
A Modular Neurocontroller

for Creative Mobile Autonomous Robots

Learning by Temporal Difference

Helmut A. Mayer

Department of Scientific Computing

University of Salzburg

A–5020 Salzburg, Austria

helmut@cosy.sbg.ac.at

Abstract – One of the most prominent research goals
in the field of mobile autonomous robots is to create
robots that are able to adapt to new environments, i.e.,
the robots should be able to learn during their “life-
time” possibly without (or a minimum) of human in-
tervention. When employing artificial neural networks
(ANNs) to control the robot, reinforcement learning
(RL) techniques are a good candidate for achieving con-
tinuous on–line learning. A problem with RL applied to
robot learning is that the state (and action) space of a
robot is typically not discrete. Thus, the robot had to
evaluate an infinite number of possible actions at every
time step in order to select the best. To overcome this
problem we add a second network module to the neu-
rocontroller acting as a memory of previous decisions
(state–action pairs) of the robot. The robot’s actual de-
cisions, then, are based on previous decisions retrieved
from memory. Additionally, intrinsic noise in the mem-
ory network gives the robot the possibility to evaluate
new “ideas”, hence it becomes creative. We analyze the
potential of the above approach by measuring the ability
of (simulated) robots to learn simple tasks using tempo-
ral difference (TD) learning.

Keywords: Soft Computing, Mobile Autonomous
Robots, Temporal Difference Learning, Modular Neu-
rocontrollers, Creativity Machines, Robot Simulators.

1 Introduction
Today, a variety of control techniques are imple-

mented for mobile autonomous robots, e.g., fuzzy con-
trol, machine learning systems, or artificial neural net-
works. Some of these systems have reached an impres-
sive level of performance, however, most of these sys-
tems are not adaptive in the sense that they cannot
change their behavior by feedback from the environ-
ment. Although, a human observer of these systems

might get the impression that the robots can adapt to
different situations, they can only adapt to situations
the control program is aware of in advance. Even with
evolutionary approaches to the construction of robotic
neurocontrollers[1], learning is taking place in a genera-
tional time frame (phylogenetic learning), but not during
the “lifetime” of a robot (ontogenetic learning).

Obviously, the main problem of (most) current con-
trol systems is that they cannot ”reprogram” themselves
during their exploration of the environment. This static
behavior of an artificial structure is the most fundamen-
tal difference to Biological Neural Networks (BNNs) ex-
hibiting highly dynamic properties not only throughout
their lifetime, but also within very short time spans of
activity [2].

A biologically plausible method to achieve a combina-
tion of phylogenetic and ontogenetic learning (as seen in
nature) are evolved network structures, whose parame-
ters are altered by Artificial Neuromodulators (ANMs)
[3]. The ANMs influence learning by defining the type
of Hebb learning based on the combination of modula-
tors received by each neuron [3]. However, our attempt
to utilize arbitrary network structures with well–defined
learning reactions (triggered by ANMs) showed that the
low–level, unsupervised Hebb learning cannot be linked
to high–level concepts the robot should learn, when us-
ing a standard sensor–motor architecture [4].

Dynamic changes in a neurocontroller may be induced
employing Reinforcement Learning (RL) techniques [5],
i.e., the robot’s brain (consequently, its behavior) is
shaped during exploration of the environment. A pop-
ular RL method applicable to neurocontrollers is Tem-
poral Difference (TD) learning. With this method the
neurocontroller is not generating motor signals driven
by sensor input, but evaluates potential (motor) actions.
Learning is achieved by the difference of predictions in
consecutive time steps (temporal difference) and scalar
feedback signals (reward or punishment) from the envi-



ronment or a teacher.
The main problem associated with RL of robotic neu-

rocontrollers is that the space of potential robot actions
(and states) is infinite. In Q–Learning, where the val-
ues for all states (and actions) are explicitely stored and
changed by reinforcement, the latter problem commands
approximation of the value function [6]. With TD learn-
ing the values are represented implicitely by the function
represented by the TD network being able to approxi-
mate (generalize). When evaluating potential actions,
the robot has to restrict itself to a subset of potential
actions. In a simple, but efficient approach a specific
action subset is pre–defined by the human operator.

