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Abstract – After a brief survey of work dealing
with dynamic neurocontrollers changing their inter-
nal structure during the “lifetime” of a mobile au-
tonomous robot, we present experiments employing
a standard sensor–motor neurocontroller with self–
adapting weights. The change of behavior of the robot
is linked to inputs from the environment that cause
the emission of artificial neuromodulators (ANMs) in
the robot’s neurocontroller. In its simplest form an
outside teacher (human or machine) constantly eval-
uates the robot’s actions by transmitting positive or
negative feedback signals to the robot initiating the in-
ternal changes. The focus of investigations is put on
the mechanisms of the interaction of teaching input
and structural changes. A well–known concept for this
interaction is Hebbian learning, which is regulated by
ANMs in the presented approach. In extension to re-
lated work in evolutionary robotics (ER), we analyze
important details of robotic (ontogenetic) learning by
experiments measuring the ability of robots to learn
simple tasks in a simulated environment without em-
ploying evolution. Specifically, we are interested in the
comparison of Hebb learning variants, and the crucial
question of the correct interpretation of reward or pun-
ishment signals by the robot.

Keywords: Mobile Autonomous Robots, Dynamic
Neurocontrollers, Artificial Neuromodulators, Rein-
forcement Learning.

1 Introduction

Today, a variety of control techniques are imple-
mented for mobile autonomous robots, e.g., fuzzy con-
trol, machine learning systems, or artificial neural net-
works. Some of these systems have reached an impres-
sive level of performance, however, most of these sys-
tems are not adaptive in the sense that they cannot
change their behavior by feedback from the environ-
ment. Although, a human observer of these systems
might get the impression that the robots can adapt to

different situations, they can only adapt to situations
the control program is aware of in advance.

State of the art is that control programs for the
robots are no longer constructed by humans but by
computers employing evolutionary methods [1]. Still,
in order to evolve working “robot brains” all possible
scenarios have to be presented to the system in ad-
vance. Hence, the control system will deal sufficiently
with most situations it has been trained with, but it
is mostly not able to deal with new, unknown situa-
tions, and it also cannot adapt itself to these during
the “lifetime” of the robot. When evolving robotic
neurocontrollers, learning is taking place in a genera-
tional time frame (phylogenetic learning).

Obviously, the main problem of (most) current con-
trol systems is that they cannot ”reprogram” them-
selves during their exploration of the environment.
This static behavior of an artificial structure is the
most fundamental difference to Biological Neural Net-
works (BNNs) exhibiting highly dynamic properties
not only throughout their lifetime, but also within very
short time spans of activity [2].

Dynamic changes in a neurocontroller may be in-
duced employing Reinforcement Learning (RL) tech-
niques [3] enabling ontogenetic learning, i.e., the
robot’s brain (consequently, its behavior) is shaped
during exploration of the environment. A popular RL
method applicable to neurocontrollers is Temporal Dif-
ference (TD) learning [4]. With this method the neu-
rocontroller is not generating motor signals driven by
sensor input, but evaluates potential (motor) actions.
Actions are presented as an additional input, and a
single output neuron predicts the value of a potential
action. Learning is driven by the difference of predic-
tions in consecutive time steps (temporal difference)
and scalar feedback signals (reward or punishment)
from the environment or a teacher.

Technically, learning in TD neurocontrollers is im-
plemented by the common Back–propagation method.
TD learning is purely ontogenetic and does not alter
the structure of the neurocontroller. A biologically
more plausible method to achieve a combination of
phylogenetic and ontogenetic learning (as seen in na-



ture) are evolved network structures, whose parame-
ters are altered by Artificial Neuromodulators (ANMs)
[5, 6]. The ANMs influence learning by defining the
type of Hebb learning based on the combination of
modulators received by each neuron [5], or by specifi-
cally changing neurons’ activation functions [6].

