
Evolution of Fuzzy Controllers with
Multi–Chromosomal Representation of

Membership Functions
Markus Spitzlinger

Department of Computer Science
University of Salzburg

A–5020 Salzburg, Austria
Email: mspitzl@cosy.sbg.ac.at

Helmut A. Mayer

Department of Computer Science
University of Salzburg

A–5020 Salzburg, Austria
Email: helmut@cosy.sbg.ac.at

Abstract— In this work we present experiments evolving the
membership functions of a fuzzy controller for the inverted pen-
dulum problem. Specifically, the conventional representation of
membership functions on a single chromosome is compared to a
genotype encoding with multiple chromosomes in an evolutionary
algorithm. In this context we present chromosome shuffling, a
genetic operator recombining complete chromosomes based on
biological evidence. The hypothesis that the multi–chromosomal
representation increases the generalization capability of the fuzzy
controller, is tested by measuring the controllers’ performance
on test cases they have not seen during their evolutionary
construction.

I. INTRODUCTION

The concepts of fuzzy logic and fuzzy reasoning allow the
construction of controllers for complex control tasks being
hard to solve for conventional controllers. The use of linguistic
variables and simple if-then rules enables humans to easily
understand the mechanics of the fuzzy controller. However,
for the construction of rule bases and membership functions
precise knowledge of the problem domain supplied by human
experts is of utmost importance, as the fuzzy system cannot
learn from data describing the problem. Automatic construc-
tion of fuzzy controllers (capable of learning from data) has
been mainly achieved by integrating fuzzy and neural systems
(Neuro–Fuzzy Systems) [1], or fuzzy and evolutionary systems
(Genetic–Fuzzy Systems) [2], [3].

In this paper we investigate the evolution of membership
functions for a fuzzy controller for the well–known Inverted
Pendulum task. Specifically, we are interested in the multi–
chromosomal representation of the triangular membership
functions. We compare representations, where all membership
functions of all linguistic variables are encoded (convention-
ally) on a single chromosome, with a genotype consisting of
multiple chromosomes, each of them representing the mem-
bership functions of a single linguistic variable. In both cases,
no expert knowledge is needed for the construction of the
membership functions. The survival of the solutions depends
only on their phenotypic fitness based on the controller’s
performance.

The biological motivation for the use of multiple chromo-
somes comes from Meiosis, a complicated cell division process
involving sexual reproduction. A maternal and a paternal set
of chromosomes (humans have 23 arranged in Diploid Sets,
i.e., each chromosome occurs in two homologous variants)
is combined into one cell. Homologous chromosomes of
father and mother align in a phase called Synapsis, and parts
of the genetic code can be exchanged by crossing over at
certain sites. Usually, 1 to 8 crossover points can be identified
on one chromosome [4]. This process is the model for the
recombination operator in EAs; however, a very interesting
step occurs after crossover. The two recombined chromosomes
(actually, four, because of diploidy) separate randomly to
different areas of the cell. Thus, there is an additional shuffling
of genetic material at the level of chromosomes. In humans,
this process allows for

���������
	 ��������
different chromosome

combinations.
In the realm of artificial evolution we term this process

Chromosome Shuffling and model it simply by exchanging
the chromosomes of the two parents with a probability of
����� ��	 �

. As is the case in nature, only homologous chro-
mosomes (describing the same variables of the solution with
identical representation) are shuffled, which allows the co–
existence of different chromosomes within an individual. E.g.,
a solution could be encoded by a bitstring, an integer and a real
chromosome. However, in this work we are concerned with
multiple chromosomes having identical structure (real values
encoded as bitstrings).

From above statements potential benefits of multi-
chromosomal representations can be identified. First, a com-
plex problem can be decomposed into sub–problems being
encoded in corresponding chromosomes. Complete solutions
of a sub–problem can be exchanged by means of chromosome
shuffling without the disruptive effects of crossover. Second,
each chromosome can be encoded using a representation
adapted to the specific sub–problem. Third, chromosome
shuffling could induce improved generalization capabilities
of solutions, as a “specialist” chromosome that contributes

to good solutions in a few individuals only will be quickly
weeded out by evolution. A more general solution of the sub–
problem being successful in a great variety of individuals will
have increased chances of survival.

A. Related Work

Pierrot and Hinterding (1997) presented an investigation of
the use of multi–chromosomes to solve an allocation problem
by means of an EA. 500 goods are to be produced on three
machines, where each machine has specific fixed and variable
costs. The fixed cost is incurred only, if the machine is utilized
for the production of goods. The variable costs are defined
per good produced on a specific machine. The main idea is
to specify the usage of machines on one chromosome, while
the variables on the second chromosome encode the number
of goods to be produced on the corresponding machine. It has
been found that a multi–chromosomal representation has the
potential to improve solutions, but it should be noted that no
attempt has been made to adjust mutation and crossover rates
in the experiments with single and multiple chromosomes. As
a consequence, the different mutation and crossover rates have
been identified as main source of the improvements of the
solution encoded on multiple chromosomes [5].

