
Board Representations for Neural Go Players

Learning by Temporal Difference

Helmut A. Mayer
Department of Computer Sciences

Scientific Computing Unit
University of Salzburg, AUSTRIA

helmut@cosy.sbg.ac.at

Abstract— The majority of work on artificial neural networks
(ANNs) playing the game of Go focus on network architectures
and training regimes to improve the quality of the neural
player. A less investigated problem is the board representation
conveying the information on the current state of the game to
the network. Common approaches suggest a straight–forward
encoding by assigning each point on the board to a single (or
more) input neurons. However, these basic representations do
not capture elementary structural relationships between stones
(and points) being essential to the game. We compare three
different board representations for self–learning ANNs on a 5×5
board employing temporal difference learning (TDL) with two
types of move selection (during training). The strength of the
trained networks is evaluated in games against three computer
players of different quality. A tournament of the best neural
players, addition of α–β search, and a commented game of a
neural player against the best computer player further explore
the potential of the neural players and its respective board
representations.

Keywords: Game of Go, Artificial Neural Networks,
Temporal Difference Learning, Board Representation

I. I NTRODUCTION

With the advent of computers, board games have attracted
many researchers, e.g., [1], as the computational intelligence
of game playing programs can be directly related to the
intelligence of its human opponent. Out of all board games,
chess has received the most attention with efforts beating
the human world champion finally being successful in 1997.
(Deep Blue, a chess–playing IBM supercomputer, defeated
Garry Kasparov, the reigning world champion in chess1).

The board game Go has received increasing attention in
recent years, as unlike chess programs the best Go programs
are still at a mediocre amateur level, i.e., a good amateur
Go player easily beats the machine. The rule set of Go is
very small, but the seemingly simple concepts build into
deep and complex structures on the board. For an excellent
and compact introduction to the game we refer to [2], and
to [3] for computational aspects. Despite the simplicity of
Go’s rules, the game’s strategies and tactics are difficult to
put into analytical or algorithmical form. There are mainly
three reasons why Go is hard for traditional computer game–
playing techniques.

First, the number of possible moves (the branching factor)
in the majority of game situations is much larger than in

1http://www.research.ibm.com/deepblue/

games such as chess or backgammon with about 20 legal
moves for each board position. On a standard 19×19 Go
board a player has the choice among 200–300 potential
moves. Hence, in a common game tree representation, where
each node is associated with a board situation and each
branch with a move, the number of nodes grow exponentially
with a base of 200. A Go computer program playing with
a very moderate tree depth of four had to evaluate 10,000
times the number of moves a chess program has to ponder.

Second, Go is a game of mutual dependent objectives.
While in chess the goal is very explicit (capture of the
opponent’s king), in Go the aim of securing territory (where
each board intersection counts as a point) can be achieved by
capturing opponent’s stones (death) as well as by securing
own stones (life). As a consequence, evaluation functions
precisely assessing a board situation can hardly be defined,as
human expert players often rely on rather intuitive concepts,
e.g.,good and bad shape(of stones). Hence, ANNs having
been successfully applied in the field of pattern recognition
are promising candidates to improve the quality of Go
programs.

Third, though Go has been played for thousands of years
in China and Japan, the first professional Go players started
to earn prize money 45 years ago. Professional chess has
a tradition of 130 years resulting in much more literature
on opening, mid–, and end game theory based on millions
of recorded games played by expert players. As a matter of
fact, today’s extremely strong chess programs rely on human
expertise to defeat human expertise.

A radically different approach is the construction of com-
puter players by exquisite learning from playing against
opponents (computers and/or humans), or even against itself.
Eventually, the programs improve their playing strength
without any explicit incorporation of a priori knowledge,
which gives these systems the potential to “invent” game
strategies no human player has ever discovered.

The “star” among artificial board game players is Tesauro’s
(1995) neural backgammon playerTD–Gammon. Based on
Temporal Difference(TD) learning, a reinforcement learning
technique, a network has been trained in self–play by only
receiving feedback on the outcome of games. After millions
of training games (in its latest version) TD–Gammon is
estimated to play at a level extremely close to the world’s
best human players [4].



The impressive performance of TD–Gammon inspired
many researchers to employ TD learning with other board
games including Go. Schraudolph et al. (2000) suggest a
sophisticated network architecture and local reinforcement
to train a network against a randomized version ofWally by
Bill Newman on the 9×9 board [5]. The authors claim that
their network beat the commercial programMany Faces of
Go by David Fotland after 3,000 training games, however the
skill level of the program was set to 2–3 out of 20 (best),
and the game statistics do not show the number of wins, but
the number of stones lost to the opponent.