As a consequence, very complex interactions can be
observed in ANM neurocontrollers that make interpre-
tations of the internal mechanisms nearly impossible.
Hence, in this work we are concerned with neurocon-
trollers with pre–defined, simple modulator diffusion
models and single learning rules for the whole network.
The biologically plausible learning mechanism is based
on the Hebbian learn rule promoting self–organization
of the neurocontroller.

Especially, in feed–forward networks Hebb learning
has the properties of implicit calculation of the Prin-
cipal Components of the input data [7]. The Princi-
pal Component Analysis (PCA) is a statistical method
linearly transforming a sample of points in an n–
dimensional space such that the variance of the com-
ponents in the new coordinate system are extremal.
Components (or features) with low variance contribute
little to the information content of the sample, hence
they may be neglected in order to compress the input
data. PCA networks can be used in signal classifica-
tion, feature extraction, and data compression [7]. In
the context of this work the feature extraction prop-
erty could be useful in order to detect structures in
the sensor signals of the robot, which might convey
relevant information at the current time.

Before giving a description of our own work on dy-
namic neurocontrollers we present a brief review of pi-
oneering scientific contributions having paved the way
towards on–line teaching of robots by changing the in-
ternal states of its neurocontroller.

2 Related Work

Nolfi and colleagues (1994) present a genotypic en-
coding of a neurocontroller allowing the phenotype to
be influenced by the environment. The main idea is to
let axons grow during ontogeny. The growing of axons
is determined by a Threshold Expression Gene (not to
be mistaken as a neuron’s bias). If, in a certain number
of subsequent activation states, the neuron’s activation
exceeds the threshold an axon grows under control of
the Branching Angle Gene and the Segment Length
Gene. These latter two genes encode the angle of axon
branches, and the length of each branch (the number
of branching events was fixed to five). If the growing
axon hits another neuron, a connection between the
two neurons is formed (the location of each neuron
is also evolved in a two–dimensional grid). Moreover,
neuron type (sensor, motor, hidden) and its weights
are also evolved [8]. With this setting the develop-
ment of the neurocontroller is not only dependent on
the genotype, but also on the environment, as chang-
ing stimuli (sensor inputs) induce varying activations
in different neurons. A simple task has been simulated
for the evolution of neurocontrollers: the robot was

placed in an arena where it should move to a specified
area. In even generations a light source illuminated the
target area, whereas in odd generations the light was
switched off. After 500 generations genotypes have
evolved which could solve the task with both lighting
conditions. As could be expected, a robot evolving in a
light environment could solve the task faster and more
reliable than a robot evolving in a dark environment.
The authors demonstrated some interesting properties
of the evolved neurocontrollers. a) when developing
the exact same genotype (clones) in different environ-
ments, different neurocontrollers emerged. b) moving
a genotype having been evolved in an environment of
type X and let it develop in an environment Y leads to
a decrease in performance compared to development in
X. c) a larger performance decrement can be observed,
if transferring a phenotype from environment X to Y
[8].

Vaario and colleagues (1997) modelled neural
growth processes based on Diffusion Limited Aggre-
gation (DLA). Here ontogenetic learning is introduced
by (artificial) chemical concentrations governing the
growth of neural connections which fits as nicely into
the framework of Neural Darwinism [9] as the previ-
ously described work [8]. In a quite complex man-
ner the chemical concentrations are also influenced
by local reinforcement learning (whose parameters are
evolved). Again, a beneficial coupling of phylogenetic
evolution (of basic neuron properties) and ontogenetic
learning could be observed for a looping maze task
with simulated robots [10].

Floreano and Mondada (1998) presented very in-
teresting experiments comparing evolved conventional
neurocontrollers (with weights being fixed during op-
eration of the robot) and plastic neurocontrollers. The
plasticity has been introduced by evolving specific
types of Hebbian learning (from a set of four types)
for each neuron in the controller. The learning rule
has been periodically applied every 300 ms during
robot operation. With the latter approach neurocon-
trollers solving the task (looping in a maze) could be
evolved with a considerably smaller number of gener-
ations than with conventional neurocontrollers. More-
over, the combination of Phylogenetic evolution and
Ontogenetic learning achieved by the plastic neuro-
controllers led to more sophisticated behaviors of the
robots [11].

