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Abstract- We present experiments (co)evolving Go play- each branch with a move, the number of nodes grow ex-
ers based on artificial neural networks (ANNs) for a ponentially with a base of 200. A Go computer program
5x5 board. ANN structure and weights are encoded in playing with a very moderate tree depth of four had to eval-
multi—-chromosomal genotypes. In evolutionary scenar- uate 10,000 times the number of moves a chess program has
ios a population of generalized multi-layer perceptrons to ponder.

(GMLPs) has to compete with a single Go program from Second, Go is a game of mutual dependent objectives.
a set of three players of different quality. Two coevolu- While in chess the goal is very explicit (capture of the oppo-
tionary approaches, namely, a dynamically growing cul- nent’s king), in Go the aim of securing territory (where each
ture, and a fixed—size elite represent the changing envi- board intersection counts as a point) can be achieved by cap-
ronment of the coevolving population. The playing qual- turing opponent’s stones (death) as well as by securing own
ity of the (co)evolved players is measured by a strength stones (life). As a consequence, evaluation functions pre-
value derived from games against the set of three pro- cisely assessing a board situation can hardly be defined, as
grams. We also report on first experiments employing human expert players often rely on rather intuitive conggept
recurrent networks, which allow a direct structural rep-  e.g.,goodandbad shapdof stones). Hence, ANNs having
resentation of the Go board. Finally, the quality of all been successfully applied in the field of pattern recogmitio
the best (co)evolved players is evaluated in a round robin are promising candidates to improve the quality of Go pro-

tournament. grams.
Third, though Go has been played for thousands of years
1 Introduction in China and Japan, the first professional Go players started

to earn prize money 45 years ago. Professional chess has a

With the advent of computers, board games have attracteddition of 130 years resulting in much more literature on
many researchers, e.g., [1], as the computational intellopening, mid—, and end game theory based on millions of
gence of game playing programs can be directly related tecorded games played by expert players. As a matter of
the intelligence of its human opponent. Out of all boardact, today’s extremely strong chess programs rely on hu-
games, chess has received the most attention with effortean expertise to defeat human expertise.
beating the human world champion finally being successful A radically different approach is the construction of
in 1997. Deep Bluga chess—playing IBM supercomputer,computer players by means Bf/olutionary Computation
defeated Garry Kasparov, the reigning world champion i¢EC). Here, an initial number of (often random) players
chess). (programs) play against each other, the winners survivk, an

The board game Go has received increasing attention éxchange and randomly alter (mutate) parts of their genetic
recent years, as unlike chess programs the best Go programeterial (the program code) so as to produce new programs
are still at a mediocre amateur level, i.e., a good amateur Gadergoing the same evolutionary procedures. Eventually,
player easily beats the machine. The rule set of Go is vetkie programs improve their playing strength without any ex-
small, but the seemingly simple concepts build into deeplicitincorporation of a priori knowledge, which gives #ee
and complex structures on the board. For an excellent asgistems the potential to “invent” game strategies no human
compact introduction we refer to [2]. Despite the simplicplayer has ever discovered.
ity of Go’s rules, the game’s strategies and tactics are-diffi Moriarty and Miikulainen (1995) presented the evolu-
cult to put into analytical or algorithmical form. There aretion of neural networks playing the game of Othello. The
mainly three reasons why Go is hard for traditional comfitness of the ANN players has been evaluated by a random
puter game—playing techniques. player and a program employings search. Evolved play-

