Automatic Construction of Drama School Timetables
Based on a Generic Evolutionary Framework

for Allocation and Scheduling Problems

EVOLUTIONARY COMPUTATION AND OPTIMIZATION TRACK
at the 19th ACM Symposium on Applied Computing - SAC 2004
March 14-17, 2004, Nicosia, Cyprus

Oskar Preinfalk

Department of Computer Science
University of Salzburg, Austria
ossi@cosy.sbg.ac.at

Helmut A. Mayer

Department of Computer Science
University of Salzburg, Austria
helmut@cosy.sbg.ac.at

Correspondence to:
Helmut Mayer
Universitat Salzburg
Institut fiir Computerwissenschaften
Jakob—Haringer—Strafie 2
A-5020 Salzburg
AUSTRIA

Telephone: +43-662-8044-6315
FAX: +43-662-8044-611

Automatic Construction of Drama School Timetables
Based on a Generic Evolutionary Framework

for Allocation and Scheduling Problems

Abstract

We present the application of the generic framework evAlloc for the
solution of allocation and scheduling problems (ASPs) to a real-world
problem. The solution engine integrated in the framework is based on
an evolutionary algorithm (EA). The general design of the Java frame-
work allows for application to all ASPs, whose problem data description
can be fit into the generic data representation of evAlloc. The framework
can be transformed into different applications by loading single XML (ex-
tended markup language) problem definition files. Experimental results
for the real-world application, timetabling of the complete teaching activ-
ities at the Institute for Drama at the Mozarteum University of Music and

Dramatic Arts in Salzburg, Austria, are presented.

1 Introduction

For the majority of specific instances of ASPs it is still very difficult to find “good”
solutions generated by computational intelligence systems. The main reason for
this situation is that above problems are NP—complete (or NP-hard) as docu-
mented in [1] giving an extensive survey of NP-hard problems in the allocation
and scheduling domain [1]. Mostly, problem solvers adapted to a specific ASP are

employed to tackle these problems. E.g., Schaerf and Meisels [2] use local search

techniques for timetabling problems; Drexl [3] proposes a simulated annealing
approach for a knapsack problem; Hart and Ross [4] solve job shop problems
with a hybrid EA (heuristic combination method).

Realizing that the essence of any ASP is the distribution of resources to con-
sumers, e.g., containers on a ship, jobs to machines, or hours in a timetable, we
designed a generic framework, which can be used to solve any ASP, whose descrip-
tion can be modelled according to the very general problem data structure defined
in the framework. The solution engine currently implemented in the framework
is an EA !, however, due to the object—oriented design, any other optimization
method could be easily added to the system. Evidently, such a generic system
might not produce solutions comparable to specific problem solvers, but in many
real-world applications the “only” requirement is to improve existing solutions.
It may be also sufficient to generate solutions similar to those provided by human
experts spending hours, days, or even weeks to construct these solutions.

A similar framework called Vishnu has been presented in [5, 6]. It uses a
fixed-size set of formulas for the problem representation and the scheduling se-
mantics. A web-based architecture enables multiple users to graphically create
and edit problem definitions, initiate and cancel scheduler runs and view the so-
lutions. Vishnu’s problem solver is grounded on an order based genetic algorithm
combined with a greedy schedule builder. A main difference between Vishnu and
evAlloc is the description of the specific problem data. While Vishnu defines
a specific syntax for the problem formulation, evAlloc essentially employs the
Java language to capture the problem details, as all problem—specific objects are
defined (and loaded at runtime) in an XML problem file. Although, this intro-

duces the necessity to program a few additional classes for an application (by

! This explains the ev in evAlloc.

an application engineer), the user then, can manipulate the data in an intuitive
way without any knowledge of a formal language. Moreover, with an increasing
number of applications a growing number of classes might be reusable for a new
application.

Section 2 presents main concepts of the evAlloc framework. A real world
application of a timetable problem is presented in section 3. Results can be

found in section 4.

2 The evAlloc framework

The main components of the framework are the problem representation, the so-
lution engine (an EA), and the graphical user interface (GUI) for manipulation
of problem—specific data and visualization of solutions. In order to employ evAl-
loc for a specific application, an application engineer has to model the problem
according to evAlloc’s problem representation, add (or reuse) a few software
components, and save the full application to the XML problem definition file.
The user of the system does not have to bother with any technical details con-
cerning the framework, but simply loads the XML problem file and manipulates

problem—specific data via the GUI.