Even with a very large action subset another gen-
eral problem of most robotic RL systems is the missing
state–action memory, which arguably is the most im-
portant source of human behavior. If the robot remem-
bered previous situations (states) and its corresponding
behavior (actions) that has been proven successful, it
could exploit this knowledge in current, similar situa-
tions. We realize such a memory by a second ANN
in the neurocontroller, which additionally creates novel
actions based on internal noise slightly altering the con-
nection weights [7].

This idea is greatly inspired by Creativity Machines,
more precisely, by the Imagination Engine (IE) present-
ing its output to a critic called Alert Associative Cen-
ter (AAC), which has been trained to recognize, if the
“idea” generated by the IE is consistent with general
concepts of a problem domain. The IE generates its
ideas by random alterations of a subset of the weights
of a network trained with examples of the problem do-
main [8].

2 The Modular Neurocontroller
The structure and the functionality of the modular

neurocontroller is schematically displayed in Figure 1.
Let us first describe the mechanisms associated with

the evaluation module (TD network) learning by tem-
poral difference. The TD network implements the on–
policy method SARSA [5], where network input is not
only the state of the robot, but a state–action pair. The
state the robot is in is given by the current sensor signals
(the five left inputs in Figure 1), while potential actions
(two motor signals) are suggested by an action genera-
tion method. A basic approach to action generation is
a pre–defined set of fixed actions [9]. In a single time
step all available actions are sequentially presented to
the evaluation network without changing the sensor in-
put values (state). Each state–action pair is mapped to
a value represented by the single output neuron. The se-
lection of a specific action is performed according to the
ε–greedy method [5], where the action with the highest
value is selected, but with a small probability ε a ran-
dom action is chosen instead. The network is trained
with the TD(0)–algorithm [5] given by

V − V)(

Value

Motor
Sensors

ENVIRONMENT

Reward

ENVIRONMENT
Learn

Noise

t+1 t

Front RightLeftBumperLeft Right Back

TD Network

Best Action

Creative

Memory

Figure 1: The modular neurocontroller with the evalu-
ation module (TD network) and the creative memory.

~wt+1 = ~wt + η[rt+1 + γVt+1 − Vt]∇~wt
Vt, (1)

where ~w are the weights of the network, V is the value
of the selected action, r is the reward, η is the learn
rate, and γ is the discount factor. By multiplying the
gradient of the value with the TD error (the term in
square brackets), the value for the action selected at
time step t is increased or decreased depending on the
value of the best action at t+ 1. Thus, actions leading
to higher values in subsequent time steps are reinforced,
i.e., are trained to trigger a higher value themselves.

The creative memory (a feed-forward ANN) is a stan-
dard sensor–motor network employed to generate a set
of potential actions, hence, implementing a more sophis-
ticated action generation method. The current sensor
signals are the input to the memory net generating a po-
tential action (two motor signals) at the output. This
procedure would always suggest a single action in any
specific time step. By applying noise to a subset of
the network weights different actions can be generated
(keeping the sensor input fixed). However, these “ideas”
are not purely random, but are slight deviations from
the “main idea”, which has been formed by training the
memory network with previously selected state–action
pairs. In each time step t + 1 the memory is trained
with the state (sensors) and selected action of the pre-
vious time step t utilizing standard back–propagation.
As a consequence, the creative memory suggests actions
based on past experience, hence the action space is sam-



pled in a promising region. The number of proposed
actions is only limited by time considerations, as each
perturbation of the memory creates a new (potential)
action.

It should be explicitely mentioned that the reward sig-
nal is directly derived from the environment, i.e., reward
is identical to specific sensor signals in the following ex-
periments. This should more closely model biological
systems, where often there is no explicit teacher giving
reward, but is mediated by cognitive and emotional pro-
cesses. E.g., when humans touch a hot piece of metal,
they do not need a teacher to realize the painful sensa-
tions.

3 Experimental Setup
We perform experiments with two simple tasks exe-

cuted in a Java simulator (cycle time tc = 0.1s), namely,
Wall Avoidance, where the robot should learn to stay
away from the walls of a rectangular arena, and Spot
Finding, where the robot is taught to move towards a
circular spot in the arena, which can be smelled by the
robot. The learning behavior is evaluated by a Learn
Ability assessing the robot’s behavior before and after a
training session.

