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Abstract- We present experiments (co)evolving Go play-
ers based on artificial neural networks (ANNs) for a
5x5 board. ANN structure and weights are encoded in
multi–chromosomal genotypes. In evolutionary scenar-
ios a population of generalized multi–layer perceptrons
(GMLPs) has to compete with a single Go program from
a set of three players of different quality. Two coevolu-
tionary approaches, namely, a dynamically growing cul-
ture, and a fixed–size elite represent the changing envi-
ronment of the coevolving population. The playing qual-
ity of the (co)evolved players is measured by a strength
value derived from games against the set of three pro-
grams. We also report on first experiments employing
recurrent networks, which allow a direct structural rep-
resentation of the Go board. Finally, the quality of all
the best (co)evolved players is evaluated in a round robin
tournament.

1 Introduction

With the advent of computers, board games have attracted
many researchers, e.g., [1], as the computational intelli-
gence of game playing programs can be directly related to
the intelligence of its human opponent. Out of all board
games, chess has received the most attention with efforts
beating the human world champion finally being successful
in 1997. (Deep Blue, a chess–playing IBM supercomputer,
defeated Garry Kasparov, the reigning world champion in
chess1).

The board game Go has received increasing attention in
recent years, as unlike chess programs the best Go programs
are still at a mediocre amateur level, i.e., a good amateur Go
player easily beats the machine. The rule set of Go is very
small, but the seemingly simple concepts build into deep
and complex structures on the board. For an excellent and
compact introduction we refer to [2]. Despite the simplic-
ity of Go’s rules, the game’s strategies and tactics are diffi-
cult to put into analytical or algorithmical form. There are
mainly three reasons why Go is hard for traditional com-
puter game–playing techniques.

First, the number of possible moves (the branching fac-
tor) in the majority of game situations is much larger than
in games such as chess or backgammon with about 20 le-
gal moves for each board position. On a standard 19×19
Go board a player has the choice among 200–300 poten-
tial moves. Hence, in a common game tree representation,
where each node is associated with a board situation and

1http://www.research.ibm.com/deepblue/

each branch with a move, the number of nodes grow ex-
ponentially with a base of 200. A Go computer program
playing with a very moderate tree depth of four had to eval-
uate 10,000 times the number of moves a chess program has
to ponder.

Second, Go is a game of mutual dependent objectives.
While in chess the goal is very explicit (capture of the oppo-
nent’s king), in Go the aim of securing territory (where each
board intersection counts as a point) can be achieved by cap-
turing opponent’s stones (death) as well as by securing own
stones (life). As a consequence, evaluation functions pre-
cisely assessing a board situation can hardly be defined, as
human expert players often rely on rather intuitive concepts,
e.g.,goodandbad shape(of stones). Hence, ANNs having
been successfully applied in the field of pattern recognition
are promising candidates to improve the quality of Go pro-
grams.

Third, though Go has been played for thousands of years
in China and Japan, the first professional Go players started
to earn prize money 45 years ago. Professional chess has a
tradition of 130 years resulting in much more literature on
opening, mid–, and end game theory based on millions of
recorded games played by expert players. As a matter of
fact, today’s extremely strong chess programs rely on hu-
man expertise to defeat human expertise.

A radically different approach is the construction of
computer players by means ofEvolutionary Computation
(EC). Here, an initial number of (often random) players
(programs) play against each other, the winners survive, and
exchange and randomly alter (mutate) parts of their genetic
material (the program code) so as to produce new programs
undergoing the same evolutionary procedures. Eventually,
the programs improve their playing strength without any ex-
plicit incorporation of a priori knowledge, which gives these
systems the potential to “invent” game strategies no human
player has ever discovered.

Moriarty and Miikulainen (1995) presented the evolu-
tion of neural networks playing the game of Othello. The
fitness of the ANN players has been evaluated by a random
player and a program employingα-β search. Evolved play-
ers could easily beat the random player (after 100 genera-
tions), and could also win against the program (after 2000
generations), which adhered to a popular Othello strategy.
A more complex strategy used by human expert players
has intentionally not been integrated into the programmed
player. It could be shown that evolution discovered the
novel (counter–intuitive) strategy so as to beat theα-β pro-
gram [3].