2.1 The generic problem representation

The problem (the data describing it) is hierarchically organized in a tree data
structure. Each node of the tree can have an arbitrary number of children. The
root of the tree is the AllocationProblem, which is decomposed into Allocation-
Groups. The allocation groups resemble the sets of resources and consumers of

the ASP. Each group contains a number of Allocationltems representing the set

of items to be allocated/scheduled. In the next tree level the States are accomo-
dated describing the state of each allocation item. In software terms the state is
a Dynamic Variable, which may be a simple parameter changing its value, but
also a much more complex structure such as a timetable.

Each State may have associated Constraints (children in the tree structure)
controlling the States’ values. If a Constraint defined to be hard is violated during
the construction of a solution, it immediately stops the construction so as to save
computation time (2.2). States and Constraints resemble the problem—specific
code an application engineer has to provide in order to transform the evAlloc
framework into a full application.

Figure 1 shows screen shots of a job shop and a knapsack problem modelled
according to evAlloc’s problem representation.

8 Joh Shop Problern] %9 Knapsack Problem

% 8 Machines & & Knapsack
& & mo @ & Knapsack
&8 TaskList &2 value
& S w1 ¢ 8 weight
© w2 &3 UpperBoundaryConstraint
o S 3 e & ttems
o S 14 & & Pencil
@ H ps & Value
% 8 Jobs 5 wisight
& &% a0 @ S Rubber
&8 TaskList & value
@ &3 Weight
o S5 2 ¢ & Ballpen
o H 3 & Value
@ My 4 &3 weight
& 5 5

Figure 1: Problem representation of a Job Shop (left) and a Knapsack problem
(right).

E.g., in the job shop problem representation Machines and Jobs are allocation
groups. Value and Weight are States of a knapsack, whose weight is constrained
by an upper boundary (UpperBoundaryConstraint). All the parameters of the

problem representation can be graphically edited by the user (including the addi-

4

tion/removal of allocation items, e.g., add machine M6 to the job shop problem).
The complete problem can be saved in an XML problem definition file, whose

structure reflects the problem tree.

2.2 The construction of solutions

The basic software technique to generate a solution is based on cloning the prob-
lem tree. This copy becomes the solution tree, where the problem solver manipu-
lates the data to construct a solution. The solution engine (here an EA) provides
a sequence of resource items, which are allocated to consumers by a Negotiator.
The negotiator is another key feature of evAlloc’s design, as it allows any degree
of incorporation of problem—specific heuristics in a single well-defined class. E.g.,
the negotiator can operate without any specific problem knowledge by mechan-
ically allocating the resource items to the consumers, or it can implement any
number of problem-specific heuristics before passing an item to a consumer.
The fully constructed solution can then be evaluated by objective (fitness)
functions, which can be defined without writing a line of code. Any node in
the problem tree may be used as a term in the fitness function, which can be
graphically constructed in a special editor. As often the user cannot know all the
details necessary to construct a proper fitness function, pre—defined functions can
be provided in the XML problem file (the user can select among them by name).
It should be emphasized that the construction of a solution is an iterative
process closely modelling the real-world allocation process. E.g., in case of the
knapsack problem (Figure 1) the resource items suggested by the solution engine
are put into the knapsack. If the Pencil is moved to the knapsack, the corre-
sponding States change its values, hence, the knapsack’s State always reflects the

current Value and Weight.

The dynamics of the construction of multiple solutions driven by an evolu-

tionary solution engine (Section 2.2.1) are visualized in Figure 2.

(Evolutiona@

Resource Allocatoin Items
use
Negotiator)]

Consumer Allocation Items update
< Solution > solution fitness

number of evolution cycles reached

®

Figure 2: Dynamics of the construction of solutions.

2.2.1 Evolutionary Engine

The solution engine in evAlloc is intended to generate the processing order of
allocation items. This “raw solution” can either be used directly for allocation of
items in the given order (direct representation), or may be additionally processed
by heuristics in the negotiator (implicit representation). E.g., if we want to sched-
ule a job (an item in the sequence) on a machine (a consumer), the negotiator
could simply try all machines (consumer items) until it finds one accepting the
job (negotiator needs no problem knowledge), or it could try to find the machine,
where the job can be executed optimally (needs problem knowledge).

