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Abstract

We present experiments evolving computer Go players based
on artificial neural networks (ANNs) for a 5x5 board, where
ANN structure and weights are encoded in multi–chromosomal
genotypes. In evolutionary scenarios a population of gener-
alized multi–layer perceptrons (GMLPs) has to compete with a
single computer Go program from a set of three artificial players
of different quality. The playing quality of the evolved players is
measured by a strength value derived from games against the
three computer players. We also report on results of first ex-
periments employing recurrent networks, which allow a direct
structural representation of the Go board.

1 Introduction

With the advent of the first computers board games have at-
tracted many researchers, e.g., (Shannon, 1950), as the com-
putational intelligence of game playing programs can be di-
rectly related to the intelligence of its human opponent. Out
of all board games, chess has received the most attention with
efforts beating the human world champion finally being suc-
cessful in 1997 (Deep Blue 1, a chess playing IBM supercom-
puter, defeated Garry Kasparov, the reigning world champion
in chess).

The board game Go has received increasing attention in re-
cent years, as unlike chess programs the best Go playing com-
puters are still at a mediocre amateur level, i.e., a good ama-
teur Go player easily beats the machine. Despite the simplicity
of Go’s rules, the game’s strategies and tactics are difficult to
put into analytical or algorithmical form. There are mainly three
reasons why Go is hard for traditional computer game playing
techniques.

First, the number of possible moves (the branching factor) in
the majority of game situations is much larger than in games
like chess or backgammon with about twenty legal moves for
each board position. On a standard 19×19 Go board a player
has the choice among 200–300 potential moves. Hence, in a
common game tree representation, where each node is asso-
ciated with a board situation and each branch with a move, the
number of nodes grow exponentially with a base of 200. A Go

1http://www.research.ibm.com/deepblue/

computer program playing with a very moderate tree depth of
four had to evaluate 10,000 times the number of moves a chess
program has to ponder.

Second, Go is a game of mutual dependent objectives. While
in chess the goal is very explicit (capture of the opponent’s
king), in Go the aim of securing territory (where each board
intersection counts as a point) can be achieved by capturing op-
ponent’s stones (death) as well as by securing own stones (life).
Moreover, in order to win the game not the absolute number of
points is decisive but the difference in points the two players
have accumulated. In a sense each single game of Go defines
itself, as the total number of points varies and depends on the
quality and style of the players. As a consequence, evaluation
functions precisely assessing a board situation can hardly be
defined, as human expert players often rely on rather intuitive
concepts, e.g., good and bad shape (of stones). Hence, ANNs
having been successfully applied in the field of pattern recogni-
tion, are believed to have some potential to play Go.

Third, though Go has been played for thousands of years in
China and Japan, the first professional Go players started to
earn prize money 45 years ago. Professional chess has a tra-
dition of 130 years resulting in much more literature on open-
ing, mid– and end game theory based on millions of recorded
games played by expert players. As a matter of fact, todays
extremely strong chess programs rely on human expertise to
defeat human expertise.

A radically different approach is the construction of computer
players by means of Evolutionary Computation (EC). Here, an
initial number of (often random) players (programs) play against
each other, the winners survive, and exchange and randomly
alter (mutate) parts of their genetic material (the program code)
so as to produce new programs undergoing the same evolution-
ary procedures. Eventually, the programs improve their playing
strength without any explicit incorporation of a priori knowledge,
which gives these systems the potential to “invent” game strate-
gies no human player has ever discovered.

Moriarty and Miikulainen (1995) presented the evolution of
neural networks playing the game of Othello. The fitness of the
ANN players has been evaluated by a random player and a pro-
gram employing α-β search. Evolved players could easily beat
the random player (after 100 generations), and could also win
against the program (after 2000 generations), which adhered
to a popular Othello strategy. A more complex strategy used



by human expert players has intentionally not been integrated
into the programmed player. It could be shown that evolution
discovered the novel (counter–intuitive) strategy so as to beat
the α-β program (Moriarty and Miikkulainen, 1995).

Chellapilla and D. B. Fogel (1999) presented an evolved ANN
playing the game of checkers. The value of the single output
neuron was used as an evaluation of the current board situ-
ation presented to the input layer. The board evaluation has
been utilized to perform α–β search with a (standard) search
depth of four. After 250 generations the best network has been
evaluated by games against human players. A checkers rating
system allowed to categorize the performance of the network.
The neural player achieved Class A level (fourth best category)
and could even achieve a win against a human master player
(second best category) (Chellapilla and Fogel, 1999).