Ishiguro et al. (1999) presented a Dynamically Re-
arranging ANN employed as a robot’s neurocontroller
[5]. Based on studies on the dynamically rearrang-
ing Stomatogastric Nervous System in lobsters, where
neuromodulators regulate the participation of identi-
cal neurons in different subsystems (for specific tasks)
the authors introduce two main new features to a stan-
dard feed–forward ANN architecture.

For each neuron an NM Diffusion Area is evolved
indicating the activation interval where emission of a
single NM type (out of two) takes place. Moreover,
each neuron’s reaction (receptor) to the diffused NMs
is defined by an evolved NM Interpretation Table. As
there is no diffusion radius implemented, each neuron



receives all ANMs potentially emitted by all other neu-
rons (the number of received ANMs is not taken into
account). Consequently, each neuron may receive four
different combinations of the two ANMs in the system.
Each combination defines how the weights of the con-
nections leading to this neuron are changed based on
Hebbian Learning as given by

wt+1
i,j = wt

i,j + ηRi,j(NM1, NM2)aiaj , (1)

where wt
i,j is the weight from neuron j to neuron i at

time step t, a is the neuron’s activation, η the learning
rate, and Ri,j(NM1, NM2) the evolved artificial re-
ceptor. In [5] the possible values of Ri,j are 1.0 (Heb-
bian, two entries in the NM interpretation table), −1.0
(Anti–Hebbian), and 0.0 (no learning). Experiments
with evolved conventional ANNs (without ANMs) and
the rearranging ANNs on a simple robot task (push a
peg to a light source) showed that the conventional
neurocontroller evolved in a simulator could not solve
the task equally well on the real robot, while the ANN
with ANMs could. Adding noise (motor output and
peg movement) in the simulation also revealed that the
ANM controller performs more robustly. Even more
impressing was a video demonstration at the confer-
ence 1 where the ANM robot could solve the given task
confronted with a peg (an additional weight has been
eccentrically put on the peg) it has never seen before.

Smith and Philippides (2000) suggest a Dynamic
Artificial Neural Network (DANN) based on the pro-
cess of Nitric Oxide (NO) diffusion in real nervous sys-
tems. NO is a neurotransmitter passing freely through
most matter in the brain. After elaborating on a phys-
ical NO diffusion model, they present an abstraction
of the diffusion process in an ANN architecture (Gas-
Net) [6]. The discrete time step DANN is built from
units connected by binary links (with weights ±1). All
but the motor neurons may receive input signals. The
output on

i of a neuron i at time n is given by

on
i = tanh [kn

i (
∑

j∈Ci

wjio
n−1
j + sn

i ) + bi], (2)

where Ci is the set of neurons connected to neuron
i with weights wji, sn

i is an external input (sensor)
signal, bi is the bias, and kn

i is a real number (of a set
of predefined numbers) depending on gas concentra-
tion. Hence, the activation function is modulated by
artificial neurotransmitters.

The DANN is evolved in a 2D Euclidean plane using
a variable sized genotype resulting in ANNs with dif-
ferent numbers of neurons. The structure of the net is
evolved based on position of the neurons and special
Link Points giving an arbitrarily recurrent network.
Two different gases may be emitted by a neuron. Gas
emission is triggered by either an electrical (signal)
or a gas threshold of each neuron. For each neuron
a maximal diffusion radius r is evolved. Within this
diffusion radius the gas concentration C(d, t) is given

1IEEE Systems, Man, and Cybernetics, 1999, Tokyo.

by C(d, t) ∼ e−( d
r
)2 . The time dependence is intro-

duced by the time intervals neurons emit gas. The
gas concentration in turn determines the actual value
of kn

i modulating the shape of the hyperbolic tangent
activation function.