The specific solution engine implemented with evAlloc is based on an EA.
For most problems a single chromosome with a simple permutation encoding
indexing the resource items would be sufficient. As genotype encoding is known
to greatly influence the quality of EA solutions, we also suppport a variety of

encoding options facilitated by the Java package JFEvolution written by one of

6

the authors. Currently, JEvolution provides four different chromosome types: A
permutation chromosome, a bitstring chromosome, an integer, and a real number
chromosome.

A very interesting feature (which we are currently also investigating with evo-
lution of fuzzy controllers and artificial neural networks) is Multi-Chromosomal
encoding, i.e., the genotype consists of a pre-defined number of chromosomes.
With this technique one chromosome could encode the order of resource items
and another chromosome the associated consumer items. Also, different chromo-
somes could have different encodings.

According to evAlloc’s strict object—oriented design the negotiator only may
receive item sequences (which makes solution engines exchangeable), thus, chro-
mosomes must be transformed to item sequences. In the case of a permutation
chromosome this is a simple exercise, but for multi-chromosomal encoding we
have recently started to add Mergers performing the transformation, e.g., a sim-
ple merging operation would be a concatenation of items the single chromosomes
are encoding.

Another option to improve (or speed up) the evolutionary process is repair (re-
ordering) of the genotype [7], which is essentially a form of Lamarckian evolution.
Hence, we have also introduced a repair method in the negotiator. Obviously, the
repair operation has to have exact problem knowledge to perform a meaningful
reordering of the genotype. E.g., we could order the encoded allocation items
according to the number of constraints so as to allocate the most constrained
items before others.

When a solution has been constructed its fitness is evaluated and passed to
the evolution engine, where the genetic operators are applied at the transition

from one generation to the next. The solution(s) with the best fitness are stored

and can be viewed even while evAlloc is still searching for better solutions. All
the specific evolution and encoding parameters can be set by the application
engineer (in a specific GUI mode supporting these actions), and are also stored
in the XML problem file. Hence, the user does not have to bother with settings
of specific parameters like mutation rate or population size. He or she does not
even have to know anything about the specifics of the solution engine.

The borders between direct and implicit representation are certainly not strict,
but the specific choice also influences the design of the fitness function. With a
direct representation (put resource 5 into consumer 3) chances are high to create
illegal solutions. In this case the fitness function could include penalty terms to
account for the degree of violation. Besides the problem to properly define the
penalty terms, evolution may take a long time until it discovers the first feasible
solution. As constraint violations could be detected during construction of the
solution, an implicit representation (allocate resource 5) may improve speed.
Although, the construction time of a solution will be increased by checking all
constraints and applying heuristics to locally optimize allocation, each solution
is guaranteed to be legal, and can be evaluated using a straight—forward fitness

function.

3 The Mozarteum problem

The first real-world problem we have applied evAlloc to is the generation of
weekly timetables for the complete teaching activities at the Institute for Drama?
at the Mozarteum University of Music and Dramatic Arts in Salzburg, Austria

(shortly named Mozarteum problem). Currently, a student working part-time is

2http://www.moz.ac.at/schauspiel/

employed to arrange the weekly schedules. A specific property of this problem
is the distribution of students to single lectures. Primarily, students are member
of a class (first, second, and third year). However, students of a class may be
also split into groups (rehearsals of a play), or may also receive personal training
(singing). These distributions create a number of implicit constraints, e.g., when
a single student is in a personal lecture, the group or the class she belongs to
cannot have a lecture at the same time.

The Mozarteum timetable problem is defined by:

A set of lectures L, a set of rooms R, a set of teachers T and a set of
students S. The objective is to schedule the lectures L in a time interval of a

week, ranging from Monday to Friday, with the following requirements:

RO1 Each lecture unit has identical duration (one hour).
RO02 Each lecture needs one room and one teacher to take place.

RO03 Designated times may be assigned to rooms and teachers, when they are

not available for lectures.

RO04 Some lectures can only take place in certain rooms (e.g., dancing or ac-
robatics). If a lecture has no room preference, it can be assigned to an
arbitrary room in R, otherwise the lecture has an ordered preference list of

rooms, where it may be scheduled.
RO5 There are lectures for a certain group of students or for a single student.
RO06 Each teacher can only give one lecture at the same time.

RO7 In each room only one lecture can be given at the same time.

RO8 Any two lectures attended by an identical subset of students cannot be

scheduled at the same time.