The cylindrical robot shown in Figure 2 is equipped
with four distance sensors (front, back, left, right) and a
contact sensor for the wall avoidance experiment, and a
single nose sensor for spot finding (in Figure 2 all sensors
are shown at once).

The distance sensor simulates a nonlinear, noise–free,
real device measuring the reflection of a physical sig-
nal emitted exactly in direction of the line from robot
center to the sensor positioned at the perimeter of the
robot. The sensor signal sd fed into the modular neuro-
controller is given by

sd =
1

(1 + d)10
, (2)

where d is the distance from the sensor position to
the nearest object (wall).

The simulated contact sensor generates a signal sc =
−1, if the robot collides with an object, otherwise sc =
0. The negative value is commanded by the fact that
the sensor signal is identical to the reward, which in
case of wall avoidance must be negative (punishment)
in order to teach the robot to stay away from the walls
of the arena.

The nose sensor detects odor within a certain angular
range given by the Frustum Angle α. The nose center
is exactly in the forward direction of the robot, and
the sensor signal sn is scaled by the distance d and the
angle β (between front direction and spot direction) to
the center of the odorous spot according to

s′n = o
d

r
(1−

2β

α
) d ≥ r, β ≤

α

2
sn =

s′n
1 + s′n

(3)

with s′n being the raw sensor signal, o the “amount of
odor” (in mol), and r the radius of the odorous spot. If
the nose is inside the spot (d < r), the robot smells the
“full load” (s′n = o). If the spot is outside the sensitivity
range (β > α

2
), it does not smell anything (s′n = sn = 0).

Both networks in the modular neurocontroller are
standard One–Hidden Layer networks (seven hidden
neurons in the evaluation net, five in the memory net)
composed of neurons with logistic activation function.
Each sensor is associated with an input neuron of the
evaluation network. Additionally, the potential actions
(left and right motor signal) are fed into the latter net-
work and evaluated by means of the activation of the
single output neuron with an identity activation func-
tion. The reward is either identical to the contact sensor
signal, or to the nose sensor signal for wall avoidance
and spot finding, respectively. The learn rate η = 0.01,
the discount factor γ = 0.9, and the parameter for the
ε–greedy policy ε = 0.01.

The creative memory receives the sensor signals as in-
put (characterizing the robot’s current state), and sug-
gests corresponding motor actions (left and right motor)
at the output. The motor values in the range of [0.0, 1.0]
generated by the network are linearly transformed to the
range [−0.5, 0.5] so as to cover both motor directions
(negative values are backward). The creative memory’s
internal noise is imposed by randomly adding or sub-
tracting a constant value σ to a fixed number of random
weights of the memory net. As suggested in [7] a char-
acteristic operational value of the internal noise level is
given by the quantity nσ

N
= 0.19 (n is the number of

noisy connections, N the total number of connections).
We applied a σ of 0.76 in all experiments resulting in
noise in a quarter of all connections. Each time step the
memory is trained with the state–action pair selected
by the evaluation network in the previous time step.
The back–propagation learn rate is given by the TD er-
ror of the current time step. Note that the TD error
might be negative resulting in unlearning of a specific
state–action pair. Also, a potential reward influences
the magnitude of the learn rate, i.e., “good” actions are
learnt more thoroughly.

In order to assess the potential of the creative mem-
ory, we compare it to two other basic action generating
methods: a set of fixed, pre–defined actions, and a set
of random actions. In the fixed action set we included
the motor values -0.5, -0.25, 0.0, 0.25, and 0.5 for each
motor resulting in 25 different actions (e.g., straight
ahead with maximal speed is [0.5, 0.5]). Note that these
actions cover all basic motions of the robot including
standing still. The set of random actions simply con-
tains 25 actions generated randomly anew in each sim-
ulation cycle. The same number of 25 potential actions
is generated by the creative memory with the current
state (sensor signals) of the robot as fixed input and
successive perturbations of the network yielding action



“ideas” based on past experience.

Distance Sensors

Wheels

Bumper

Odor Sensor

6cm

Figure 2: The cylindrical robot.