The “star” among artificial board game players is Tesauro’s
(1995) neural backgammon player TD–Gammon. Based on
Temporal Difference (TD) learning, a reinforcement learning
technique, a network has been trained in self–play by only re-
ceiving feedback on the outcome of games. After millions of
training games (in its latest version) TD–Gammon is estimated
to play at a level extremely close to the world’s best human
players (Tesauro, 1995).

In the evolutionary experiments presented in this work we
could generate ANNs beating a Go computer program (based
on heuristics) of moderate strength. However, it must be noted
that we evolved neural players for the small 5× 5 board, while
the real game is played on a 19× 19 board. The reason for
using the small board is the considerable computational cost
associated with the evolutionary process, which from todays
point of view does not allow board sizes larger than 9×9 (also
used by good players for practice games).

2 The Game of Go

The rules of Go (Chikun, 1997) are easy to learn, but the seem-
ingly simple concepts build into deep and complex structures
on the board. Two players (black and white) place their stones
alternately on the intersections of a 19×19 grid on the initially
empty board. Once a stone is played, it may not be moved
unless it is captured and taken off the board. The objective of
the players is to secure territories by completely surrounding
vacant areas on the board with their own stones. A player may
elect to pass, i.e., he does not play a stone, and the opponent
continues play. If both players pass consecutively, the game is
finished.

Stones are said to be adjacent, if they are positioned on hori-
zontally or vertically neighboring intersections. Adjacent stones
build a Group, e.g., black 1 in Figure 1 does not belong to the
two–stone group, but black 2 connects the group with black 1
to form a group of four stones.

A Liberty is an empty interesection adjacent to a group of
stones. The black group in the left Figure 2 has four liberties,
while the black group in the right Figure 2 only has a single
liberty.

1

2

Figure 1: Two groups of stones (left) and a group of four stones
(right).
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2 3
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Figure 2: Black groups with four liberties (left) and one liberty
(right).

Any group without liberties is said to be dead, and the stones
in that group are captured by the opponent removing the dead
stones from the board. When playing a white stone at 1 in the
right Figure 2 the group of two black stones is dead. However,
in most cases white would never play at 1, because black can-
not save her stones, and the black stones would be declared
dead and be removed at the end of the game. The black group
in the right Figure 2 is said to be in atari meaning that the group
has only a single liberty left.

With two exceptions stones can be placed on any empty in-
tersection on the board. A player may not commit suicide by
occupying the last remaining liberty of an own group, e.g., in
the left Figure 3 white must not play at 1.

1 3 2

Figure 3: Suicide moves and the ko rule.



However, there is an exception to the exception, namely, a
player may (seemingly) commit suicide, if he captures an op-
ponent’s group with this move as illustrated in the right Figure
3 by black playing at 2. If black captures white 3, white could
immediately recapture black 2 by playing at 3, but the ko rule
forbids this move. The ko rule prohibits that the same position
(on the whole board) reoccurs after two half moves. Hence, it
prevents endless repetition and a draw comparable to a Per-
manent Check being legal in chess. Note that white is allowed
to recapture black 2 after playing a move elsewhere (tenuki). If
the tenuki move forces black to react elsewhere, black has no
time to secure his stone by playing at 3. This is a key tactical
element of Go called ko threat.

At the end of the game (both players have passed) the dead
stones are removed from the board and added to the oppo-
nent’s captured stones. It should be mentioned that a correct
declaration of the status of the stones (dead or alive) is in some
cases a non–trivial task requiring experienced players. Thus, it
is even more difficult for a Go program. If human players dis-
agree on the status they may continue play to determine the
status, hence, Go programs often leave the status declaration
to the human opponent.

After all dead stones have been removed, the score is cal-
culated by counting the number of intersections a player has
secured in her territories, and adding the number of captured
opponent stones (Japanese score). The white player receives
extra points (komi) as a compensation for black’s advantage to
make the first move of the game. Komi values vary, but often a
value of 5.5 (the half point prevents draws) is added to white’s
points. The player with the higher number of points wins, and
the final score is the difference of the players’ points.