Chellapilla and D. B. Fogel (2001) presented an evolved
ANN playing the game of checkers. The value of the single
output neuron was used as an evaluation of the current board
situation presented to the input layer. The board evaluation
has been utilized to performα–β search with a (standard)
search depth of four. After 840 generations (six months) the
best network has been evaluated by games against human
players. A checkers rating system allowed to categorize the
performance of the network. The neural player achieved
Expert level (third best category) and could even achieve a
win against a higher rated human expert player [4].

The “star” among artificial board game players is
Tesauro’s (1995) neural backgammon playerTD–Gammon.
Based onTemporal Difference(TD) learning, a reinforce-
ment learning technique, a network has been trained in self–
play by only receiving feedback on the outcome of games.
After millions of training games (in its latest version) TD–
Gammon is estimated to play at a level extremely close to
the world’s best human players [5].

2 (Co)Evolution of Neural Go Players

The automatic generation of game–playing ANNs by artifi-
cial evolution offers some appealing advantages to conven-
tional ANN training. Even, if training yields an ANN player
having extracted all the concepts hidden in the training data,
it is very likely that it will never surpass the strength of the
players, whose games constituted the training data. E.g., in
[6] ANNs having been trained with chess games by master
players, played reasonably against strong players, but failed
to beat weak players.

Evolution of game playing ANNs does not require any
knowledge of the game, but only the games’ rules and the
feedback about the outcome of the game. Hence, in the-
ory the evolved neural player could have playing abilities
beyond any human player, as it does not rely on human ex-
pertise at all. Nice as this may sound, there are practical lim-
itations to ANN evolution, most prominently, the computa-
tional cost associated with the evolutionary process, where
thousands and millions of individuals (neural players) have
to be evaluated. Hence, we restricted evolution of Go play-
ers to the simple 5×5 board, which is mostly used for ed-
ucational purposes and demonstration of basic concepts of
the game. Though, we carried out the experiments with the
netJENsystem (a pure Java application for ANN evolution)
designed and implemented by the authors, which supports
distributed computation, from our point of view evolution
of Go players for a 9×9 board is the current limit (unless
one spends months and years of CPU time).

2.1 ANN Board Representation

We have extensively experimented with a variety of differ-
ent board representations, but in the end a simple represen-
tation also suggested in related work [7] turned out to be the
best.

Each intersection on the Go board is represented by two
input neurons, one for each player. A 1 indicates that the in-
tersection is occupied by the corresponding player, a 0 that

it is not, i.e., two zeros represent an empty intersection, and
two ones are illegal. We rather speak of two players instead
of black and white, as the same network may play both col-
ors (even against itself) by simply discerning between own
stones and opponent stones. At the output layer each neu-
ron is simply assigned to an intersection. The move corre-
sponding to the highest activation is selected. If this move
is illegal, e.g., the intersection is occupied, the move with
the next highest activation is chosen. These representations
result in 50 input and 26 output neurons (including the pass
move) for the 5×5 board .

2.2 ANN Encoding and Genetic Operators

ANN evolution is based on a direct encoding scheme
generatingGeneralized Multi–Layer Perceptrons(GMLPs),
which have no defined layered structure between input and
output layer, and may contain any forward connections be-
tween neurons (including direct connections from input to
output neurons). The number of hidden neurons, the con-
nections, and the connection weights are evolved on sep-
arate chromosomes, hence, the complete ANN genotype
consists of three chromosomes. During recombination the
chromosomes of two parents are shuffled (exchanged) with
a shuffle rateps = 0.5 [8]. The multi–chromosomal en-
coding enables the use of different encodings (and corre-
sponding operators) on different chromosomes: the hidden
neurons, and the connections are encoded by bitstrings (Ge-
netic Algorithmstyle), while the weights are encoded by
real numbers (Evolution Strategiesstyle).

Each hidden neuron and each connection is represented
by a single bit (Marker) in the corresponding chromosomes.
The markers are a simple analogue to activators/repressors
regulating the expression of wild–type genes. A hidden
neuron/connection marker determines, if the specific neu-
ron/connection associated with it is present in the decoded
network. The maximum number of hidden neurons (neu-
ron markers) has to be set in advance, hence, this evolution
technique could be labeled asEvolutionary Pruning, since
the system imposes an upper bound on the complexity of
the network.