First, the number of possible moves (the branching faers could easily beat the random player (after 100 genera-
tor) in the majority of game situations is much larger thations), and could also win against the program (after 2000
in games such as chess or backgammon with about 20 Benerations), which adhered to a popular Othello strategy.
gal moves for each board position. On a standard® A more complex strategy used by human expert players
Go board a player has the choice among 200-300 potelmas intentionally not been integrated into the programmed
tial moves. Hence, in a common game tree representatigriayer. It could be shown that evolution discovered the
where each node is associated with a board situation andvel (counter—intuitive) strategy so as to beatdh@ pro-
gram [3].
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Chellapilla and D. B. Fogel (2001) presented an evolvei is not, i.e., two zeros represent an empty intersectiod, a
ANN playing the game of checkers. The value of the singlevo ones are illegal. We rather speak of two players instead
output neuron was used as an evaluation of the current boarftblack and white, as the same network may play both col-
situation presented to the input layer. The board evalnatiors (even against itself) by simply discerning between own
has been utilized to perform—3 search with a (standard) stones and opponent stones. At the output layer each neu-
search depth of four. After 840 generations (six months) then is simply assigned to an intersection. The move corre-
best network has been evaluated by games against hunsgonding to the highest activation is selected. If this move
players. A checkers rating system allowed to categorize thg illegal, e.g., the intersection is occupied, the movenwit
performance of the network. The neural player achievetthe next highest activation is chosen. These represensatio
Expertlevel (third best category) and could even achieve gesult in 50 input and 26 output neurons (including the pass
win against a higher rated human expert player [4]. move) for the 55 board .

The “star” among artificial board game players is
Tesauro’s (1995) neural backgammon playB-Gammon 2.2 ANN Encoding and Genetic Operators
Based onTemporal Differenc€TD) learning, a reinforce- L . .
ment learning technique, a network has been trained in seI?‘—NN eyolut|on IS based on a direct encoding scheme
play by only receiving feedback on the outcome of gameg_er_]eranngBenerall_zed Multi-Layer Perceptron@ML_Ps),
After millions of training games (in its latest version) TD_WhICh have no defined layered structure between input and

Gammon is estimated to play at a level extremely close futput layer, anq may pontqin any forwar.d connect'ions be-
the world's best human players [5]. tween neurons (including direct connectlons from input to
output neurons). The number of hidden neurons, the con-
nections, and the connection weights are evolved on sep-
arate chromosomes, hence, the complete ANN genotype
consists of three chromosomes. During recombination the

The automatic generation of game—playing ANNSs by artifi- .
cial evolution offers some appealing advantages to conveﬁhromosomes of two parents are shuffled (exchanged) with

tional ANN training. Even, if training yields an ANN player a zhuﬁ‘le Falg??s ; 0-5 [8]'f g.?_fe mutltl—chrz_mosoma(lj en-
having extracted all the concepts hidden inthetraining,datCO ing enables the use of different encodings (and corre-

it is very likely that it will never surpass the strength oéth sponding operators) on different chromosomes: the hidden

: g, neurons, and the connections are encoded by bitstribgs (
players, whose games constituted the training data. B.g., i tic Algorithmstyle), while the weights are encoded by

[6] ANNSs having been trained with chess games by mast&f

layers, played reasonably against strong players, Hatlfai real numbgrsl‘;’volution Strategiestyle). L
fo geat wpeai players vag g pay Each hidden neuron and each connection is represented

Evolution of game playing ANNs does not require an y a single bit Marker) in the corresponding chromosomes.

knowledge of the game, but only the games'’ rules and th‘léhe markers are a simple analogue to activators/repressors

feedback about the outcome of the game. Hence, in th%e_gulating the expression of wild—type genes. A hidden

ory the evolved neural player could have playing abi”tiegeuron/conr)ectlon mgrker d'ete.rrr.]mes, i thg specific neu-
beyond any human player, as it does not rely on human e on/connection associated with it is present in the decoded

pertise at all. Nice as this may sound, there are practioal li network. The maximum nL_meer of hidden neurons (neg-
itations to ANN evolution, most prominently, the computa-ron markers) has to be set in advance, hence, this evolution

tional cost associated with the evolutionary process, whe}echnlque could be labeled &solutionary Pruning since

thousands and millions of individuals (neural players)ehavtnz igfvt/%r:lklmposes an upper bound on the complexity of

to be evaluated. Hence, we restricted evolution of Go pla . _

ers to the simple &5 board, which is mostly used for ed- The mutation operator for_ the binary chror_no_somes ".ind