3.1 The Application

As mentioned in Section 2 an application engineer (this time the authors) has to
build the full application based on evAlloc by performing the following steps.
3.1.1 Data Representation

First, the Mozarteum problem data have to be mapped to the generic data rep-

resentation of evAlloc introduced in section 2.1.

Lectures This is the resource allocation group with each single lecture modelled

as a resource allocation item.

Rooms This is the consumer allocation group with each single room as a con-

sumer allocation item.

Students This allocation group of students is neither resource, nor consumer,

but serves as a data base for checking and resolving implicit constraints.

Teachers Like the student group this is also a (data base) allocation group used

for constraint calculations.

3.1.2 Problem—specific Code

In order to capture the specifics of the problem at hand, the States of the allo-
cation groups have to be programmed in Java. The MozarteumCourseState is a
single class extending the reused class CourseState, which has already been im-

plemented for test purposes. The specific State contains a timetable and various

10

attributes describing the lecture. It also incorporates a greedy schedule builder
heuristic (fit-first), which is used, when a lecture item is allocated to a room
item.

Figure 3 shows the GUI for the State of Lecture 1. The left panel shows
the problem tree, the right panel shows the selected state with the following

attributes (for the sake of brevity we do not mention all of them here).

Fitness Fitness calculation is also distributed among objects. In this case the
fitness “Hours” is selected meaning that the State simply returns the num-
ber of allocated lecture units, but more sophisticated measures could be

implemented and selected here.

Timetable This table is the timetable of the single lecture, where times not
available for scheduling can be simply marked by writing any text into the
corresponding table cell. Here “Teacher 1”7 indicates that the teacher of
the lecture is not available at these times (actually, the system has marked

these times based on the teacher’s timetable).
Hours per week The number of lecture units per week.
Max hours per day The maximal number of lecture units per day.
Min hours per day The minimal number of lecture units per day.

Only in these rooms A list of rooms, where the lecture has to take place

(empty, if no preference).
Teacher The name of the teacher giving this lecture.

Semester Specifies the class (of students) attending this lecture.

11

Team Specifies the group of a class attending this lecture (empty, if class lec-

ture).

Student Specifies the single student attending this lecture (empty, if class or

team lecture).

3.1.3 Encoding and Negotiator

The encoding of the single chromosome is order—based using a permutation chro-
mosome. Each index of the permutation is assigned to a resource allocation item.
The sequence of items constituting an indirect representation is passed to the ne-
gotiator, which checks and resolves all constraints associated with a lecture item.
The basic procedure is to mark all lecture units in all rooms (consumer items)
causing a conflict as unavailable, and then passes the resource to the consumers
(in a fixed order) until a consumer (room) accepts and allocates the lecture. If
no consumer accepts the resource, it is not allocated. This technique guarantees
that all constructed timetables are feasible.

The fitness function simply counts the number of allocated lecture units, which
drives evolution to maximize this number and to schedule all lectures. More
complex fitness functions could be employed evaluating subjective qualities of
the timetable, e.g., the number of free hours between lectures for teachers and
students. However, it should be stressed that such properties can be already
enforced with the current system by restricting available times before the evolu-

tionary search.

12

4 Experimental Results

Naturally, it is difficult to assess the quality of the system by objective measures,
nevertheless, we try to give an impression of the system’s capability based on
first tests performed by the actual users at the Mozarteum drama school.

Currently, weekly timetables with 13 rooms, 97 lectures, about 40 students,
and 23 teachers are constructed by the system. Without any time constraints
on the teachers (each teacher available from 8 a.m. to 10 p.m.) the system does
not have any problems to find a solution scheduling all lectures within the first
generations of an evolutionary run.

Restricting the availability of teachers from 8 a.m. to 3 p.m a solution with
maximal fitness is usually found after 15-20 generations (using basic settings
of evolutionary parameters: a population size of 50, a mutation rate of % with
the chromosome length [= 97, a crossover rate of 0.6, and binary tournament
selection).

Obviously, practical settings will have different restrictions for different teach-
ers, as many of them have other obligations as well. Tests with these practical
settings will be perfomed in the next weeks (and included in a possibly final
paper).

A very positive result of these first tests is the time spent to find the solutions.
Due to the generality of the evAlloc framework considerable software overhead
is introduced, which we expected to have negative influence on the runtime.
However, above solutions have been discovered within 20 seconds on a PC with a 1
G H z processor. Considering that the person constructing the schedules manually
takes at least a few hours for a complete schedule the benefit is obvious. With

more complex settings we can expect a runtime of a few minutes, which also

13

allows the user to experiment with different settings and compare the results

within a short time period.