The mutation operator for the binary chromosomes and
the real number chromsome is the standard bit flip mutation,
andσ–self–adaption (σ–mutation) [9], respectively. With
σ–mutation each object parameterxi (here a connection
weight) has an associated strategy parameterσi controlling
mutation of the object parameter as given by

x′

i = xi + σ′

i · N(0, 1), (1)

wherex′

i is the mutated object parameter, andN(0, 1)
the normal distribution. The strategy parametersσi are mu-
tated according to
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i = σi · e
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, n being the

number of object parameters, andNi(0, 1) indicating that a
new random number is drawn from the distribution for each



strategy parameter. A simplified form ofσ–mutation only
uses a single strategy parameter for mutations of the object
parameters (termedsingleσ–mutationin the following).

The recombination operator for all chromosomes is 2–
point crossover (occuring separately on each chromosome),
and the selection method of choice isBinary Tournament
selection with replacement.

2.3 Coevolution

Coevolution can beCompetitive (Parasitic)or Cooperative
(Symbiotic). In parasitic coevolution the host population(s)
receive a fitness directly proportional to the fitness of the so-
lution, while the parasite population(s) receive an inversely
proportional fitness, i.e., the more the parasites harm the
host(s), the more fitness they receive. With symbiotic co-
evolution all populations receive a fitness proportional to
their collaborative success in solving a problem.

Theoretically, coevolution allows “open–ended” evolu-
tion, i.e., the only limit for the quality of a solution is the
evolutionary time (number of generations). However, a few
problems have been identified with coevolution [10] lead-
ing to stagnation of the coevolutionary progress. Amongst
them areSuper Populationsdominating other populations,
theMoving Targetproblem introducing (too much) noise in
fitness evaluation, and the occurrence of cycles. Another
potential problem of coevolution, specifically, in the con-
text of game play, is that good players often lose the ability
to defeat weak players. When all or most weak individu-
als have been sorted out, the remaining good players are no
longer forced to beat weak players.

As a consequence to these known problems and inspired
by the concept ofCultural Algorithms[11] we devised the
simple, but intuitively appealing strategy ofCultural Coevo-
lution presented in the next section.

2.3.1 Cultural Coevolution

In cultural coevolution a population evolves based on its
own culture, i.e., individuals of former generations preserve
and accumulate knowledge being available for the current
generation. However, in our simple model of evolution
knowledge cannot be transferred explicitly, but individuals
that brought new knowledge to the culture become part of
the culture. In the context of neural Go players, the cul-
ture is a collection of master players being the dynami-
cally growing number of opponents (but also teachers) of
the evolving population.

In more technical terms, coevolution starts with a ran-
dom start population and an empty culture (no Go knowl-
edge). To get things going a random member of the start
population is added to the culture. Though, this certainly
is no master player it resembles the current cultural knowl-
edge. Each individual plays two games (black and white)
against each player in the culture. The individual’s fitnessis
determined by the overall win rate. If an individual wins all
the games against the master players, it becomes a master
itself and is added to the culture.

In order to analyze, if cultural coevolution has a measur-

able effect, when compared to more conventional coevolu-
tion techniques, we devised a technique presumably intro-
ducing some of the coevolutionary pitfalls discussed above.
TheElite is a fixed number of players resembling only the
best players having emerged during evolution. The fitness
of an individual in the evolving population is determined in
two games against each elite player. If an individual wins all
games against a specific elite player, the individual replaces
the elite player. When starting an elite coevolution, the elite
is filled randomly with players from the start population.

An approach similar to cultural coevolution is theHall
of Fameconcept [10] utilized in [12]. In the original proce-
dure the best individual of each generation is added to the
hall of fame. As this technique may lead to a large number
of individuals in the hall of fame (depending on the number
of generations), individuals of the current population com-
peted against a random hall of fame subset in [12]. The main
difference to cultural coevolution is the possibly large num-
ber of neural players with similar capabilities in the hall of
fame, which, again, may lead to focussing on specific play-
ing strategies in the course of coevolution.

2.4 Performance Measures

In order to monitor the development of the (co)evolving go
players we devised the following performance measures.

We define the strengths = w
g
, as the win rate (w is the

number of wins) of a player challenging one or more Go
players in a number of gamesg. In the following experi-
ments (Section 4) the strength has been measured in games
against three computer players (Section 3) of different qual-
ity ranging from a pure random player to a heuristic player
including search for common Go patterns on the board.