2.1 Eye Shapes and Living Groups

Many different shapes formed by the white and black stones
(and the empty intersections) have been categorized and ana-
lyzed during the many centuries of Go playing. Simpler shapes
restricted to small areas of the board can be recognized easily
and the suggested best moves are more or less evident. With
growing complexity of the shapes the best moves are often in-
tuitive and finding these moves is the sign of a master player.

One of the most fundamental shapes is an Eye, in its sim-
plest form a liberty surrounded by a group (Figure 4).

The black group with a single eye could be captured by white
by occupying all outside liberties with atari and then playing at
1. The white group, however, is said to be unconditionally alive,
since black after occupying all outside liberties could neither
play at 1, nor at 2, both being illegal suicide moves. Hence, the
white group is a living group, which cannot be captured, and
the eye space is secured territory. In this case the white group
secures two territory points, but the eye space could also be
larger. With the eye shape concept the Go objective of securing
territory can be reformulated into building living groups.

As an example of the complex structures groups on the Go
board can create a stalemate state of groups (seki) is shown in

1 1 2

Figure 4: A black group with one eye (left) and a white living
group with two eyes (right).

Figure 5.
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Figure 5: Opposing groups in seki.

Though, at first glance it seems that the player making the
next move could easily capture an opponent group, further in-
spection reveals that for both players a try to attack and capture
an opponent group leads only to the loss of an own group. If
black played at 1, he would put the left white group in atari, but
at the same time his own right group leading to immediate loss
of this group (white playing at 2). As the same is true for white
playing at 1, both players are well adviced to play tenuki and
leave these groups in seki. Seki territory is neutral, because no
player has completely surrounded it, and the empty intersection
points are not added to the score of either player.

2.2 Rankings and Handicaps

In order to rate a Go player’s strength there are ranking systems
for amateur and professional players. The amateur ranking sys-
tem starts with the student (kyu) ranks from 35 kyu up to 1 kyu
(best). As a player learns more about basic Go techniques, he
rapidly reaches higher kyu values (from 20 to 15 kyu). This
kyu range should be reached after about two months of intense
Go studying. Improving the kyu value from 10 kyu up to 1 kyu
needs much more time. As soon as an amateur becomes a
master dan player, she gets the rank of 1 dan (best is 7 dan).
Professional ranks are on a scale from 1 to 9 dan. Amateur
dan ranks do not correspond to professional dan ranks, as most



professionals are much stronger than any amateur.
The ranking systems reflect the difference of the players’

strength, which can be elegantly used to compensate these dif-
ferences by handicap stones so that both players have roughly
the same chances of winning a game. In a handicap game the
weaker player always plays black and starts with a number of
stones corresponding to the rank difference. These stones are
placed on pre–defined intersections (star points) on the board,
then, white makes his first move. E.g., when a 2 dan amateur
plays a 3 kyu, the 3 kyu receives four handicap stones. The dif-
ference of a 1 dan professional to a 1 dan amateur is estimated
to be seven handicap stones.

3 Evolution of Neural Go Players

The automatic generation of game playing ANNs by artificial
evolution offers some appealing advantages to conventional
ANN training. In order to teach an ANN a complex board game
the required training data set should ideally cover all aspects of
the game including different playing strengths and styles. How-
ever, this would lead to an enormous amount of data, which
may be impractical for successful training. Even, if training
yields an ANN player having extracted all the concepts hid-
den in the training data, it is very likely that it will never sur-
pass the strength of the players, whose games constituted the
training data. E.g., in (Thrun, 1995) ANNs having been trained
with chess games by master players, played reasonably against
strong players, but failed to beat weak players. Also, part of the
success of ANN training is based on the structure of the net-
work, but no analytical rules to determine the number of (hid-
den) neurons and the specific connectivities exist, which was a
starting point for the field of ANN evolution (Yao, 1999).

Evolution of game playing ANNs does not require any knowl-
edge of the game, but only the games’ rules and the feedback
about the outcome of the game. Hence, in theory the evolved
neural player could have playing abilities beyond any human
player, as it does not rely on human expertise at all. Nice as
this may sound, there are practical limitations to ANN evolu-
tion, most prominently, the computational cost associated with
the evolutionary process, where thousands and millions of in-
dividuals (neural players) have to be evaluated. Hence, we re-
stricted evolution of Go players to the simple 5×5 board, which
is mostly used for educational purposes and demonstration of
basic concepts of the game. Though, we carried out the experi-
ments with the netJEN system (a pure Java application for ANN
evolution) designed and implemented by the authors, which
supports distributed computation, from our point of view evo-
lution of Go players for a 9×9 board is the current limit (unless
one spends months and years of CPU time).