For a target discrimination task the connection be-
tween a pixel of the camera image and a specific neu-
ron (input sn

i ) has also been evolved. In an arena two
white paper targets, a rectangle and a triangle, have
been fixed on a wall. Lighting conditions changed per-
manently (by randomly turning on and off spotlights)
during the robot’s exploration of the arena.

It has been found that neurocontrollers using Gas-
Nets could be evolved in a shorter time, and it seemed
that a GASNet architecture solving the task could
be easier evolved than a more conventional neurocon-
troller. The authors argue that the artificial gas intro-
duces some kind of short–term memory, as gas concen-
tration is influenced by not only the last but a number
of time steps. Moreover, the artificial neurotransmit-
ter may act as a low pass filter, as the changing lighting
conditions (opposed to the constantly bright targets)
during target discrimination did not affect the result.

Though not using neurocontrollers, but rather a
behavior–oriented approach [12], the plasticity of the
neural substrate has also been identified as the key to
success of a robot in an unknown environment in [13].
Adaptive behavior of the robot is achieved by explic-
itly defined basic behaviors modulated by motivational
quantities (e.g., energy level of the robot’s battery).
This approach has shown impressive potential in ex-
periments, where robot’s “agreed“ on a self–defined
language [14], however one should not forget that the
categorization of feedback from the environment (state
of the robot) and the linkage to a specific motivation
are predefined by humans in above systems. Thus, the
robot is confined to an environment which is encom-
passed by its basic behaviors, whereas the proposed
method of ontogenetic teaching could adapt a robot to
an arbitrary environment (provided the teacher gives
meaningful feedback).

3 Ontogenetic Learning

In the neurocontrollers incorporating ANMs re-
ferred to above the parameters for the dynamic
changes in the robot’s neurocontroller have been
evolved. Hence, the final neurocontroller intrinsically
deployed the correct types and doses of ANMs so as to
achieve the desired behavior of the robot. If we want
to teach the robot during its lifetime (on–line), we have
to know which ANMs cause the robot to change or en-
force its behavior. More specifically, the reaction of a
neuron receiving a modulator must be correctly imple-
mented. E.g., in BNNs Dopamine acts as a “reward”
hormone, which is emitted as a consequence to posi-
tive feedback [2]. Though, we can easily define such
a reward ANM in the artificial brain, it is not clear
which reaction (in our system Hebb learning variants)
has to be chosen in order to link the rewarded behavior
with the future behavior of the robot.



We want to emphasize that the neurocontroller we
are going to present is enabling ontogenetic learning
by feedback signals from the environment (mediated
by ANMs). Though, being a classical reinforcement
learning approach, the neurocontroller’s architecture
is different from RL methods, as it does not evalu-
ate policies (potential actions), but represents the ba-
sic architecture of neurocontrollers employed in ER
approaches. The robot’s sensor signals at the input
layer of the network generate motor signals at the out-
put layer. In addition to pure phylogenetic learning
achieved by evolving the structure of the robotic brain,
ER researchers also suggested evolution of learning
rules enabling lifetime learning [11]. The latter system
is learning constantly, while in our approach learning is
triggered by pre–defined events or an outside teacher,
i.e., there may be only short time periods, where learn-
ing is activated or deactivated. Evidently, this should
assist the robot in finding interesting subspaces of the
input signal space, where it can extract the most useful
information to learn the given task. The basic archi-
tecture of the neurocontroller employed in the follow-
ing experiments is shown in Figure 1.
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Figure 1: Basic architecture of a dynamic neurocon-
troller with artificial neuromodulators.

The plasticity of the robotic brain (induced by the
ANMs) also allows for adaptions even when the envi-
ronment or the physical appearance of the robot (e.g.,
sensor loss) changes after it has successfully learned
a task. In order to investigate the prerequisites for
successful ontogenetic learning employing a dynamic
neurocontroller, we set up a simple task: the robot
should learn to avoid the walls of a rectangular arena
(wall avoidance).