The strength value of an ANN player does not indicate to
which degree the network ”understands” the game. A basic
indicator of game comprehension is the number of illegal
moves a network tries to play. Consequently, we defined
the competenceC measuring the ability of a neural player
to distinguish between legal and illegal moves as

C =
1

n

n
∑

i=0

1 −
ti

pi

(3)

For each ofn games the ratio of all illegal movesti tried
in a game to the number of all illegal movespi possible
generates the competence’s raw value. An ANN player with
C = 1.0 did not select a single illegal move in alln games,
whereas a player withC = 0.0 always tried all illegal moves
before it placed its stone correctly. A competence of 0.85
indicates that on average the neural player intended to play
15% of all possible illegal moves but avoided all others.

3 Computer Go Players

For the (co)evolution of neural Go players and their evalua-
tion we utilized three heuristic computer players of different
playing abilities, which are briefly described in the follow-
ing.

The Randomplayer’s only “knowledge” of the game is
the ability to discern between legal and illegal moves, i.e.,



out of all legal moves (including the pass move) one is cho-
sen randomly with uniform probability distribution. This
player’s main purpose is to detect very basic Go skills in
a computer player, as a human novice with some hours of
Go practice should easily beat the Random player. Also, it
serves as a test for a neural player that possibly is able to
win against a modest computer player, but does not have a
general concept of Go, i.e., it may lose against Random.

The Naiveplayer may be compared to a human know-
ing the rules of Go, and having played some games is fa-
miliar with basic concepts. It is able to save and capture
stones, and knows when stones are definitely lost. Weak
stones, i.e., stones in danger of being captured, are saved
by connecting them to a larger group, so that a weak stone
becomes a member of a living group (or at least of one with
more liberties).

JaGo is a Go program written in Java2 by Fuming
Wang. JaGo is the best computer player we have used. It
knows standard Go playing techniques (saving and captur-
ing stones), and searches the board for 32 well–known Go
patterns and its symmetrical transformations. A few minor
program errors have been fixed, and time performance has
been increased in some parts by the authors.

In order to rate a Go player’s strength there are ranking
systems for amateur and professional players. The amateur
ranking system starts with the student (kyu) ranks from 35
kyu up to 1 kyu (best). When an amateur becomes a master
(dan) player, she gets the rank of 1 dan (best is 7 dan). Pro-
fessional ranks being above all amateur ranks are on a scale
from 1 to 9 dan.

GNU Go3 is a free Go program being able to play games
on 5×5 to 19×19 boards. We used GNU Go 3.2 to deter-
mine the strength of JaGo, and arrived at a rank of about
16 kyu. GNU Go’s rating is slightly better than 10 kyu on
theNo Name Go Server4 (as of June 1, 2003), which cor-
responds to an advanced amateur player’s capabilities on a
19×19 board.

Recently, Go on a 5×5 board has been solved [13].
Black wins with a score of 25 points (no komi), when play-
ing the optimal opening move C3 (board center). Black also
wins starting play with C2, C4, B3, and D3 (by a score of 3,
no komi), however, with a komi of 5.5 these games are lost.

GNU Go optimally opens a game (C3) with the black
stones on a 5×5 board, and passes correctly in reaction to
black C3 playing the white stones. However, it also passes
after black B3, C2, C4, or D3, but with optimal play could
win with a score of2.5. As an evolved ANN only would
have to learn the correct opening move, GNU Go has not
been utilized in evolution experiments, however, it defi-
nitely is an interesting evolution opponent on larger boards.

4 Experiments

This section presents experiments (co)evolving neural Go
players employing feed–forward and recurrent ANNs.

2http://www.cs.vu.nl/∼jbmarkes/jago/
3http://www.gnu.org/software/gnugo/
4http://nngs.cosmic.org/

4.1 Experimental Setup

In all experiments games are conducted on a 5x5 board with
a komi of5.5 for the white player. Evolution (Section 2) is
taking place in a population of 50 individuals, which ini-
tially are created by random. The alleles of the two bitstring
chromosomes, representing the hidden neurons and all con-
nections, are set according to a probability randomly chosen
for each individual (biased coin). The random values for the
initial real number chromosome are drawn from the interval
[−0.1, 0.1].

The maximal GMLP network consists of 50 input, 20
hidden, and 26 output neurons corresponding to a maxi-
mum of 3, 010 connections. This transfers to a length of
the real number chromosome of3, 056 encoding the con-
nection weights and46 bias values for hidden and output
neurons.