3.1 ANN Board Representation

We have extensively experimented with a variety of different
board representations for the neural Go player using layered

Feed–Forward networks. In order to evaluate each represen-
tation we trained the networks with a data set acquired from
games played by the JaGo program against itself, and tested
the ANNs by playing games against JaGo and other programs
(Section 4). As detection of shapes (patterns) on the Go board
is an important quality of a Go player, we have also employed
some basic concepts from image processing for the board rep-
resentation, e.g., Co–occurrence matrices. Often, the different
representations yielded very similar results, but in the end a
simple representation also suggested in related work (Richards
et al., 1997) turned out to be the winner.

Each intersection on the Go board is represented by two in-
put neurons, one for each player. A 1 indicates that the intersec-
tion is occupied by the corresponding player, a 0 that it is not,
i.e., two zeros represent an empty intersection, and two ones
are illegal. We rather speak of two players instead of black and
white, as the same network may play both colors (even against
itself) by simply discerning between own stones and opponent
stones.

The output representation simply assigns each output neu-
ron to an intersection. The move corresponding to the highest
activation is selected. If this move is illegal, e.g., the intersec-
tion is occupied, the move with the next highest activation is
chosen. These representations result in 50 input and 26 output
neurons for the 5×5 board (including the pass move).

3.2 ANN Encoding and Genetic Operators

ANN evolution is based on a direct encoding scheme gen-
erating Generalized Multi–Layer Perceptrons (GMLPs), which
have no defined layered structure between input and output
layer, and may contain any forward connections between neu-
rons (including direct connections from input to output neu-
rons). The number of hidden neurons, the connections, and
the connection weights are evolved on separate chromosomes,
hence, the complete ANN genotype consists of three chromo-
somes. During recombination the chromosomes are shuffled
(exchanged) between two parents with a shuffle rate ps = 0.5
(Mayer and Spitzlinger, 2003). The multi–chromosomal encod-
ing enables the use of different encodings (and corresponding
operators) on different chromosomes: the hidden neurons, and
the connections are encoded by bitstrings (Genetic Algorithm
style), while the weights are encoded by real numbers (Evolu-
tion Strategies style).

Each hidden neuron and each connection is represented
by a single bit (Marker) in the corresponding chromosomes.
The markers are a simple analogue to activators/repressors
regulating the expression of wild–type genes. A hidden
neuron/connection marker determines, if the specific neu-
ron/connection associated with it is present in the decoded net-
work. The maximal number of hidden neurons (neuron mark-
ers) has to be set in advance, hence, this evolution technique
could be labeled as Evolutionary Pruning, since the system im-
poses an upper bound on the complexity of the network.

The mutation operator for the binary chromosomes and the



real number chromosome is the standard bit flip mutation, and
σ–self–adaption (σ–mutation) (Schwefel, 1995), respectively.
With σ–mutation each object parameter xi (here a connection
weight) has an associated strategy parameter σi controlling
mutation of the object parameter as given by

x′i = xi +σ′
i ·N(0,1), (1)

where x′i is the mutated object parameter, and N(0,1) the
normal distribution. The strategy parameters σi are mutated
according to

σ′
i = σi · e

(τ′·N(0,1)+τ·Ni(0,1))
, (2)

with τ′ =
(√

2n
)−1

, τ =
(

√

2
√

n
)−1

, n being the number of

object parameters, and Ni(0,1) indicating that a new random
number is drawn from the distribution for each strategy param-
eter. A simplified form of σ–mutation only uses a single strategy
parameter for mutations of the object parameters (termed sin-
gle σ–mutation in the following).

The recombination operator for all chromosomes is 2–point
crossover (occuring separately on each chromosome), and the
selection method of choice is Binary Tournament selection with
replacement. In order to monitor the development of evolving
Go players we devised the following performance measures.

3.3 Performance Measures

We define the strength s = w
g as the win rate of a player having

won w games challenging one or more computer Go players
in a number of games g. In the following experiments (Sec-
tion 5) the strength has been measured in games against three
computer players (Section 4) of different quality ranging from
a pure random player to a heuristic player including search for
common Go patterns on the board.