Ekker (2003) presents TDL variants using different train-
ing algorithms to teach a network from play againstWally
on a 5×5 board [6]. He found that TD–(µ) (a TD variant
considering imperfect play of the opponent) [7] utilizing
residual–λ learning achieved the best results. The author
reports that networks having learned from Wally win 80 %
against it, and close to 50% against GNU Go (version not
given) at the lowest level (see GNU Go comments in Section
III).

Evolutionary approaches are another way to generate neu-
ral Go players, e.g., [8], [9], [10], without human interven-
tion. Here, networks are evolved against dedicated computer
players, or in a coevolutionary manner by competition of
evolving individuals. In a recent paper Runarsson and Lucas
(2005) compare TD learning and coevolutionary approaches
for Go on the 5×5 board [11]. The authors conclude that both
techniques achieve a similar level of play, when using a linear
weighted evaluation function. In games against a randomized
version of GNU Go (v3.4), where with a probability of 0.5
a random move replaced GNU Go’s choice, self–learnt and
coevolved players won approx. 80% of the games.

II. TD L EARNING OF NEURAL GO PLAYERS

Learning from self–play offers some appealing advantages
to conventional ANN training. Even, if training yields an
ANN player having extracted all the concepts hidden in the
training data, it is very likely that it will never surpass the
strength of the players, whose games constituted the training
data. E.g., in [12] ANNs having been trained with chess
games by master players, played reasonably against strong
players, but failed to beat weak players.

Self–learning ANNs do not require any knowledge of the
game, but only of the games’ rules and feedback about the
outcome of the game. Hence, in theory the neural player
could have playing abilities beyond any human player, as it
does not rely on human expertise at all. Nice as this may
sound, there are practical limitations to self–learning, most
prominently, the computational cost associated with self–
learning and the large number of games necessary to sample
the (in case of Go) extremely huge search space.

Hence, we restricted self–learning of neural Go players to
the simple 5×5 board, which is mostly used for educational
purposes and demonstration of basic concepts of the game.
In terms of computational cost we believe that self–learning
of Go players for a 9×9 board is the current limit (unless
one spends months and years of CPU time).

The networks in this work are trained with the TD(0)–
algorithm [13] given by

~wt+2 = ~wt + η[γVt+2 − Vt]∇~wt
Vt, (1)

where ~w are the weights of the network,V is the value
of the selected action (move),r is the reward,η is the learn
rate, andγ is the discount factor (γ = 1.0 in all of the
following experiments). By multiplying the gradient of the
value with the TD error (the term in square brackets), the
value for the move selected at time stept is increased or
decreased depending on the value of the best move att + 2.
Thus, moves leading to higher values in subsequent time
steps are reinforced, i.e., are trained to trigger a higher value
themselves. As can be seen in Equation 1 the network mostly
learns from its own predictions, but at the end of each game
a rewardr (1 for a win, 0 for a loss) substitutingV (t + 2)
gives the important feedback from the real world.

A. Temporal Difference and Reward Scheme

We would like to point out two important details of our
implementation of TD(0) learning. The temporal difference
is calculated between two moves (hencet+2 in Equation 1).
Usually, the temporal difference of values before and after
a single move of a player [4] is utilized, which gave poor
results in our experiments. We believe that considering two
subsequent moves can improve game learning in general,
as the valueV (t + 2) also incorporates the response of the
opponent, and serves as an immediate feedback of the quality
of a move. However, it should be stressed that the latter
feedback, again, is “only” a prediction of the network, as it
plays both colors, and thus may be wrong.

Another adjustment turned out to be even more important
for reasonable play acquired by self–learning. In the manner
described above reward is given to the player making the
last move (always a pass move in Go, as the game is ended
by two subsequent passes). If black was the last to move
and won the game, then the net receives a reward of 1. The
“message” given to the net is that it played well with the
black and the white stones, when in fact bad white moves
may have caused black’s win. Consequently, black wins more
and more games easily by reinforcement of white’s bad play,
which overall leads to a weakly performing neural player.
Thus, in our implementation the network always receives two
rewards. The first one as described above, and the second
one is given to the opponent. Of course, both rewards are
given to the same network with the same board (end) position
(causing different inputs for different colors), but if black
wins, the network also receives a reward of 0 for its white
role, and vice versa.