II. FUZZY CONTROLLER EVOLUTION

In this work we are concerned with the evolution of mem-
bership functions of triangular shape.The test bed for evolu-
tionary experiments using single and multiple chromosomes
to represent the membership functions is the well–examined
inverted pendulum problem [7].

A. The Inverted Pendulum Problem

The inverted pendulum (Figure 1, left) can be described by
the following nonlinear differential equation [7] (pp. 104–107):

��� �
��� �����
	

� �
��� ������������������

����� (1)

where
�

is the mass of the cart, 	 is the mass of the
pendulum, � is half the length of the pendulum, � is the cart
position, � is the angle and � is the force. For the case of
small angles � Equation 1 can be approximated by

� � �
� �
��� �

� � � ��	 �"!��$# ��� (2)

and �%� � �
��� �

�&� #'	(!)� � (3)

where ! is Newton’s gravitation constant. For small sim-
ulation cycle times � � the differentials can be substituted by
differences allowing fast computation of �*� � � and �+� � � .

The state variables of the system are � , the angular velocity, �.-0/-21 , and the control force � . Depending on the system
state �3�*� � � �4, � � ��� a controller has to apply an appropriate force
so as to keep the pendulum in a (nearly) vertical position. We
now take a closer look at the details of a fuzzy controller for
the problem at hand.

B. Expert Rules and Membership Functions

The inverted pendulum problem is an excellent example for
both, the conceptual simplicity of a fuzzy controller, and the
difficult task of determining the exact values of its parameters.
For comparisons with the evolved controllers we employed
the linguistic rules and membership functions of an expert
controller given in [8]. It should be noted that for the inverted
pendulum problem basic problem knowledge is sufficient to
formulate reasonable fuzzy rules. Hence, the term “expert
controller” in this case simply indicates its construction by
humans. The linguistic term set is defined as 5 Negative
Medium (NM), Negative Small (NS), Zero (ZR), Positive
Small (PS), Positive Medium (PM) 6 . The trapezoidally shaped
membership functions (Figure 1, right) are scaled to an interval
specific to each variable as follows: �87:9;# � � �=< radians,, 7'9>#@? � ? < radians per second, and � 7A9;# �
� � �
�=< Newton.

M f

l

angle

l

mg

NM ZRNS PS PM
1 f

−2−4−6 0 2 4 6

Fig. 1. Inverted Pendulum (top) and the domain partition of the angular
velocity B (bottom).

The seven expert rules are given by

(IF C is NM AND B is ZR THEN D is NM)

(IF C is NS AND B is NS THEN D is NS)

(IF C is PS AND B is NS THEN D is ZR)

(IF C is NS AND B is PS THEN D is ZR)

(IF C is ZR AND B is ZR THEN D is ZR)

(IF C is PS AND B is PS THEN D is PS)

(IF C is PM AND B is ZR THEN D is PM)

When evolving a fuzzy controller, we use the same set of
expert rules and let evolution determine the domain partitions
of the linguistic variables within the given intervals.

C. The Fitness Function

In artificial evolution the fitness function is the only
problem–specific feedback to the EA. Hence, the assessment
of the controller’s quality should exactly focus on the goal of
the control system, which in our case is to keep the pendulum
at an angle of � � �

, i.e., to minimize the average of the
absolute value of � for a number of test cases differing in
initial states of the pendulum. The fitness function of a fuzzy
controller � is defined as

��� � �

	��
�� � 	�

�� 	�
�� � ���
� � � � (4)

where 	 the number of test cases, and � the number of
simulation cycles for each test case.

D. Membership Function Genotype

In contrast to the expert controller’s membership functions
being of trapezoidal shape, we set up evolution to gener-
ate triangular membership functions, as test runs evolving
trapezoidal shapes showed that the resulting shapes often
were trapezoids degenerated to triangles. However, we can
easily evolve any polygonal shape with the presented system.
The triangles are encoded as bitstrings in a straight–forward
manner. We only encode the � –value of the triangles and fix
the � -values (degree of membership) to 0.0 for the triangle’s
base points, and to 1.0 for the top. In order to avoid illegal
solutions, the three � –values have to be sorted, when decoding
the membership functions.

Figure 2 shows the general organization of a population of
individuals described by multiple chromosomes encoding the
membership functions. Each individual of the population is a
complete fuzzy controller.