The strength value of an ANN player does not indicate to
which degree the network ”understands” the game. A basic
indicator of game comprehension is the number of illegal moves
a network tries to play. Consequently, in Equation 3 we define
the competence C measuring the ability of a neural player to
distinguish between legal and illegal moves as

C =
1
n

n

∑
i=0

1−
ti
pi

. (3)

For each of n games the ratio of all illegal moves ti tried in a
game to the number of all illegal moves pi possible generates
the competence’s raw value. An ANN player with C = 1.0 did
not select a single illegal move in all n games, whereas a player
with C = 0.0 always tried all illegal moves before it placed its
stone correctly. A competence of 0.85 indicates that on average
the neural player intended to play 15% of all possible illegal
moves but avoided all others.

The competence measure is able to separate networks re-
acting on changing situations in the course of a game from
players stubbornly playing the same moves, though, these may
be of strategic importance.

4 Computer Go Players

For the evolution of neural Go players and their evaluation we
utilized three heuristic computer players of different playing abil-
ities, which are briefly described in the following.

The Random player’s only “knowledge” of the game is the
ability to discern between legal and illegal moves, i.e., out of all
legal moves (including the pass move) one is chosen randomly
with uniform probability distribution. This player’s main purpose
is to detect very basic Go skills in a computer player, as a hu-
man novice with some hours of Go practice should easily beat
the Random player. Also, it serves as a test for a neural player
that possibly is able to win against a modest computer player,
but does not have a general concept of Go, i.e., it may lose
against Random.

The Naive player may be compared to a human knowing the
rules of Go, and having played some games is familiar with ba-
sic concepts. It is able to save and capture stones, and knows
when stones are definitely lost. Weak stones, i.e., stones in
danger of being captured, are saved by connecting them to a
larger group, so that a weak stone becomes a member of a
living group (or at least of one with more liberties).

JaGo is a Go program written in Java 2 by Fuming Wang.
JaGo is the best computer player we have used. It knows
standard Go playing techniques (saving and capturing stones),
and searches the board for 32 well–known Go patterns and its
symmetrical transformations. A few minor program errors have
been fixed, and time performance has been increased in some
parts by the authors.

GNU Go 3 is a free Go program being able to play games
on 5×5 to 19×19 boards with two to nine handicap stones.
It supports two Go protocols, the standard Go Modem Proto-
col (GMP) and the Go Text Protocol (GTP) intended to replace
GMP in the future, for inter–play with other Go programs.

We used GNU Go 3.2 to determine the strength of JaGo by
playing games on a 9×9 board, where GNU Go won about 90%
of the games. With the advantage of three handicap stones
JaGo won 51.8% of the games, i.e., it is able to play an even
game. GNU Go’s rating is slightly better than 10 kyu on the No
Name Go Server 4 (as of June 1, 2003), which corresponds to
an advanced amateur player’s capabilities on a 19x19 board.
However, a handicap stone on a 9×9 board is worth more than
on a 19 ×19 board. Therefore, JaGo’s rank cannot be directly
inferred from GNU Go’s rating and the number of handicap
stones necessary on a 9×9 board. It is assumed that a three
stone difference on a 9×9 board approximately corresponds to
a difference of six ranks on a 19×19 board, hence, JaGo’s rank
is about 16 kyu.

Recently, Go on a 5×5 board has been solved (van der
Werf et al., 2003). Black wins with a score of 25 points (no
komi), when playing the optimal opening move C3 (board cen-
ter). Black also wins starting play with C2, C4, B3, and D3 (by

2http://www.cs.vu.nl/∼jbmarkes/jago/
3http://www.gnu.org/software/gnugo/
4http://nngs.cosmic.org/



a score of 3, no komi), however, with a komi of 5.5 these games
are lost.

GNU Go optimally opens a game (C3) with the black stones
on a 5×5 board, and passes correctly in reaction to black C3
playing the white stones. However, it also passes after black
B3, C2, C4, or D3, but with optimal play could win with a score
of 2.5. As an evolved ANN only would have to learn the cor-
rect opening move, GNU Go has not been utilized in evolution
experiments, however, it definitely is an interesting evolution op-
ponent on larger boards.

5 Experiments

This section presents experiments evolving neural Go players
employing feed–forward and recurrent ANNs.