B. Move Selection

We employed two variants of action (move) selection
during learning, namely, theε–greedy and aSoftmaxmethod
[13]. With the ε–greedy approach the move with the highest
value is selected, but with a small probabilityε a random
move is chosen instead so as to explore the search space. If



a temporal difference value is affected by a random move, we
omit the learning step, as a random move is not in accordance
to the value estimations of the neural player. With a random
move all moves (even the worst) have equal probability
of being selected, a potential problem being alleviated by
softmax methods. These select random moves by assigning
higher probabilities to moves with higher values, e.g.,Gibbs
Samplingused in [5].

We devised a softmax method based on theCreativity
factor c, which we introduced originally to add some vari-
ability to the play of a trained network. Typically, given a
specific board situation a trained network will always play
the same move (the one with the largest value). To avoid this
rather mechanic behavior and to play different but reasonable
(maybe even better) moves all moves with values in the range
[vc, vmax] are considered with equal probability, wherevmax

is the largest value, and

vc = vmax(1 − c) 0 ≤ c ≤ 1. (2)

We utilize this technique for the softmax action selection
variant, which we termcreativemove selection (c = ε = 0.05
in all of the following experiments). Note that the number of
creative moves may vary according to the stage of training.
In early stages most move values are similar and close to
the maximum, while in later stages a single move may be
very important and its value makes it the only move being
considered. Also moves, which are close to the best, will have
a good chance to be explored more often, and may quickly
be trained to maximal value, if they prove to be beneficial.

C. Board Representations

In this work we put our focus on the investigation of
different board representations (Figure 1), as the simple
representation often used for neural Go players does not
convey information on the neighborhood of intersections
on the Go board, even though, neighborhood is one of
the most important concepts in Go. We term2 this simple
representation used in related work (e.g., [5], [11]), where
each intersection is mapped to an input neuron with values
depending on the stone (not) occupying the intersection,
Koten3.

With all three following representations we rather speak of
own and opponent instead of black and white stones, as the
same network may play both colors (certainly against itself).
An own stone is encoded by a value of 1, an opponent stone
by -1, and an empty intersection yields an input value of 0.
Hence, in the specific example given in Figure 1 the koten
value for the marked intersection is 1, if white is about to
move, and -1, if it is black’s turn (the marked intersection is
occupied by a white stone). For the 5×5 board this results
in 25 input neurons.

The Robanrepresentation is inspired by the ANN input
encoding of a checkers board in [14], where overlapping

2In an attempt to honor the eastern origin of the game we use Japanese
terms.

3http://senseis.xmp.net/

subsquares of different sizes covering the board were used.
Here, we employ all 3×3 squares with different center
positions. In Figure 1 the positions of a specific subsquare
are shown. The mean value over all nine positions is the
ANN input value (−1

9
for white, 1

9
for black in Figure 1).

Additionally, the mean value (differential) of the complete
5×5 board is fed into the network. This gives in total ten
network inputs (nine values for different 3×3 squares).

The Katatsugirepresentation tries to capture the essential
concept of neighborhood. An intersection is encoded by a
weighted sum of the values of the intersection (center) and
its four neighbors building a solid connection, i.e., katatsugi.
We experimented with different weights for the center and
neighbor positions, but performance differences were small.
In all of the following experiments the weights for all five
positions are identical with a value of 0.2. Note that with this
representation the values of edge and corner points lie in a
smaller interval than those of other intersections, which gives
the network some ability to differentiate between types of
intersections. The katatsugi value for the example in Figure 1
is 0 (for the weight given) regardless of the color the network
is playing. As with koten, the network has 25 input values
when katatsugi is used to encode the Go board.

Koten Roban

Katatsugi

Fig. 1. Three board representations for the marked point in the top center
board.

The single output neuron of the TD network gives the
estimated value of the board position encoded by a specific
representation at the input.

D. Performance Measure

In order to monitor the development of the self–learning
Go players quantitatively we used the strengths = w

g
being

the win rate (w is the number of wins) of a player challenging
one or more Go players in a number of gamesg. In the
following experiments (Section IV) the strength has been
measured in games against three computer players (Section
III) of different quality ranging from a pure random player to
a heuristic player including search for common Go patterns
on the board.



III. C OMPUTERGO PLAYERS

For the evaluation of the neural Go players we utilized
three heuristic computer players of different playing abilities,
which are briefly described in the following.