... Membership pMembership 1

Chromosome 1 Chromosome 2 Chromosome 3

Individual 1 Individual 2 Individual 3 Individual 4

...

...

Chromosome 4

Population t

Fig. 2. Details of a population of fuzzy controllers evolving membership
functions with a multi–chromosomal organization.

In our test problem the five membership functions of each
variable are encoded on a separate chromosome, hence, the
number of chromosomes is equal to the number of variables
(three). With single chromosome representation we simply

concatenate all chromosomes to a single bitstring. During evo-
lution the main difference of the two representations is induced
by chromosome shuffling, which alters an individual only
in the case of multiple chromosomes. Moreover, crossover
is acting more locally, when using the multi–chromosomal
representation. In order to only investigate the influence of
above differences, we adjusted mutation and crossover rates
to the given representation as described in the next section.

III. EXPERIMENTAL SETUP

The technical platform for the evolution of fuzzy controllers
is the fuzJEN system, a Java framework for evolutionary con-
struction of fuzzy controllers, developed by the authors. The
following parameters have been used with all the experiments
in this paper.

Each point (positive or negative � –value) of the membership
functions is encoded using eight bases. This results in a
chromosome length of

������� � � � � �
bases in case of

multiple–chromosomes, and a single chromosome length of��� � � � � � ? � bases. The mutation rate � � �
 �
, based on

the length � of the single chromosome, is identical for both
representations.
EA Parameters: Population size = 50, Generations = 100,
Runs = 50, Mutation rate � � � �
	 � ��� �

, Crossover = 2–point,
Crossover rate = adjusted, Shuffle rate � � �

��	 ��� ��	 �
, Selection

method = Binary tournament.
The adjustment of the crossover rate starts with the obser-

vation that a unique crossover rate for both representations
results in different numbers of crossover operations. Thus,
we adjusted the crossover rate to each representation by
calculating the survival probability ����� that an individual is
not altered by crossover including the impact of chromosome
shuffling.

In the most general case of multiple chromosomes with
shuffling and crossover the survival probability is

� ��� � 9 � �� � � � # ��� � � < � � # � � � � � (5)

where � � is the shuffle rate, � � is the crossover rate, and! is the number of chromosomes. The first term takes into
account the probabilities of shuffling exchanging all or no
chromosomes, while the second term describes the probability
of crossover not to occur.

In the experiments (Section IV) we investigate the following
variants of representation and operators: single chromosome
with crossover " , multiple chromosomes with crossover

�$#
,

multiple chromosomes with shuffling
�$%

, and multiple chro-
mosomes with crossover and shuffling

�&#�%
. If shuffling is

used, the shuffle rate is fixed at a biologically plausible rate
of � � �

��	 �
. The crossover rates for the specific encodings

are adjusted based on the survival probability ����� . As
� #�%

cannot be properly adjusted to the set "
 � � # � and
� %

, we
run a second single chromosome " � adjusted to

� #�%
.

Inverted Pendulum Parameters:
� � �
	 � � ! , 	 � ��	 � � ! ,

� � ��	 � 	 , Simulation cycle time � � � � � � 	(' , Simulation
cycles � � � �

, Training cases m = 6 with initial angles �

in 5 ?�� � #@?�� � � � � � # � � � � ��� � � # � � � 6 , Controller activated after
first cycle.

Each experiment is repeated 50 times using a different
random seed for each run. The experiments have been devised
in order two answer two main questions. The first one is
simply, if the multi–chromosomal representation allows the
evolutionary process to find well–performing fuzzy controllers
at all. The second question is concerned with the possible
phenotypical differences of multi–chromosome controllers.

IV. EXPERIMENTAL RESULTS

In Table I the fitness of the evolved fuzzy controllers
utilizing single and multiple chromosomes are compared.

TABLE I

STATISTICAL PARAMETERS OF THE FITNESS OF FUZZY CONTROLLERS

EVOLVED WITH DIFFERENT GENETIC REPRESENTATIONS AND OPERATORS

(AVERAGED ON 50 RUNS).

Genotype/Operators Avg StdDev Best Worst���
(���	��
� ���) 2.84 0.52 1.88 4.59���
(���	��
� ���) 2.84 0.47 2.07 4.60���
(� � ��
�
) 4.19 3.54 2.07 16.74���

(� � ��
� ���) 2.72 0.58 1.86 5.18�����
(���	��
� ���) 2.89 0.56 2.04 4.79

It can be seen that most of the representations with adjusted
crossover operators generate very similar results. The only
exception are the runs using multiple chromosomes with
shuffling without crossover (

� %
), which sometimes fails to

evolve a well–performing controller, as can be seen with
the worst fitness of an average angle of 16.7. Though, mere
shuffling is in effect a crossover operation (at fixed sites), it is
not sufficient to achieve the results of the compared encodings,
as optimization of each chromosome only relies on mutation.