5.1 Experimental Setup

In all experiments games are conducted on a 5×5 board with a
komi of 5.5 for the white player. Evolution (Section 3) is taking
place in a population of 50 individuals, which initially are cre-
ated by random. The alleles of the two bitstring chromosomes,
representing the hidden neurons and all connections, are set
according to a probability randomly chosen for each individual
(biased coin). The random values for the initial real number
chromosome are drawn from the interval [−0.1,0.1].

The maximal GMLP network consists of 50 input, 20 hidden,
and 26 output neurons corresponding to a maximum of 3,010
connections. This transfers to a length of the real number chro-
mosome of 3,056 encoding the connection weights and 46 bias
values for hidden and output neurons.

The structure of the recurrent ANN is composed of 25 input
and 26 output neurons, which are fully connected (including
self–connections) resulting in 2,601 connections. The board
situation is encoded by a value for each intersection (black =
-1, empty = 0, white = 1), which is fed into the input layer via
the neurons’ bias. As the number of neurons is not evolved,
the genotype consists of two chromosomes, a bitstring chromo-
somes with a length of 2,601 encoding the connections, and a
real number chromosome of length 2,652 encoding the weights
and biases.

For both structures the mutation rates of the binary chromo-
somes are set to 1

l , where l is the chromosome length. σ–
mutation with an initial σ = 0.02 is used for the weight chromo-
some. All neurons employ the sigmoidal activation function.

The playing quality of the evolved ANNs is evaluated by their
strength s, which is computed by playing 2,000 games (1,000
with each color) against each of the three computer players
Random, Naive, and JaGo (Section 4).

5.2 Evolution Experiments

In this section we describe experiments in which the ANNs have
been evolved by playing against each of the dedicated com-
puter players Random, Naive, and JaGo. Each experiment has

been repeated 20 times. The fitness of an ANN is evaluated
by the win percentage after playing a number of games (with
both colors) against the fixed opponent. The maximal number
of generations is 3,000, but evolution is halted, when a neural
player wins all games against its opponent, as this ANN is of
maximal fitness.

5.2.1 Evolution versus Random

During evolution each ANN has to play 64 games against
Random. Nearly all of them won more than 90% of games
against the Random player. The strongest reached a win rate
of 0.9545, the weakest a value of 0.8820. The strategies devel-
oped by the ANNs to defeat Random do not work well against
the Naive player. The best ANN achieved a win rate of 0.2695,
while the worst reached 0.0285. Not surprisingly, the evolved
ANNs are not able to keep up with JaGo. Except for two ANNs
that reached a win rate around 0.08 all others played below
0.04. All of the ANNs reached a similar competence value
in the range of 0.45 up to 0.50. The low competence is due
to stubborn attempts to place stones in the board center even
though the intersection may be occupied.

Only three evolved ANNs open a game with the optimal move
C3 (Section 4). The ANNs rather place their first stones any-
where on the board, except the corners and the middle of the
edges (A3, C1, C5, and E3). This reflects the obvious fact that
Random is not able to capitalize on weak opening moves.

5.2.2 Evolution versus Naive

In the next experiments Random is replaced by the stronger
Naive player. Again, the fitness of each neural player is as-
sessed in 64 games. In Figure 6 a typical evolution run against
Naive is depicted.
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Figure 6: Fitness and competence statistics of evolving players
against Naive.

In the last generation the mean win rate of the population is
about 0.7. The initially slightly larger competence is a result
of nets playing (too) early pass moves, which are always legal.
Figure 7 shows the evaluation of the best ANNs (single best of



each run) evolved against Naive with strength values ranging
from 0.48 to 0.69.
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Figure 7: Strength of the best players evolved against Naive.

The ANN with lowest strength (0.4815) achieved a win rate of
0.8205 against Naive being the fifth best win rate of the evolved
ANNs. This strength results from low win rates against Random
(0.6030) and JaGo (0.0210) indicating the ANN’s specialization
in defeating Naive.

The evolved ANNs place their stones in the board center, and
try to keep them connected, which is the same basic strategy
the ANNs evolved against Random performed. However, the
Naive nets are slightly more reactive to specific moves of its
opponent.

25% of the best evolved ANNs played the optimal opening
move C3. Ten ANNs play around C3, while the remaining five
ANNs play the edge of the board, which normally is a bad
choice, but exploits a weakness of Naive. These ANNs sacrifice
their first stone and take advantage of the fact that Naive imme-
diately tries to capture this stone, which gives the net enough
time to establish a good position in the center.