TheRandomplayer’s only “knowledge” of the game is the
ability to discern between legal and illegal moves, i.e., out
of all legal moves (including the pass move) one is chosen
randomly with uniform probability distribution. This player’s
main purpose is to detect very basic Go skills in a computer
player, as a human novice with some hours of Go practice
should easily beat the Random player. Also, it serves as a
test for a neural player that possibly is able to win against a
modest computer player, but does not have a general concept
of Go, i.e., it may lose against Random.

The Naiveplayer may be compared to a human knowing
the rules of Go, and having played some games is familiar
with basic concepts. It is able to save and capture stones,
and knows when stones are definitely lost. Weak stones, i.e.,
stones in danger of being captured, are saved by connecting
them to a larger group, so that a weak stone becomes a
member of a living group (or at least of one with more
liberties).

GOjen is a Go program written in Java largely based
on Fuming Wang’s programJaGo, and is the best com-
puter player we have used. It knows standard Go playing
techniques (saving and capturing stones), and searches the
board for 32 well–known Go patterns and its symmetrical
transformations. A few program errors have been fixed, and
time performance has been increased considerably by the
author.

In order to rate a Go player’s strength there are ranking
systems for amateur and professional players. The amateur
ranking system starts with the student (kyu) ranks from 35
kyu up to 1 kyu (best). When an amateur becomes a master
(dan) player, she gets the rank of 1 dan (best is 7 dan).
Professional ranks being above all amateur ranks are on a
scale from 1 to 9 dan.

We used the free Go programGNU Go 4 (version 3.2)
with an estimated rank of 10 kyu to determine the strength
of GOjen, and arrived at a rank of about 28 kyu. Thus, GOjen
plays at the level of a beginning amateur player after some
weeks of game practice.

Go on a 5×5 board has been solved [15]. Black wins with
a score of 25 points (no komi), when playing the optimal
opening move C3 (board center). Black also wins starting
play with C2, C4, B3, and D3 (by a score of 3, no komi).

GNU Go optimally opens a game (C3) with the black
stones on a 5×5 board, and with the white stones passes
immediately after black C3, C2, C4, B3, and D3. As a self–
trained ANN only has to learn the optimal opening move
(which it mostly does) to win against GNU Go, this program
has not been utilized in evaluating the strength of the neural
players, but will definitely serve as a valuable opponent on
larger boards.

4http://www.gnu.org/software/gnugo/

IV. EXPERIMENTS

This section presents self–learning experiments of neural
Go players employing feed–forward networks with a single
output neuron representing the estimated value of the board
position fed into the input layer.

A. Experimental Setup

For each of the three investigated board representations we
run self–learning experiments utilizing both move selection
methods, namely,ε–greedy (ε = 0.05) and creative (c =
0.05) (Section II-B). The koten and katatsugi nets consist of
25 input neurons and 25 neurons in a single hidden layer (a
total of 650 links). For a fair comparison the roban nets have
10 input neurons with two hidden layers each containing 20
neurons (a total of 620 links). The activation function of all
hidden neurons is the sigmoid function. All other neurons
have linear activation. The training algorithm is standard
error back–propagation with a learn rateη = 0.01.

Each of the 20 training runs consists of 1 million games
starting with a random network (weights in[−1.0, 1.0]). The
strength of the networks is sampled every 50,000 games
by playing 1,000 games each (half black/white, no komi)
against GOjen, Naive, and Random (Section III). In these
evaluation games moves are selected strictly according to
maximal value.

B. Self–learning Results

In Figure 2 the strength development of neural players
is depicted for the three board representations utilizingε–
greedy move selection.

 0

 0.2

 0.4

 0.6

 0.8

 1

10.750.50.25 Games[millions]

Strength
Koten
Roban

Katatsugi

Fig. 2. Strength development during self–learning withε–greedy move
selection for different board representations (averaged on 20 runs).

The katatsugi nets exhibit the best performance until they
are caught by the koten nets at around 500,000 games settling
in at a strength of 0.5. The roban nets are clearly inferior
to both other representations and reach a strength of 0.4
after 1 million games. All three representations reach their
best performance level at around half a million games and
stagnate from there on.



In Figure 3 the strength development of the players learn-
ing with the three different board representations and creative
move selection is shown.

 0

 0.2

 0.4

 0.6

 0.8

 1

10.750.50.25 Games[millions]

Strength
Koten
Roban

Katatsugi

Fig. 3. Strength development during self–learning with creative move
selection for different board representations (averaged on 20 runs).

Clearly, all three representations are separated in strength
with katatsugi winning the race with a strength of 0.68 after
1 million games. The koten nets reach their best level after
800,000 games at a strength of 0.6 as do roban nets at 0.46.
All representations benefit of the creative move selection
shown by considerably greater strength (compared toε–
greedy), and especially katatsugi shows some potential for
further improvement by additional training games.