In the wall avoidance task the environmental feed-
back is given by a bumper sensor, which is activated,
when the robot touches the wall of the arena. The sen-
sor signal is fed into an input neuron, which emits an
ANM signalling “pain” inside the robotic brain. As a
consequence, wall avoidance should be learned by giv-
ing negative feedback for short periods of time (wall
contact).

Results of various experiments should assist to re-
solve a number of design questions, namely, the rates
of emitted modulators, and the reaction to reception
of a modulator (actually changing network parameters
via Hebbian learning).

4 Experimental Setup

All experiments are conducted in a Java simulator
designed and constructed by the authors allowing real
time and soft time simulation. The latter enables to
perform experiments, where many hours of robot ac-
tion have to be simulated, in a few seconds or minutes.
The cylindrical robot shown in Figure 2 is equipped
with four distance sensors (front, back, left, right),
and a contact sensor (wall avoidance).

Distance Sensors

Wheels

Bumper

Odor Sensor

6cm

Figure 2: The cylindrical robot.

The software sensor simulates a nonlinear, noise–
free (Gaussian noise can be set by the user), real device
measuring the reflection of a physical signal emitted
exactly in direction of the line from robot center to
the sensor positioned at the perimeter of the robot.

The neurocontroller is a standard One–Hidden
Layer network (five hidden neurons) composed of neu-
rons with logistic activation function. Each sensor is
associated with an input neuron, whose activation de-
termines the signals at the two output neurons (left
and right motor). Each neuron is capable of receiving
and reacting to the emitted ANM. In case of the wall
avoidance experiment, a single type of ANM (pain) is
diffused by the contact sensor neuron, when the robot
touches the wall. If the ANM is emitted all neurons
immediately are able to receive the modulator (in the
next time step) by a given reception rate. The recep-
tion of a modulator triggers the unsupervised learning
process. The dose (measured in mole) of the receipted
modulator is directly proportional to the learning pa-
rameter η for basic Hebbian learning:

∆wj,i = ηaiaj , (3)

where ai, aj are the pre–, and postsynaptic activa-
tions, respectively, of the neurons connected by the
weighted link. Note that the weight change ∆wj,i only
takes place, when an ANM is received by a neuron. By
setting the emission rate larger than the (summed) re-
ception rate of all neurons, it is possible to easily in-
troduce a kind of short–term memory, as it takes a
number of time steps (simulation cycles) to fully ab-
sorb the modulator.



4.1 Hebbian Learn Rules

Table 1 gives the definition of the four Hebbian
learning rules that are used in the experiments.

Hebb (H) ∆wj,i = η ai aj

Anti–Hebb (AH) ∆wj,i = −η ai aj

Covariance Hebb (CH) ∆wj,i = η (ai − ai)(aj − aj)

Covariance Anti-Hebb (CAH) ∆wj,i = −η (ai − ai)(aj − aj)

Table 1: Variants of Hebbian learn rules.

The parameters ai and aj are the pre–, and post-
synaptic mean activations, respectively, being defined
as the running mean of the neuron’s activation from
t = 0 (“birth”) to the current time t.

4.2 The Wall Avoidance Experiment

In this experiment the robot is placed in a rectan-
gular arena (1.05× 0.70 m) and should learn to avoid
wall contact. We performed experiments with 500 sim-
ulated robots initialized with different random weights
and biases from the interval [−1.0, 1.0]. The learning
behavior is evaluated by a Learn Ability calculated in
the following way:

1. Every robot is placed into each of the four cor-
ners (in a distance of ten cm to the walls) and
then moves freely (without learning) for ten min-
utes. Throughout these 40 minutes we measure
the time tpre it is in contact with the wall.

2. The robot is placed in the upper left corner with
activated learning (modulators are diffused by the
contact sensor neuron). From now on the robot
has two hours to learn the task.