In Figure 8 a game between the neural player of lowest
strength and Naive is presented, which helps to explain the net-
work’s weak performance against other opponents.
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Figure 8: An evolved ANN (playing the black stones) wins
against Naive (24, 26: pass).

The net plays a rather weak opening, as after 5 the game
would be considered lost. In the mid game the ANN slightly im-
proves by enforcing own stones (7, 9), and attacking the oppo-
nent’s stones (13, 15). In the end game the net takes advantage
of the opponent’s mistakes. Naive misses many opportunities
to play the key stone 25, which would have captured the upper,
left black group and created a white living group. With 25 and

27 the ANN creates a living group at the same time capturing
the white group left with a single eye.

5.2.3 Evolution versus JaGo

The next challenger for evolution is JaGo, a fairly sophisticated
player (Section 4), on average winning 90% and 81% of the
games against Naive, playing black and white, respectively. As
JaGo needs much more time than the weaker players to con-
sider its moves, but also exhibits less random behavior, we re-
duced the number of games against each network from 64 to
32 (in 19 runs, one run halted due to technical problems).

In Figure 9 the development of the mean and best fitness,
and the mean competence of a population of an evolutionary
run employing JaGo as opponent is shown.
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Figure 9: Fitness and competence statistics of evolving players
against Jago.

While a Naive population acquires a mean fitness of 0.6
within about 200 generations, in a JaGo population it takes
about 1,000 generations to reach 0.4 leading to a mean fitness
of approx. 0.55 in the last generation 3,000. Four evolution
runs proliferated a network winning all 32 games against Jago.

The JaGo ANNs connect their center stones quickly, as oth-
erwise Jago would win easily. Additionally, they sometimes play
elsewhere (tenuki) sacrificing single stones in order to distract
Jago. Similar to evolution versus Random and Naive, the neu-
ral players often exhibit a preference to place their stones onto
key intersections regardless of their state.

Figure 10 illustrates the strength of the best ANNs generated
by evolution against JaGo.

The evolved ANNs have strength values ranging from 0.35 to
0.77. On average they defeat Random in 81%, Naive in 25%,
and JaGo in 68% of games played. These win rates show that
in this setting evolution generates specialists performing well
against the single player they face during evolution, but fails to
generalize. Specifically, one would expect that a net beating
JaGo should easily beat the much weaker Naive.

Nine ANNs open the game optimally playing the first stone
at the board center, and not a single neural player starts play at



0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12 14 16 18

S
tr

en
gt

h

Run

JaGo Strength

Strength
Win rate against Random

Win rate against Naive
Win rate against JaGo

Competence

Figure 10: Strength of the best players evolved against Jago.

the edge. Remember that even though 25% of the Naive nets
opened at an edge intersection they beat Naive in most cases.
This indicates that evolution has adapted to the stronger play
of JaGo. The strength of the evolved networks clearly corre-
sponds to the opening move, as the nine nets playing C3 have
an average strength of 0.6748, the seven nets playing B3 or D3
0.5276, and the the three remaining playing B2, C4, and D4
0.4248.

A typical game between JaGo (black) and an evolved ANN
(strength 0.6360) is displayed in Figure11.
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Figure 11: An evolved ANN (playing the white stones) wins
against JaGo (18, 22, 24: pass).

Net wins with the smallest possible margin of 0.5 being an
indicator for a good quality of play. JaGo has three prisoners
and four points of territory, while Net has two territory points
and the komi of 5.5. It is most interesting that the dead stone
20 wins the game. If Net had not played this stone, JaGo would
neither have placed 21, nor 25, and Net would have lost by 0.5
(two prisoners, and six territory points of JaGo). In this case
Net exploits the occasional weakness of JaGo capturing dead
stones, hereby, reducing own territory.

5.2.4 Evolution of recurrent ANNs versus JaGo

A main problem associated with the feed–forward structure and
a simple board representation is that the information on neigh-
borhood relations of intersections is not provided to the net-
work. We could argue that most of evolution time is spent to
acquire knowledge, which is initially available to a human see-

ing a Go board for the very first time. A fully connected input
layer with recurrent connections (Section 5.1) gives evolution
the possibility to transfer board structure to network structure.
Due to time constraints we performed only two runs, where
each evolved recurrent net played 32 games against JaGo.