In Figure 4 a game between GOjen (black) and the best
creative katatsugi net of all 20 runs (white, strength 0.7693)
is shown.

12

3 4 5

6

7

8

9

10

11

12

13

14

15

16

1718

19

20 22

23

Fig. 4. The best creative katatsugi net (playing the white stones) wins
against GOjen.

GOjen opens the game with the near–optimal move 1
(Section III) answered by the net’s optimal move 2. At this
point the network estimates its chances to win with 0.68.
Net’s move 4 is questionable, but it makes GOjen “think”
that it has to attack 4 immediately with 5, which allows net
to play the important move 6. Net’s 8 forces the program
to capture 4 with 9. The moves 10 to 14 are solid standard
moves by both players. By playing 15 the program correctly
takes its last chance to win the game “hoping” for an error of
the neural player. E.g., 18 played in the left, lower corner or
at 20 would immediately loose the game for white. Though,
this is quite obvious for a human player, we often noticed that

trained networks fail to “see” important and game–saving
moves. However, Katatsugi(g) convincingly ends the game
(being slightly optimistic to have won, estimate 0.61) with
a score of 1.0 (each player has three points of territory, but
white has captured two stones, black only one).

C. Tournament of Neural Players

Finally, we compare the best networks generated in the
various experiments by performing a round robin tournament
among them. Each competitor plays 1,000 games (500 each
color) against each other. Note that though, the networks
play deterministically (creativity set to 0), it is possible that
two networks play different games, if in a specific board
situation two or more moves have the same maximum value
(then, among these a random move is drawn).

For each of the three board representations we selected
the network of greatest strength generated in all greedy and
creative learning runs, respectively. The scores in Table Iare
the win percentages of all games a net has played.

TABLE I

TOURNAMENT OF BEST GREEDY(G) AND CREATIVE (C) NETWORKS.

Rank Score Best Net
1 0.7040 Koten (c)
2 0.5892 Koten (g)
3 0.4866 Katatsugi (c)
4 0.4796 Katatsugi (g)
5 0.3758 Roban (c)
6 0.3282 Roban (g)

Interestingly, here the koten nets beat the katatsugi nets.
This is mainly based on the fact that koten(c) beats koten(g)
in every single game (playing 0.5 against katatsugi(c)),
and katatsugi(c) loses every game to katatsugi(g). Hence,
certain weaknesses of networks are fully exploited by others.
However, for each board representation the creative network
outperforms the greedy network, and the roban nets are
clearly inferior to the others.

D. Deep Search

Finally, we present the strength and the performance
against the three computer players of the best creative
katatsugi net, when utilizingα–β search with depths of one
(simple search), two, and four moves.

TABLE II

PERFORMANCE OF BEST CREATIVE KATATSUGI NET WITH VARIOUS

SEARCH DEPTHS.

Katatsugi(c)
Depth 1 2 4
GOjen 0.6500 0.5830 0.6560
Naive 0.7370 0.8920 0.9110

Random 0.9860 1.0 1.0
Strength 0.7527 0.7753 0.8320

As can be expected the strength increases with search
depth, however, variations can be observed in games against
GOjen. This shows that not all board situations are evaluated



correctly by the neural player, as it occasionally comes up
with weaker moves after deeper search. The best creative
koten net being a bit weaker at depth one (strength 0.7033)
gains more by increasing the search depth (0.7890 at two,
0.8293 at four) arriving at a comparable level.

V. SUMMARY AND CONCLUSIONS

We have presented self–learning experiments of neural Go
players based on temporal difference learning (TDL) on a
5×5 board investigating three different board representations
and two variants of move selection methods, namely, the
well–known ε–greedy method and our suggested softmax
method termed creative move selection. The strength of the
neural players has been evaluated in games against three dif-
ferent computer players ranging from a pure random player
to a naive player having some elementary Go knowledge and
a more sophisticated but still weak player with an estimated
rank of 28 kyu.

It could be shown that the creative move selection pro-
liferates considerably better players when compared to the
ε–greedy method. This may be attributed to the fact that
the creative method samples the search space in promising
regions more densely, as it does only explore moves whose
value is within a small range (depending on the creativity
parameter) of the best move. Thus, it is able to more quickly
identify moves, which are superior to the move currently
estimated to be the best. Also, the simple katatsugi board
representation, which captures essential characteristics of the
board structure and key concepts of the game showed its
potential in combination with the creative move selection.On
average the katatsugi nets outperformed the networks based
on the other two basic representations (roban and koten).
Subjectively, when observing play the katatsugi nets are more
aware of basic and very important capture and save moves
requiring knowledge of structural context.