5 Acknowledgements

We want to thank Prof. Markus Trabusch, chairman of the Institute for Drama at
the Mozarteum University of Music and Dramatic Arts in Salzburg, for initiating
and supporting the application of evAlloc to a real-world problem. We would
also like to thank our student Gregor Konig for recent implementations of evAlloc

extensions.

References

[1] Michael R. Garey and David S. Johnson. Computers & Intractability: A
Guide to the Theory of NP-Completeness. November 1990. (W.H. Freeman
and Company, New York, 1979) ISBN — 0716710455.

[2] Andrea Schaerf and Amnon Meisels. Solving employee timetabling problems
by generalized local search. In Proceedings of the 6th Italian Conference on

Artificial Intelligence (AIIA-99), Bolgna, Italy, pages 493-502, 1999.

[3] A. Drexl. A simulated annealing approach to the multiconstraint zero-one

knapsack problem. Computing, (40):1-8, 1988.

[4] Emma Hart and Peter Ross. A heuristic combination method for solving
job-shop scheduling problems. In 5th International Conference on Parallel

Problem Solving from Nature - PPSN V, Amsterdam, The Netherlands, 1998.

14

[5] David J. Montana. A reconfigurable optimizing scheduler. In Proceedings of

the Genetic and Evolutionary Computation Conference (GECCO), 2001.

[6] David J. Montana. Optimized scheduling for the masses. In GECCO-2001
Workshop: The Next Ten Years of Scheduling Research, 2001.

[7] Tina Yu and Peter Bentley. Methods to Evolve Legal Phenotypes. In Agos-
ton E. Eiben, Thomas Back, Marc Schoenauer, and Hans-Paul Schwefel, edi-
tors, Fifth International Conference on Parallel Problem Solving from Nature,

pages 280-291, Berlin, Germany, September 1998. Springer.

15

View Options 7

=10 x|

Mot searching

& Mozarteum Lecture 1 | Schedule|
o 8? Rooms B
? 8'? Foam 1 Type ozarteumiCourse
&2 Schedule = bt I
Lo Roorm 2 :
& % Room 3 :| Collector |Nme - ||
@ & Room 4 B
S Lectures || Fitness | Hours - |
& S Lecturs 1
3 Schedule ~ -
— Time | Monday | Tuesday | Wednesdaﬂ Thursday | Friday
6 @ Lecture 2 08:00 - 09:00
O @ Lecture 3 09:00 - 10:00
¢ & Students 10:00-11:00
¢ & Semester 1 11.00- 12:00
¢ & Group A 12:00-13:00
= Student 1 13:00- 14:00
2 Student 2 14:00-15:00
= : :
= Student 3 15:00- 16:00|Teacher1 |Teacher1 [Teacher1 |Teacheri1 [Teacher 1
¢ & E‘EU“F’ B 16:00-17:00 Teacher1 |Teacher1 |Teacher1 |Teacher1 |Teacher
= Student 4 17:00-18:00|Teacher1 |Teacher1 |[Teacher1 |Teacheri1 [Teacher 1
= Student 5 18:00-19:00|Teacher1 |Teacher1 [Teacher1 [Teacheri1 [Teacher 1
- = Student & 19:00- 20:00 Teacher1 |Teacher1 |Teacher1 |Teacher1 |Teacher
- g Semester 2 20:00- 21:00|Teacher1 |Teacher1 |[Teacher1 |Teacheri1 [Teacher 1
Semester 3 21:00- 22:00|Teacher1 |Teacher1 [Teacher1 |Teacheri1 [Teacher
@ 83 Teachers
@ 83 Teacher 1 B
& Sehedule §§ Hours per week | 4]
& 8 Teacher 2 /| Max hours per day | 2|
Min hours per day | 2|
| Onlyinthese rooms I Roorm 1 Room 3|
Teacher | Teacher 1|
Semester | Semester 1
Team | Group B
:| Student | |
| OK H Cancel ‘
File "GiThesis\MozarteumSample.pri” loaded.
elcome to evallac!
Evalloc welcomes you as USER frestricted access).
Evalloc welcomes you as SYSTEM {unlimited access).

Figure 3: Mozarteum problem type template

16