The structure of the recurrent ANN is composed of 25
input and 26 output neurons, which are fully connected (in-
cluding self–connections) resulting in2, 601 connections.
The board situation is encoded by a value for each intersec-
tion (black = -1, empty = 0, white = 1), which is fed into the
input layer via the neurons’ bias. As the number of neurons
is not evolved, the genotype consists of two chromosomes,
a bitstring chromosomes with a length of2, 601 encoding
the connections, and a real number chromosome of length
2, 652 encoding the weights and biases.

For both structures the mutation rates of the binary chro-
mosomes are set to1

l
, wherel is the chromosome length.

σ–mutation with an initialσ = 0.02 is used for the weight
chromosome. All neurons employ the sigmoidal activation
function.

The playing quality of the (co)evolved ANNs is eval-
uated by their strengths, which is computed by playing
2, 000 games (1, 000 with each color) against each of the
three computer players Random, Naive, and JaGo (Sec-
tion 3).

4.2 Evolution Experiments

In this section we describe experiments in which the ANNs
have been evolved by playing against each of the dedicated
computer players Random, Naive, and JaGo. Each experi-
ment has been repeated20 times. The fitness of an ANN is
evaluated by the win percentage after playing a number of
games (with both colors) against the fixed opponent. The
maximal number of generations is3, 000, but evolution is
halted, when a neural player wins all games against its op-
ponent, as this ANN is of maximal fitness.

4.2.1 Evolution versus Random

During evolution each ANN has to play 64 games against
Random. Nearly all of them won more than90% of games
against the Random player. The strongest reached a win
rate of0.9545, the weakest a value of0.8820. The strate-
gies developed by the ANNs to defeat Random do not work
well against the Naive player. The best ANN achieved a
win rate of0.2695, while the worst reached0.0285. Not
surprisingly, the evolved ANNs are not able to keep up with



JaGo. Except for two ANNs that reached a win rate around
0.08 all others played below0.04. All of the ANNs reached
a similar competence value in the range of 0.45 up to 0.50.
The low competence is due to stubborn attempts to place
stones in the board center even though the intersection may
be occupied.

Only three evolved ANNs open a game with the opti-
mal move C3 (Section 3). The ANNs rather place their first
stones anywhere on the board, except the corners and the
middle of the edges (A3, C1, C5, and E3). This reflects the
obvious fact that Random is not able to capitalize on weak
opening moves.

4.2.2 Evolution versus Naive

In the next experiments Random is replaced by the stronger
Naive player. Again, the fitness of each neural player is as-
sessed in 64 games. The best ANNs (single best of each run)
evolved against Naive have a strength ranging from0.48 to
0.69. The ANN with lowest strength (0.4815) achieved a
win rate of0.8205 against Naive being the fifth best win rate
of the evolved ANNs. The moderate strength results from
low win rates against Random (0.6030) and JaGo (0.0210)
indicating the ANN’s specialization in defeating Naive.

The evolved ANNs place their stones in the board cen-
ter, and try to keep them connected, which is the same ba-
sic strategy the ANNs evolved against Random performed.
However, the Naive nets are slightly more reactive to spe-
cific moves of its opponent. 25% of the best evolved ANNs
played the optimal opening move C3. Ten ANNs play
around C3, while the remaining five ANNs play the edge
of the board, which normally is a bad choice, but exploits
a weakness of Naive. It immediately tries to capture this
stone, which gives the net enough time to establish a good
position in the center.

4.2.3 Evolution versus JaGo

The next challenger for evolution is JaGo, a fairly sophisti-
cated player (Section 3), on average winning90% and81%
of the games against Naive, playing black and white, re-
spectively. As JaGo needs much more time than the weaker
players to consider its moves, but also exhibits less random
behavior, we reduced the number of games against each net-
work from 64 to 32 (in 19 runs, one run halted due to tech-
nical problems).

In Figure 1 the development of the mean and best fitness,
and the mean competence of a population of an evolutionary
run employing JaGo as opponent is shown.

While a Naive population acquires a mean fitness of 0.6
within about 200 generations, in a JaGo population it takes
about 1,000 generations to reach0.4 leading to a mean fit-
ness of approx.0.55 in the last generation 3,000. Four
evolution runs proliferated a network winning all 32 games
against Jago.