All self–taught networks exhibited a consistent and robust
style of play demonstrated by win rates being inverse pro-
portional to the quality of the computer players. Especially,
the fact that the trained networks beat the random player
at rates of approx. 98% show that the networks indeed
learn general game concepts and do not learn only specific
sequences of moves. This may also be credited to small
improvements in our TDL implementation (Section II-A).
The best networks achieved a win rate of 65% against the
best computer player GOjen, and always learned to play
the optimal opening move in the board center. This win
rate compares nicely to our work on evolution of neural
players [10], where networks evolved against GOjen beat the

program in 68% of the games. However, it should be stressed
that the evolved networks have been specifically adapted to
the program, whereas the self–trained nets in this work did
never face the program during training.

As better computer programs, e.g., GNU Go, can only be
effectively used as an opponent on larger boards, our next
step will be the investigation of the presented methods on
7×7 and 9×9 boards. In order to decrease the computational
cost (self–learning in 20 million games on 5×5 took approx.
70 hours on a 2.13GHz processor under Java/Linux) we
are currently working on methods to transfer the knowledge
incorporated in the 5×5 nets on larger boards. Also, we
are exploring techniques to combine evolutionary and self–
learning approaches.

REFERENCES

[1] C. E. Shannon, “Programming a computer for playing chess,”Philo-
sophical Magazine, vol. 41, pp. 256–275, March 1950.

[2] C. Chikun, Go: A Complete Introduction to the Game. Kiseido
Publishing Company, 1997.

[3] M. M üller, “Computer Go,”Artificial Intelligence, vol. 134, no. 1–2,
pp. 145–179, 2002.

[4] G. Tesauro, “Temporal Difference Learning and TD–Gammon,”Com-
munications of the ACM, vol. 38, no. 3, pp. 58–68, March 1995.

[5] N. N. Schraudolph, P. Dayan, and T. J. Sejnowski, “Learning to
Evaluate Go Positions via Temporal Difference Learning,” IDSIA,
Tech. Rep. 05–00, February 2000.

[6] R.-J. Ekker, “Reinforcement Learning and Games,” Master’s thesis,
Rijksuniversiteit Groningen, 2003.

[7] D. Beal, “Learn from your opponent – but what if he/she/itknows less
than you?” inStep by Step, J. Retschitzki, Ed. Editions Universitaires
Fribourg Suisse, 2002, pp. 123–132.

[8] N. Richards, D. Moriarty, P. McQuesten, and R. Miikkulainen,
“Evolving Neural Networks to Play Go,” inProceedings of the 7th
International Conference on Genetic Algorithms, 1997.

[9] A. Lubberts and R. Miikkulainen, “Co–Evolving a Go–Playing Neural
Network,” in 2001 Genetic and Evolutionary Computation Conference
Workshop Program,. San Francisco: Morgan Kaufmann, July 2001,
pp. 14–19.

[10] H. A. Mayer and P. Maier, “Coevolution of Neural Go Players in a
Cultural Environment,” inProceedings of the Congress on Evolution-
ary Computation 2005. IEEE Press, September 2005.

[11] T. P. Runarsson and S. M. Lucas, “Coevolution Versus Self–Play
Temporal Difference Learning for Acquiring Position Evaluation in
Small–Board Go,”IEEE Transactions on Evolutionary Computation,
vol. 9, no. 6, pp. 628–640, December 2005.

[12] S. Thrun, “Learning To Play the Game of Chess,” inAdvances in
Neural Information Processing Systems 7, G. Tesauro, D. Touretzky,
and T. Leen, Eds. Cambridge, MA: MIT Press, 1995, pp. 249–252.

[13] R. S. Sutton and A. G. Barto,Reinforcement Learning: An Introduc-
tion. Cambridge, MA: MIT Press, 1998.

[14] K. Chellapilla and D. B. Fogel, “Evolving an Expert Checkers Playing
Program without Using Human Expertise,”IEEE Transactions on
Evolutionary Computation, vol. 5, no. 4, pp. 422–428, 2001.

[15] E. C. D. van der Werf, H. J. van den Herik, and J. W. H. M.
Uiterwijk, “Solving Go on Small Boards,”International Computer
Games Association Journal, vol. 26, no. 2, pp. 92–107, 2003.