3. After the learning procedure the robot is tested
in the same way as described in 1 measuring the
wall contact time tpost.

The learn ability LWA is defined as

LWA =
tpre − tpost

tpre + tpost

. (4)

We study the impact of different learning rules on
the learning behavior of the robot using the mean learn
ability L of the robots. Note that a number of robots
avoid the wall without any learning, which we labelled
Genius, as they perfectly master the task right from
the time of “birth”. Genius robots are not considered
for calculation of the mean learn ability. The learn
ability L is 1.0, if the robot has learned the task per-
fectly, e.g., never touches the wall after training. An
L > 0.0 indicates an improvement after learning, while
an L < 0.0 is the sign of a negative effect of training,
i.e., the robot exhibits a worse behavior than before
learning.

The learn ability is influenced by the dose d of mod-
ulator, which is emitted by the contact sensor neuron
at wall contact. The emission rate is set to 12 mole per
second. Each neuron in the network is able to receipt

this modulator. The reception rate is set such that the
complete amount of modulator diffused in one time
step is consumed by all neurons at equal parts in the
next time step. The consumed dose is directly mapped
to the learn rate η of the neurons’ pre–synaptic links,
e.g., if a neuron consumes 1.0 mole of the modula-
tor η = 1.0. Note that in this setting the ANM con-
cept only mediates start and stop of Hebbian learn-
ing with a specific learn rate. While this procedure
has appealing biological analogies, it could be equally
implemented in a simple algorithmic way. However,
changes in the emission and/or reception rate would
immediately introduce complex temporal interactions
of feedback signals and weight changes.

5 Results
Employing negative Hebb learning as the reaction

to the received modulator in the wall avoidance ex-
periments a number of robots is able to avoid the wall
after a few collisions. Other robots (each “born” with
a different random brain) take some minutes (real–
time simulation) to learn the task, while a few never
learn it, and sometimes always remain in contact with
the wall. All robots learning the task develop an in-
tuitively expected behavior of slowing down, when ap-
proaching a wall, and starting to turn away from the
wall, then accelerating into “open terrain”. A typical
motion trail of a robot having quickly learned the task
can be seen in Figure 3.

Figure 3: A typical motion trail of a wall avoiding
robot after ontogenetic learning.

In a number of experiments (Table 2) we expectedly
saw that the type of learning reaction has a dramatic
influence on the robot’s learning ability. We also no-
ticed that successful learning is greatly influenced by a
detail neglected in most previous work on Hebb learn-
ing. Usually, the learn ability of the robot is consid-
erably improved, when the bias values of a neuron are
not subjected to Hebb learning, i.e., they remain con-
stant. Consequently, we also present results comparing
fixed with learned bias values in Table 2.

As indicated above, training of initially random bias
values results in a much worse learning ability L (av-
eraged on all trained robots) than excluding the bias
from training (genius robots never touch a wall, hence,
they are never trained, and do note contribute to L).



AH, yes AH, no H, no CAH, no CH, no

L = 1 40 52 61 52 73

L > 0 27 161 55 180 138

L = 0 0 0 0 8 4

L < 0 235 83 205 62 97

Genius 198 204 179 198 188

L -0.222 0.417 0.028 0.457 0.451

d 64880 12177 54260 15984 23219

Table 2: Learn abilities L of 500 wall avoiding robots
using different learn rules with (yes) or without (no)
bias learning. The contact sensor neuron is synapti-
cally connected to the hidden layer.

When employing AH learning, the weights are de-
creased in each learn step being triggered by wall con-
tact. As a consequence, a trained robot has mostly
(large) negative weights. If it approaches the wall of
the arena, a strong signal is generated by one of the
distance sensors, which leads to low activation (close
to zero) of the hidden neurons. Then, the activity of
the motor neurons is only determined by its bias val-
ues. If the bias values are fixed and different for the
two motor neurons, the robot will turn, which is what
it should learn to do near the wall. However, if the
bias values are subjected to AH learning as well, they
will mostly become negative resulting in zero activa-
tion of the motor neurons, actually moving the robot
straight with full reverse speed.