The JaGo ANNs connect their center stones quickly, as
otherwise Jago would win easily. Additionally, they some-
times play elsewhere (tenuki) sacrificing single stones in or-
der to distract Jago. Similar to evolution versus Random
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Figure 1: Fitness and competence statistics of evolving
players against JaGo.

and Naive, the neural players often exhibit a preference to
place their stones onto key intersections regardless of their
state. The evolved ANNs have strength values ranging from
0.35 to 0.77. On average they defeat Random in 81%, Naive
in 25%, and JaGo in 68% of games played. These win rates
show that in this setting evolution generates specialists per-
forming well against the single player they face during evo-
lution, but fails to generalize. Specifically, one would ex-
pect that a net beating JaGo should easily beat the much
weaker Naive.

Nine ANNs open the game optimally playing the first
stone at the board center, and not a single neural player starts
play at the edge. Remember that even though 25% of the
Naive nets opened at an edge intersection they beat Naive in
most cases. This indicates that evolution has adapted to the
stronger play of JaGo. The strength of the evolved networks
clearly corresponds to the opening move, as the nine nets
playing C3 have an average strength of0.6748, the seven
nets playing B3 or D30.5276, and the the three remaining
playing B2, C4, and D40.4248.

A main problem associated with the feed–forward struc-
ture and a simple board representation is that the informa-
tion on neighborhood relations of intersections is not pro-
vided to the network. We could argue that most of evolution
time is spent to acquire knowledge, which is initially avail-
able to a human seeing a Go board for the very first time. A
fully connected input layer with recurrent connections (Sec-
tion 4.1) gives evolution the possibility to represent board
structure with network structure. Here, we performed only
two runs, where each evolved recurrent net played 32 games
against JaGo.

Compared to evolution of feed–forward ANNs (Fig-
ure 1) the population’s fitness increases faster, and within
1,000 generations a recurrent network wins all 32 games
against JaGo. The two star players play with a strength
of 0.6927 and 0.6517. Though, these values are similar to
the best evolved feed–forward ANNs, the recurrent players
seem to have more general abilities, as the best recurrent net
achieves higher win rates against Naive (0.4940) and Ran-
dom (0.9465). Interestingly, the number of connections is



very similar in both star networks (1,296 and 1,294 out of
maximally available 2,601).

Though, both evolved ANNs open the game at the op-
timal C3, they adhere to different strategies. One attacks
enemy stones and defends its own stones, while the other
tries to distract its opponent by playing the weak move A5
with the second stone.

4.3 Coevolution Experiments

Though, evolution generated neural players being able to
defeat its single opponent faced during evolution, the above
experiments also demonstrated the known problem of poor
generalization of the evolved player, e.g., a network beating
JaGo lost against the much weaker Naive. In order to im-
prove the generalization capabilities we employed coevolu-
tionary scenarios, where the networks never face a Go pro-
gram representing human expertise, but only play against
other coevolved networks. We compare the two coevolu-
tion approaches presented in Section 2.3, namely, cultural
and elite coevolution.

4.3.1 Cultural Coevolution

In this experiment the fixed computer opponent is replaced
by the dynamically growing culture. The fitness of each
ANN in the population is the overall win rate of games
against each culture net. Usually, two networks always play
the same game against each other, hence, in most cases two
games (with changing colors) are sufficient. The only ex-
ception are networks suggesting different moves for a board
situation (identical maxima), which then are selected ran-
domly resulting in different games. In this case a series of
eight games is played. As no Go external knowledge is pro-
vided to the system, in a single run the number of genera-
tions had been increased to 55,000, which resulted in run
times of up to twenty days. All other parameters are identi-
cal to the feed–forward setup described in Section 4.1.

In preliminary experiments we realized that evolution
progress stagnated quickly due to saturated output neurons
with the exact maximal value of 1.0. Increasing numbers of
saturated output neurons turn the neural player into a ran-
dom player, as moves are selected randomly out of those
with a value of 1.0. In evolutionary settings these players
are weeded out, as they do not succeed against a fair player.
However, in the coevolutionary scenario the opponents are
also likely to exhibit pseudo–randomness leading to stagna-
tion. Thus, we switched to singleσ–mutation, which seems
to be less prone to above saturation effects.

Figure 2 shows statistical details of a cultural coevolu-
tion run.