3.1 The Wall Avoidance Experiment

In this experiment the robot is placed in a rectan-
gular arena (1.05 × 0.70 m) and should learn to avoid
wall contact. We performed experiments with 500 sim-
ulated robots initialized with different random weights
and biases from the interval [−1.0, 1.0]. The learning
behavior is evaluated by the Learn Ability L calculated
in the following way:

1. Every robot is placed into the upper left corner (in
a distance of ten cm to the walls facing the corner)
and then moves freely (without learning) for ten
minutes. Then, the same procedure is repeated in
the upper right corner. In these 20 minutes we
measure the time tpre it is in contact with the wall.

2. For the next two hours the robot with learning ac-
tivated is placed at random positions (every five
minutes) in the arena.

3. After learning the procedure described in 1 is re-
peated measuring the wall contact time tpost.

The learn ability LWA is defined as

LWA =
tpre − tpost

tpre + tpost
. (4)

We compare the three different action generation
methods using the mean learn ability L of the robots.
Note that a number of robots never touch the wall,
which we labelled Genius, as they perfectly master the
task right from the time of “birth”. Genius robots are
not considered for calculation of the mean learn ability.
The learn ability L is 1.0, if the robot has learned the
task perfectly, e.g., never touches the wall after train-
ing. An L > 0.0 indicates an improvement after learn-
ing, while an L < 0.0 is the sign of a negative effect of
training, i.e., the robot exhibits a worse behavior.

3.2 The Spot Finding Experiment

Again, the robot is placed into the rectangular arena,
but this time it should learn to move towards a circular
spot in the arena, which can be smelled by the robot.
The only sensor is the nose sensor detecting odors with
a frustum angle α of 90 degrees. The (virtual) odorous
spot is a circle with r = 6 cm and o = 10 mol.

The evaluation of the robots is performed as follows:

1. Each robot is placed in the upper left corner (ten
cm to the walls facing the corner), while the spot
is placed in the upper right corner (ten cm to the
walls). During the next hour (without learning) we
measure the time tpre the robot is inside the spot.

2. In the next four hours learning is activated and
every hour the spot is placed at a new random po-
sition.

3. Finally, learning is turned off, again, and the proce-
dure described in 1 is repeated measuring the time
inside the spot tpost.

As the measured times are now indicating wanted be-
havior, the learn ability LSF = −LWA (Equation 4).
Robots never moving inside the spot are labelled Igno-
rants and are not considered for calculation of the mean
learn ability.

4 Results
The results of the wall avoidance (WA) experiments

including the learn ability’s mean L and standard de-
viation Lσ are shown in Table 1. Note that only the
Creative method employs a second ANN in the neu-
rocontroller, while the other methods only rely on the
single evaluation network and deterministic (Fixed) or
Random action generation.

Table 1: Learn abilities L of 500 wall avoiding robots
using different action generation methods.

WA Fixed Random Creative
L = 1 260 196 282
L > 0 12 215 65
L = 0 13 1 0
L < 0 19 51 80

(Genius) 196 37 73

L 0.8232 0.7150 0.6109
Lσ 0.4959 0.5137 0.7068

tpost,% 0.0584 0.0160 0.0402

In this experiment the best learn ability is achieved
by the Fixed method, however, there might be a simple
explanation to this outcome. With all three compared
methods a great majority of robots developed a spin-
ning behavior, often with a slow movement towards the



center area of the arena. Only the Fixed method guar-
antees the availability of pure spinning (without lateral
movement), as this action is contained five times in the
action set (with different angular velocities including
zero). The other methods are based on random effects,
which may allow pure spinning in a single time step, but
not in a long sequence of steps. This general observation
is also backed up by the large number of genius robots
with Fixed, as a “spinner by nature” never 1 receives a
negative reward (being induced by wall contact).

On a similar note, the Random method yields few ge-
nius robots, as, though, the evaluation network might
assign spinning the highest value, it will often not be
present in the random action set. This also explains
the large number of robots in the category L > 0 with
Random. Many of these robots might have developed
a perfect evaluation network, but occasionally in situa-
tions close to the wall, the correct “escape” move, e.g.,
turning, is not present in the action set, which forces
the robot to select the best of the available actions, e.g.,
moving straight ahead.