The results presented in Table I are based on the controller’s
performance on the specific training cases. However, in order
to be applicable in the real–world the evolved controller should
be able to generalize on test cases not seen during evolution.
Thus, we computed the fitness of the best controllers found
for each representation with initial angles � in the interval
9;# ���
	 � � 	�	 	 ���
	 � � < (sampled at

�
� steps), and compared their

performance to the expert controller’s (Table II).

TABLE II

FITNESS OF BEST CONTROLLERS ON UNSEEN TEST CASES.

Expert
� � ��� ��� ��� �����

Fitness 12.42 3.42 2.44 2.41 6.06 3.55

Clearly, all evolved controllers outperform the expert con-
troller, but even more interesting is the improved generaliza-
tion of controllers evolved with multi–chromosomal represen-
tation of membership functions. For a more thorough analysis
of generalization capabilities we compare the test fitness of all
50 controllers evolved in each evolutionary run in Table III.

Though, "
 shows a slightly better test performance than the
multi–chromosomal variant

� #
not employing chromosome

TABLE III

FITNESS OF EVOLVED CONTROLLERS ON UNSEEN TEST CASES (AVERAGED

ON 50 RUNS).

Genotype/Operators Average StdDev Best Worst���
(������
� ���) 4.69 2.54 2.34 14.52���
(� � ��
� ���) 5.42 2.69 2.43 11.70� �
(������
�
) 6.76 5.00 2.41 23.17� �

(������
� ���) 4.61 3.35 2.34 18.01�����
(� � ��
� ���) 4.47 1.72 2.25 8.12

shuffling, the comparison of " � with
� #�%

reveals that the
addition of shuffling improves the test performance of the
evolved controllers. Specifically, the worst controller found in
the 50

� #�%
runs is considerably superior to the respective " �

counterpart. These results are further evidence that recombina-
tion of multiple chromosomes enforces the formation of more
general solutions of a sub–problem encoded in a chromosome.

V. SUMMARY

We have presented experiments evolving the membership
functions of a fuzzy controller for the inverted pendulum
problem employing multi–chromosomal representations in the
evolutionary process. It has been found that multiple chromo-
somes enable evolution of controllers of similar fitness, when
compared to evolution employing standard single chromosome
representations. Another result supports our hypothesis that re-
combination of genotypes with multiple chromosomes leads to
preferred selection of more general solutions of a sub–problem
encoded in a chromosome. Improved generalization could
be observed, when comparing the performance of evolved
controllers with both representations on test cases not seen
during evolution. Continuing work will explore the use of
multi–chromosomal representations for the evolution of more
complex fuzzy controllers, e.g., for a robot soccer player, and
other problem domains.

REFERENCES

[1] D. Nauck, F. Klawonn, and R. Kruse, Foundations of Neuro–Fuzzy
Systems. Chichester: John Wiley & Sons, 1997.

[2] O. Cordón, F. Herrera, and M. Lozano, “A Classified Review on the Com-
bination Fuzzy Logic–Genetic Algorithms Bibliography,” Department of
Computer Science and A.I., University of Granada, 18071 Granada,
Spain, Tech. Rep. DECSAI-95129, December 1996.

[3] J. T. Alander, “An indexed bibliography of genetic algorithms with fuzzy
logic,” in Fuzzy Evolutionary Computation, W. Pedrycz, Ed. Kluwer
Academic, 1997, pp. 299–318.

[4] H. Lodish, D. Baltimore, A. Berk, S. L. Zipursky, P. Matsudaira, and
J. Darnell, Molecular Cell Biology, 3rd ed. Scientific American Books,
1995, ISBN 07167-2380-8.

[5] H. J. Pierrot and R. Hinterding, “Using Multi-chromosomes to Solve a
Simple Mixed Integer Problem,” in Proceedings of the Tenth Australian
Joint Conference on Artificial Intelligence. Springer, 1997, pp. 137–146.

[6] F. Herrera, M. Lozano, and J. Verdegay, “A Learning Process for Fuzzy
Control Rules using Genetic Algorithms,” Department of Computer
Science and A.I., University of Granada, 18071 Granada, Spain, Tech.
Rep. DECSAI-95108, February 1995.

[7] K. Ogata, Modern Control Engineering, 2nd ed. Englewood Cliffs, NJ:
Prentice–Hall, 1990.

[8] O. Cordón, F. Herrera, and A. Peregrı́n, “Applicability of the Fuzzy
Operators in the Design of Fuzzy Logic Controllers,” Fuzzy Sets and
Systems, vol. 86, no. 1, pp. 15–41, 1997.