Up to generation 10,000, 73 ANNs entered the culture,
only five more nets were added, hereafter. The last cul-
ture net entered in generation 41,936 having a strength of
0.4513. Note that the mean fitness seems to drop slightly,
however, with the culture growing dynamically, the evolved
networks may face different cultures, hence, only phases
of evolution without culture changes (addition of a neural
player) can be compared exactly. The mean fitness of the

population stays at a level of 0.85, although, the ANNs had
to compete against the culture of growing quantity and qual-
ity. The competence of∼ 0.4 is considerably lower than in
evolution against a computer player (∼ 0.5). This can be
attributed to the networks’ missing ability to pass early in
the end game, when few legal moves are left. As now two
such players meet each other, the competence even drops.

Most culture nets consist of nine to 15 hidden neu-
rons. Rarely, two successive masters have the same num-
ber of hidden neurons pointing out that cultural coevolu-
tion enables diversity. The number of connections increases
slightly with improving culture, i.e., the ANNs become
more complex.

In Figure 3 the graphical representation of the strength
of each player in the culture is shown.

The strength increases steadily indicating that the culture
ANNs’ Go playing abilities become more sophisticated.
The oldest net in the culture is able to win games against
Random only, and expectedly, loses all games to Naive
and JaGo. Up to master 18 the strength rises above 0.35,
mainly because of improvements against Random. Subse-
quently, the strength increases due to wins against Naive
and JaGo, and continuing success against Random, which
nicely demonstrates that the culture does not lose the abil-
ity to beat the weakest player. Beginning with master 58
all players exhibit a strength above 0.4. From masters 36 to
48 a disproportional rise in win rates against JaGo can be
observed. Analysis of these culture nets showed that, when
playing the black stones, the nets often force JaGo into a
trap, where it makes a bad mistake.

The opening moves of the 78 master nets are another in-
dicator for the potential of the culture. The oldest 29 masters
play various openings, but all others play the optimal move
C3. Very weak openings (e.g., E4 by master 2, E2 by 3, pass
by 4) have been discarded quickly beginning with master 5.

An example game of the youngest master 77 (beating all
others) playing the black stones against JaGo is presented in
Figure 4.

The first moves until 10 is a standard and correct open-
ing of both sides. After 10 the move both players should
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Figure 2: Mean and best fitness, competence, and culture
additions in a cultural coevolution run.



prefer is 15, but Net plays 11 to create eye space. JaGo
prepares an attack at 7 with 12, which results in death of
white’s main group, if black plays correctly. Net answers
with the weak move 13 reducing own territory. JaGo at-
tacks with 14, but Net does not save its stone 7, but attacks
(and kills) the white group with the text book move 15. The
moves up to 21 are all forced, and explain why 15 was the
key move. JaGo passes, and Net plays some superfluent and
territory decreasing stones (23–31) until its pass ends the
game. Net controls a territory of eleven points and has cap-
tured ten stones. JaGo is without territory, but has captured
two stones and receives the komi of 5.5 yielding a score of
13.5 in favor of Net.

It must be noted that above game is not the rule, as Net
playing black achieves only a win rate of0.1170 against
JaGo. Nevertheless, it shows that Net is able to win and to
play some fairly sophisticated Go moves.

In Section 4.2.3 promising results of evolution of recur-
rent ANNs have been presented. Consequently, we also set
up an experimental run with 10,000 generations using re-
current networks for cultural coevolution with, apart from
the network structure, parameter settings identical to the
feed–forward case. The mean fitness of the population
stayed above 0.8, despite the growing culture of increas-
ing strength. Master 10 already had a win rate above 0.9
against Random. From then, all younger masters had win
rates above 0.2 against Naive, whereas using feed–forward
ANNs the first to reach 0.15 was master 36. The rather low
performance of the recurrent ANNs versus JaGo can be ex-
plained by their opening moves.

The youngest 21 masters open a game by placing a stone
at C2 instead of the optimal C3, which makes JaGo hard to
beat. However, in the youngest five masters the intention
for opening at C3 steadily increases, which makes it likely
that a longer run would produce the optimal opening.

4.3.2 Elite Coevolution

In elite coevolution a fixed number of master networks
builds the elite, in which a network from the evolving popu-
lation replaces a master, if the elite network looses all games
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Figure 4: A coevolved ANN (playing the black stones) wins
against JaGo (7 at 19, 15 at 21).

against the challenger. With all other parameters being iden-
tical to those in Section 4.3.1 we compared elite and cultural
coevolution in a run of 3,000 generations with an elite size
of 1.