It can also be seen that Creative is of less probabilis-
tic nature than Random, as the number of genius robots
and those in L = 1 is higher. The latter is even higher
than with the Fixed method indicating that the cre-
ative memory is gradually acquiring spinning (or turn-
ing) behavior not present at the robot’s “birth”. The
main problem with Creative is the rather large num-
ber of robots in L < 0. This might be attributed to
Catastrophic Interference [10] in the memory, as many
of these robots did not have any wall contact during pre–
training. Forgetting of previous knowledge may also oc-
cur in the evaluation network, but with a second ANN
(memory) in the neurocontroller this effect may be more
pronounced.

The mean wall contact time percentage after train-
ing tpost,% evaluated on all 500 robots sees Random in
front of Creative, which can be explained by the non–
deterministic nature of these methods. Even robots
with a tendency to run into the walls frequently retreat
from the wall due to random effects, which is not the
case for Fixed.

The results of the spot finding (SF) experiment are
presented in Table 2.

Generally, the mean learn abilities are much lower
than in the wall avoidance experiment, which may
mainly be attributed to the task being more complex.
Also, the duration of the training session for a single
robot (6 hours real time) might be too short, however,
in special circumstances the training time may be even
exceedingly long as outlined in the following.

The most striking result in Table 2 is the huge number
of ignorant robots (those are never inside the spot dur-
ing pre– and post–training, and are not considered for

1Actually, the ε–greedy policy of action selection during train-

ing also introduces a small random component.

the mean learn ability). Again, this seems to be a con-
sequence of the pure spinning behavior of many robots
operating under the Fixed action generation method.
Possible initial spinning (without lateral movement) is
frequently rewarded, when the robot smells the spot
while spinning, which reinforces spinning even more.
Moreover, with all methods it could be observed that
robots finding the spot initially follow the contours of
the spot, but gradually change their behavior to pure
spinning inside the spot, where this behavior is rewarded
constantly for long periods of time. When robot and
spot are separated into the two (distant) upper corners
in post–training, many robots keep spinning, which is
most pronounced with Fixed, as non–spinning actions
are more distant (from spinning actions) in the fixed
action space.

With Random a large number of ignorant robots move
into the L < 0 category, which is mainly based on the
fact that the random action sets let the robot explore the
whole arena easier, accidentally moving inside the spot
(even one time step is enough to no longer be counted
as ignorant). Once trained to find the spot, spinning is
also dominant for Random robots, and in post–training,
though, the robots show lateral movement it is often not
consistent towards the spot. Again, the problem is the
mere random action set, which often may not contain
the actions, which would be considered to be best by
the evaluation network.

The creative memory method is comparable to the
Fixed method in this experiment and allows much more
robots into L = 1 than the other methods. As with wall
avoidance this nice result comes at the cost of a large
number of robots in L < 0. Still, this number is smaller
than with Random confirming again, that Creative has a
more deterministic flavor. Surprisingly, in pre–training
quite a few robots move consistently towards the spot
and stay in there (without learning). Most of these
robots are later easily trained to find the spot, how-
ever due to the acquired spinning behavior their “flexi-
bility” is greatly decreased, and in post–training many
Creative robots move consistently, but very slowly to-
wards the spot. Hence, it may take 20-30 minutes until

Table 2: Learn abilities L of 500 spot finding robots
using different action generation methods.

SF Fixed Random Creative
L = 1 22 20 109
L > 0 2 16 63
L = 0 1 0 1
L < 0 20 323 170

(Ignorant) 455 141 157

L 0.0800 -0.8064 0.0045
Lσ 0.9681 0.5631 0.8829

tpost,% 0.0440 0.0296 0.2581



they reach the spot resulting in a reduced time inside
the spot compared to pre–training, thus a negative learn
ability. Most of the robots would move much faster and
more directly to the spot, if training would be aban-
doned, when they start to circle around the spot (some
also move straight through the spot turning immedi-
ately, when they leave the spot). In a very literal sense
the robot becomes ”saturated”, when staying too long
inside the spot. A larger memory network may reduce
this effect, possibly being able to discern and suggest
different basic behaviors inside and outside the spot.

