.36
Test 36.6 3.79 32.08 43.4

Table 3: Glass Training Statistics (averaged on 10 runs).

In this example, the conventional single–
chromosomal encoding produces slightly better results
than the multi-chromosomal variants. The most notable
difference is in the mean number of links withsingle
generating the smallest networks.

To put these results into perspective, we have trained
a 9−8−6 GMLP (sigmoidal activation functions) having
all possible forward connections (174) for 500 epochs with

the back–propagation variantRprop[14]. The results (av-
eraged on 10 runs) are presented in table 3.

Compared to the evolution results, the mean test set
error after training is lower, but the best test set errors
achieved by evolution are equal (multi) or even better (sin-
gle). These results demonstrate the potential of combined
structure and weight evolution, evidently exhibiting a larger
variance of results than the directed training method.

Notably, evolution and training results are consider-
ably superior to those reported in [11] (p28, table 5) with
a test set error of 52.83%. Better results are reported in
[15] using a neural network ensemble approach with test
set errors from 20% to 30%. However, in the latter work
no indication is given which of the three PROBEN1 glass
data sets have been selected (the one used here,glass2, is
the most difficult).

4.2 Two Spirals Results

The results for the experiments with the Two Spirals prob-
lem are given in table 4. Again, training and test set errors
are the percentage of incorrectly classified patterns, and the
Neuronvalues are the hidden neuron counts.

Best Net single multi–bit multi–real
Train error 25.26 23.45 31.44
Test error 27.84 24.23 33.51
Neurons 9 8 11
Links 44 46 62

Means

Train error 32.33 30.43 38.74
StdDev. 3.88 2.86 2.39

Test error 35.12 33.21 40.5
StdDev. 3.2 3.25 2.42

Neurons 7.17 8.6 9.43
StdDev. 2.24 1.85 2.78

Links 30.23 47.2 46.73
StdDev. 12.43 20.45 20.28

Table 4: Two Spirals Evolution Statistics (30 runs).

The multi–chromosomal representation with binary
encoding wins marginally over thesingle representation,
while multi–real generates the largest mean test error.
Again, on averagesingleclearly produces the smallest net-
works. An exemplary evolved network is depicted in fig-
ure 2. Table 5 presents the results for a fully connected
2− 18− 2 GMLP (76 connections, sigmoidal activation)
trained by Rprop for 5000 epochs.

Considering the mean test set error, two of the evo-
lutionary approaches (single, multi–bit) generate better re-
sults than conventional training. When looking at the test
set errors of the best networks, all evolution products are
superior to the trained network. It is known that good ANN
performance for the Two Spirals problem is only achiev-
able with specific architectures or training regimes. In [16]



we could achieve a test set error of 6.73% when evolving
network structure, activation functions, and Rprop learning
parameters. Though, these networks were already consid-
ered to be small, they had around 12 hidden neurons and 80
connections, which is roughly twice the complexity of the
evolved networks above.

Figure 2: An evolved Two Spirals network.

Avg StdDev Best Worst

Training 37.58 2.93 32.99 43.81
Test 38.3 3.05 35.05 44.85

Table 5: Two Spirals Training Statistics (10 runs).

4.3 Mackey–Glass Results

Finally, table 6 presents the results for the Mackey–Glass
time series prediction. Here, theNormalized Root Mean
Square Error(NRMSE) is used to assess the quality of the
networks. TheNeuronvalues are, again, the hidden neuron
counts.

Best Net single multi–bit multi–real

Train error 0.49004 0.50072 0.45316
Test error 0.48969 0.48709 0.43635
Neurons 12 10 6
Links 52 43 24

Means

Train error 2.06491 4.24671 0.66954
StdDev. 2.74516 5.23194 0.51552

Test error 2.08859 4.29186 0.65979
StdDev. 2.80059 5.31418 0.51504

Neurons 9.33 9.33 8.43
StdDev. 1.85 2.64 2.03

Links 43.2 44.3 37.57
StdDev. 10.66 16 12.41

Table 6: Mackey–Glass Evolution Statistics (30 runs).

In this example themulti–real representation clearly
outperforms the others. Actually, the mean test errors for
singleandmulti–bit indicate difficulties of the evolutionary
search to find reasonable network solutions in every run.
Sometimes evolution is quite successful, as indicated by the

Avg StdDev Best Worst

Training 0.3901 0.03668 0.3249 0.441
Test 0.3979 0.03452 0.3392 0.4464

Table 7: Mackey–Glass Training Statistics (10 runs).

quality of the best networks, but in some runs it fails to find
meaningful solutions (NRMSE< 1.0). This behavior can
most likely be attributed to the specific importance of a sin-
gle network parameter: the bias value of the linear output
neuron giving the prediction value. While withmulti–real
this bias is constantly mutated in small steps, the chance
of mutation is small with the other representations. Hence,
the bit representations rely more on the quality of networks
in the random start population thanmulti–real. The differ-
ences in network complexity are small withmulti–realgen-
erating a bit smaller networks. Table 7 presents the results
training a4−9−9−1 MLP (126 connections, sigmoidal
activation functions) for 500 cycles using Rprop.

The trained networks clearly exceed the quality of the
evolved networks. We believe that the existence of a sin-
gle very important parameter in the network is the reason
for these differences, because analytical training methods
can intrinsically discriminate between more or less influ-
ential parameters to be adapted. In [17] the best result
achieved with coevolutionary techniques is 0.1868, and in
[18] a neural system based on aLong Short Term Memory
(LSTM) produced a minimal NRMSE of 0.26. However, in
both of the latter approaches conventional training is part of
the model generation.

5 Conclusion

We have presented experiments investigating the impact
of multi–chromosomal representations on the performance
of evolved artificial neural networks (ANNs). A techni-
cal benefit of the multi–chromosomal representation is the
ability to use different encodings, genetic operators, and
parameters for specific chromosomes. On three benchmark
problems (two classification, one prediction) we observed
that even though ANN structureandweights were evolved
in a rather small number of 1,000 generations, network
performance in terms of test set error can be superior to
non–evolutionary approaches including conventional ANN
training in specific problem instances (Glass). However,
our hypothesis that shuffling of chromosomes in multi–
chromosomal representations induces improved general-
ization of the evolved networks could not be confirmed. In
fact, on the three benchmark problems each of the three in-
vestigated representations turned out to be the winner once.

A key factor influencing the performance of the
evolved networks could be the partitioning of genetic code
onto specific chromosomes. Here, we determined the num-
ber and organization of chromosomes in a straight–forward
manner (e.g., all links are encoded on a single chromo-



some), but in nature it is common that cooperating genes
are located on different chromosomes [6]. One could ar-
gue that our choice of gene distribution helps in evolving
good networks for the specific Glass problem, but is less
productive for the other problems investigated. Hence, a
focus of future work will be on the difficult problem of
self–organization of the chromosome structure. This could
be achieved by specific encodings, where each network pa-
rameter has an additional tag (code) identifying its category
(e.g., weight or neuron), so that the parameters may be ar-
bitrarily dispersed on chromosomes. Similar ideas could
be used to not only evolve the distribution of genes on a
(fixed) number of chromosomes, but also the number and
size of chromosomes.
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