We defined the single elite network after the last gener-
ation, and the youngest master of the culture, to be the re-
sulting player of elite and cultural coevolution, respectively.
Against our assumptions the elite net was replaced in every
single generation, i.e., 3,000 networks have been called into
the elite (similar observations have been made with larger
elite sizes), which may be an indicator for the occurrence of
cycles. The final culture consisted of 49 masters, where the
youngest was added in generation 2,705. A detailed com-
parison of the strength of the two players is given in Table 1.

Win Rate
ANN Strength Competence Random Naive JaGo
Elite 0.3625 0.4729 0.9230 0.1145 0.0500

Culture 0.4440 0.4052 0.9625 0.2245 0.1450

Table 1: Strengths of neural players generated by elite and
cultural coevolution.

Consistently, the stronger culture net defeats each com-
puter player more often than the elite network. This picture
did change a bit with increasing elite sizes. In an elite of
16 masters after 3,000 generations three of them exhibited
a strength above 40% (0.4012, 0.4403, and 0.4317), how-
ever, the strength of all masters in the culture added after
generation 500 was above 40%, too.

5 Tournament of Neural Players

Finally, we compare the best networks generated in the var-
ious (co)evolution experiments by performing a tournament
among them. Each competitor had to play against each
other with both, the white, and the black stones.

Four evolved ANNs and six coevolved ANNs entered
the contest: The player of greatest strength evolved against
RandomR, against NaiveN , against JaGo (J), and the re-
current net evolved against JaGo (Jr). The coevolved ANNs
are the youngest masters of the three culture runs (C0, C1,
C2), of the culture run using recurrent networks (Cr), the
last elite net in the elite of size 1 (E1) and the net of greatest
strength in the last elite of size 16 (E16). The number of
wins of each player is displayed in Table 2.

Interestingly, the two players evolved against JaGo won
the fewest games, as these nets learned to pass at the right
time, but they are not prepared for players continuing play



R N J Jr C0 C1 C2 Cr E1 E16

B 5 6 5 2 3 5 4 6 4 5
W 4 3 3 4 5 3 7 6 5 3
Σ 9 9 8 6 8 8 11 12 9 8

Table 2: Number of tournament wins of the best (co)evolved
ANNs playing black (B) or white (W).

in technically lost games. It can also be seen thatC0 andC1

having been generated in 3,000 generations could not win
more than eight games, butC2 being the result of 55,000
generations ranked second in the tournament. The tourna-
ment winner succeeding in 12 of 18 games is the recurrent
culture netCr produced in 10,000 generations. The per-
formance of the elite nets is similar toC0 and C1, as is,
surprisingly, the net evolved against Random.

6 Summary

We have presented experiments (co)evolving neural Go
players for a 5x5 board utilizing mutli–chromosomal en-
coding of the players’ generalized multi–layer perceptrons.
In evolution experiments each of three dedicated computer
players of different quality was used as the single opponent
of the evolving network population.

In coevolution experiments we introduced a culture rep-
resenting the Go knowledge of all evolved networks, which
receive their fitness according to the win rate against the cul-
ture nets. The culture grows dynamically, as a neural player
beating all networks in the culture is added to the culture,
hence, it must be able to win against players of different
quality. For comparisons a different coevolution technique,
an elite containing a fixed number of networks, has been im-
plemented, which we expected to exhibit some of the known
pitfalls of coevolution. However, in a tournament of the
best (co)evolved players the elite and culture networks per-
formed at a similar level. The strength of neural players
has been evaluated by the combined win percentage against
the three computer players. Though, the strength value of
evolved players was greater than those of coevolved play-
ers, which never faced human expertise, the first and second
place in the tournament went to networks coevolved in a
culture.

We also presented promising first experiments with neu-
ral players based on recurrent ANNs whose structure is
able to reflect neighborhood relations of board intersec-
tions, which is not possible with feed–forward networks. In
this paper we evolved the structure of the input layer (and
all others), which could have connections between any of
its neurons representing board interesections, but in future
work we will experiment with fixed input layers, where only
neighboring neurons (intersections) are connected. Cur-
rently, we are working on employing temporal difference
learning for the neural Go players, and the extension of evo-
lutionary and reinforcement methods to 9x9 Go boards.

Finally, we would like to thank two of three anonymous
referess for their time and effort to provide very detailed,
extensive, and constructive remarks.
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