The essence of these considerations is that in this
case the learn ability of the robot is only dependent
on its fixed bias values given at “birth”. AH learning
more and more reveals the basic “character” of the
robot, but it does not change this character. Thus,
learn ability is only determined by traits already ex-
isting at the time of the robot’s “birth”. The results in
Table 3 confirm this observation, but they also show
that CAH Learning does not depend on the initial bias
values.

AH CAH

L = 1 48 72

L > 0 77 176

L = 0 0 3

L < 0 184 67

genius 191 184

L 0.022 0.485

d 47554 15784

Table 3: Learn abilities L of 500 wall avoiding robots
with bias values fixed to 0.0.

With bias values fixed to 0.0 AH learning achieves
a much smaller learn ability than with fixed random
values, as the key to successful learning in this setting
is a difference in the bias values of the output neurons
(enabling turning behavior).

CH learning does not only not exhibit this depen-
dency, but also is successful regardless of the positive

or negative variety. There are a number of possible ex-
planations to this behavior. This Hebb variant allows
weight changes in both directions even in the same
learn step (simulation cycle). The mean activations
represent a very basic form of memory, which makes
learning dependent on time, or in other words on the
robot’s age. Learning is also dependent on the mo-
bility of the robot. A robot mostly staying in a cer-
tain area of the arena, will process similar input sig-
nals most of the time leading to a convergence of the
mean activations. If the same robot moves to another
area, the difference of input signals to the mean ac-
tivations commanding the actual weight change will
be larger (stronger learning) than for a more mobile
robot. Putting all together and considering that learn-
ing only takes place at certain points in time (wall con-
tact) the complexity of this still simple Hebb variant
becomes obvious.

Naturally, the dose of the emitted modulator con-
tributes to the learning process of the robot. Thus,
we measured how the learn ability of the robots is in-
fluenced by the modulator dose. Comparing AH and
CAH learning (fixed random bias) in Figure 4 reveals
interesting properties.
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Figure 4: The dependence of the learn ability on the
modulator rate for wall avoidance.

The increase of the rate of modulator emission is
balanced with a proportional increase of the reception
rate. Hence, the complete dose of modulator emitted
in a time step is consumed in the next triggering the
given type of learning. In case of the CH rule the
weight changes are in both directions. Increasingly
strong learn signals lead to a complete perturbation
of the network weights, i.e., a new random network.
With the simple wall avoidance task it might only take
a few wall contacts until a genius contributing to im-
proved learn ability is found. High modulator doses in
combination with AH learning make the robots more
and more insensitive to the input signals, as even weak
sensor signals lead to deactivation of the hidden layer.
Hence, the robot no longer switches between a behav-
ior close to the wall and a different one in ”open ter-



rain”. If the robot moves in a rather straight manner,
wall contacts are inevitable, and the strong learning
signals further enforce the singular behavior.

6 Summary
The results show that ontogenetic learning of mobile

autonomous robots with neurocontrollers regulated by
external feedback mediated by ANMs is sufficient to
teach robots simple tasks. However, we have found
that the learning ability of the robots is dependent on
parameters that are randomly assigned at the “birth”
of the robot. The crucial question to be addressed
in future research is, if there exists an unsupervised
learning method allowing the robot to correctly inter-
pret the feedback signals so as to learn the appropriate
behavior. In conventional reinforcement learning the
problem of interpretation is solved by assigning val-
ues to actions, while in this work we investigate the
classical neural mapping of sensor to motor (action)
signals. Assuming that Hebbian learning plays an im-
portant role in BNNs, the finding that a sensor–motor
neurocontroller cannot be generally trained by unsu-
pervised learning, would possibly imply that biological
systems rely on action–value networks as suggested by
various researchers.
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