The mean in–spot time percentage after training
tpost,% evaluated on all 500 robots shows that Creative
enables the robots to find the spot much more consis-
tently than the compared methods. With spot finding
the robot cannot only rely on a single behavior like spin-
ning, but has to combine different behaviors, namely
locating, approaching, and staying inside the spot. To
a certain degree the creative memory seems to enhance
this ability, also promoted by the evaluation network.

5 Summary

We have presented experiments with mobile au-
tonomous robots steered by neurocontrollers being
trained on–line via reinforcement learning. We com-
pared fixed, random, and creative action subset genera-
tion, the latter being implemented by a second ANN act-
ing as a memory of actions the robot has chosen in past
similar situations (states). The proposed modular neu-
rocontroller enhances the creativity machine approach
[8] with a dynamic network (shaped by temporal differ-
ence learning) as compared to the original, static (pre–
trained) critic. The creative memory allows a sampling
of the infinite action space based on the robot’s previous
experience. More importantly, it suggests novel actions
(generated by noise in the creative memory), which are
essential for adaptations of the robotic behavior to a
changed environment. The experiments demonstrated
the potential of the creative robots, specifically, with
the more complex (but still simple) spot finding experi-
ment. In future research some of the problems identified
with the creative memory will be addressed, namely,
catastrophic interference, and the strong interactions of
different parameters. The “forgetting” of learned pat-
terns as a consequence of training with new, different
patterns is a problem common to artificial and natural
systems, and could be reduced by more complex ANN
architectures, e.g., recurrent associative networks. The
aptitude of neurocontrollers for reinforcement learning
could be increased by artificial evolution of the relevant
parameters including learn rates, reward signals, pol-
icy parameters, sensor signals, and network structures.
Essentially, we believe that the presented modular neu-
rocontroller could be a step towards robots adapting to
unknown environments in a human–like manner.

References
[1] Stefano Nolfi and Dario Floreano. Evolutionary

Robotics – The Biology, Intelligence, and Technol-
ogy of Self–Organizing Machines. MIT Press, 2000.

[2] G. M. Shepherd. Neurobiology. Oxford University
Press, 3rd edition, 1994.

[3] Akio Ishiguro, Siji Tokura, Toshiyuki Kondo,
Yoshiki Uchikawa, and Peter Eggenberger. Re-
duction of the Gap between Simulated and
Real Environments in Evolutionary Robotics: A
Dynamically–Rearranging Neural Network Ap-
proach. In IEEE Systems, Man, and Cybernetics
Conference, pages III – 239–244. IEEE, October
1999.

[4] Helmut A. Mayer and Gerald Wiesbauer. Dynamic
Regulation of Hebb Learning by Artificial Neu-
romodulators in Mobile Autonomous Robots. In
IEEE International Conference on Systems, Man
& Cybernetics, pages 2107–2112. IEEE, October
2003.

[5] Richard S. Sutton and Andrew G. Barto. Rein-
forcement Learning: An Introduction. MIT Press,
Cambridge, MA, 1998.

[6] William D. Smart and Leslie Pack Kaelbling. Effec-
tive Reinforcement Learning for Mobile Robots. In
Proceedings of the IEEE International Conference
on Robotics and Automation, 2002.

[7] Steve L. Thaler. Is Neuronal Chaos the Source
of Stream of Consciousness? In World Congress
on Neural Networks, pages 1255–1258, Mahwah,
NJ, 1996. International Neural Network Society,
Lawrence Erlbaum Associates.

[8] Steve L. Thaler. A Proposed Symbolism for
Network–Implemented Discovery Processes. In
World Congress on Neural Networks, pages 1265–
1268, Mahwah, NJ, 1996. International Neural Net-
work Society, Lawrence Erlbaum Associates.

[9] Martin Riedmiller and Barbara Janusz. Using Neu-
ral Reinforcement Controllers in Robotics. In Pro-
ceedings of the 8th Australian Conference on Arti-
ficial Intelligence, pages 491–496, Singapore, 1995.
World Scientific Publishing.

[10] Bernard Ans, Stéphane Rousset, Robert M. French,
and Serban Musca. Preventing Catastrophic Inter-
ference in Multiple–Sequence Learning Using Cou-
pled Reverberating Elman Networks. In Proceed-
ings of the 24th Annual Meeting of the Cognitive
Science Society. Lawrence Erlbaum Associates, Au-
gust 2002.