Figure 12 shows the evolutionary progress of recurrent ANNs
against JaGo.
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Figure 12: Fitness and competence statistics of evolving recur-
rent ANNs against Jago.

Compared to evolution of feed–forward ANNs (Figure 9) the
population’s fitness increases faster, and within 1,000 gener-
ations a recurrent network wins all 32 games against JaGo.
The two star players play with a strength of 0.6927 and 0.6517.
Though, these values are similar to the best evolved feed–
forward ANNs, the recurrent players seem to have more gen-
eral abilities, as the best net from the run in Figure 12 achieves
higher win rates against Naive (0.4940) and Random (0.9465).
Interestingly, the number of connections is very similar in both
star networks (1,296 and 1,294 out of maximally available
2,601).

Though, both evolved ANNs open the game at the optimal
C3, they adhere to different strategies. One attacks enemy
stones and defends its own stones, while the other tries to dis-
tract its opponent by playing the weak move A5 with the second
stone. Figure 13 presents a characteristic game.
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Figure 13: An evolved recurrent ANN (playing the white stones)
wins against JaGo.



JaGo opens the game optimally, Net answers weakly, and
JaGo attacks 2 with 3. Net responds poorly, JaGo keeps attack-
ing Net by playing 5, and threatens to capture 2 by means of 7.
Net ignores JaGo’s move and tries to enlarge its territory with
8. JaGo captures 4 with 9. Net’s next move is a rather strong
move, because it limits JaGo’s territory on the upper side of the
board. JaGo tries to enlarge its territory, Net defends with 12.
JaGo connects some of its stones with 13, which also strength-
ens its territory. Net prepares for a living group on the lower
left of the board with 14. JaGo creates a living group. Net cre-
ates two eyes, JaGo gets nervous and puts 17 into its living
group to the expense of a liberty and a point of score. Now,
Net turns the lower half of the board into own territory. JaGo
captures the dead white stone 2 with 19 costing another point
of score. 20 enlarges the influence of Net. JaGo passes three
times in a row. Inbetween Net plays two stones (22 and 24)
reducing its territory. Finally, JaGo owns two prisoners and two
intersections, while Net has no prisoners, but it controls three
intersections, and receives the komi of 5.5 making Net the win-
ner by 4.5.

This game shows that Net is able to defend own territory, and
to create a living group by sacrificing single stones, but it has
problems to find the right time to pass. However, this can most
certainly be attributed to the facts that JaGo, also, is not always
able to detect this moment, and that the score does not add to
fitness.

6 Summary and Outlook

We have presented experiments evolving neural Go players
for a 5×5 board utilizing mutli–chromosomal encoding of the
players’ generalized multi–layer perceptrons. In evolution ex-
periments each of three dedicated computer players of differ-
ent quality was used as the single opponent of the evolving
network population. Though, evolution always generated net-
works beating the specific opponent consistently, the known
problem of specialization could be observed. E.g., neural play-
ers evolved against JaGo, the strongest player utilized in this
work, on average beat JaGo in 68% of games played, but won
only 25% against the much weaker Naive, which the networks
never faced during evolution.

As a consequence, we also have investigated coevolutionary
approaches, where neural players only play against themselves
without ever being subjected to programs implementing human
expertise. Theoretically, coevolution allows “open–ended” evo-
lution, i.e., the only limit for the quality of a solution is the evolu-
tionary time (number of generations). However, a few problems
have been identified with coevolution (Rosin and Belew, 2000)
leading to stagnation of the coevolutionary progress. Amongst
them are Super Populations dominating other populations, the
Moving Target problem introducing (too much) noise in fitness
evaluation, and the occurrence of cycles. First results of coevo-
lutionary experiments showed that the neural Go players have
a lower strength value (0.44), but exhibit a more general style of
play allowing them to win games against all of above computer

players as well as the evolved networks presented in this work.
We also presented promising first experiments with neural

players based on recurrent ANNs whose structure is able to
reflect neighborhood relations of board intersections, which is
hardly possible with feed–forward networks. In this paper we
evolved the structure of the input layer, which could have con-
nections between any of its neurons representing board intere-
sections, but in future work we will experiment with fixed input
layers, where only neighboring neurons (intersections) are con-
nected. Currently, we are working on employing temporal dif-
ference learning for the neural Go players, and the extension of
evolutionary and reinforcement methods to 9×9 Go boards.
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