ucational purposes and demonstration of basic conceptstBF real number c_hromsome IS the standard b'.t flip mut_atlon,

the game. Though, we carried out the experiments with t d o—sglf—adaptlong(—mutat|on) [9], respectively. W'th
mutation each object parametey (here a connection

netJENsystem (a pure Java application for ANN evolution)” . ht) h iated strat teontrolli
designed and implemented by the authors, which suppo??’selg ) has an associated strategy paramgteontrolling

distributed computation, from our point of view evolutionmUtatlon of the object parameter as given by
of Go players for a 99 board is the current limit (unless
one spends months and years of CPU time).

2 (Co)Evolution of Neural Go Players

=z + 0ol N(0,1), (1)

wherex’ is the mutated object parameter, aNqo0, 1)
2.1 ANN Board Representation the normal distribution. The strategy parametgrare mu-

. . . . ... tated according to
We have extensively experimented with a variety of differ- g

ent board representations, but in the end a simple represen-
tation also suggested in related work [7] turned out to be the

best. . 1 -1 _
with 7/ = (v2 , T = 2y/n) , n being the
Each intersection on the Go board is represented by two i ( ) 7 ( \/ﬁ) " g

input neurons, one for each player. A 1 indicates that the irp_umber of object pargmeters, and(0, 1) ihdigatipg that a
tersection is occupied by the corresponding player, a 0 th3eW random number is drawn from the distribution for each

7/-N(0,1)47-N;(0,1)) )

I
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strategy parameter. A simplified form efmutation only able effect, when compared to more conventional coevolu-
uses a single strategy parameter for mutations of the objdin techniques, we devised a technique presumably intro-
parameters (termesinglec—mutationin the following). ducing some of the coevolutionary pitfalls discussed above
The recombination operator for all chromosomes is 2¥he Elite is a fixed number of players resembling only the
point crossover (occuring separately on each chromosomégst players having emerged during evolution. The fitness
and the selection method of choiceB#ary Tournament of an individual in the evolving population is determined in

selection with replacement. two games against each elite player. If an individual wihs al
games against a specific elite player, the individual reggac
2.3 Coevolution the elite player. When starting an elite coevolution, thieeli

c luti bE itive (P iticbr C ) is filled randomly with players from the start population.
oevolution can b&€ompetitive (Parasiticpr Cooperative An approach similar to cultural coevolution is thill

(Symbiotic) In pargsitic coevoluf[ion the hOSt_ population(s)of Fameconcept [10] utilized in [12]. In the original proce-
receive a fitness directly proportional to the fitness of the s dure the best individual of each generation is added to the

lution, v_vhile the parasite population(s) receive_ an iners hall of fame. As this technique may lead to a large number
E“’po”'oﬂa' f't”esfs_' e., t:]‘e more the pa_‘r;':‘s'tesbhafm 4 individuals in the hall of fame (depending on the number
OSt(S_)’ the more '“_‘ess t €y receive. With sym |_0t|c COof generations), individuals of the current population eom
evqlut|on all pqpulanons receive a fitness proportional t%eted against a random hall of fame subsetin [12]. The main
the_lrrhcollab.oralllnve SUCC?S“.S n Sﬁlwng“a problencwj. - | difference to cultural coevolution is the possibly largemu
eoretically, coevolution allows “open—ended” evoluy,o ot neyrg) players with similar capabilities in the hdll o

tion, i.e., the only limit for the quality of a solution is the fame, which, again, may lead to focussing on specific play-
evolutionary time (hnumber of generations). However, a fevl\hg strategies in the course of coevolution
problems have been identified with coevolution [10] lead- '

ing to stagnation of thel coevolgtionary progress. Ar_nong%4 Performance Measures
them areSuper Populationslominating other populations,
the Moving Targetproblem introducing (too much) noise in In order to monitor the development of the (co)evolving go
fitness evaluation, and the occurrence of cycles. Anothgtayers we devised the following performance measures.
potential problem of coevolution, specifically, in the con- We define the strength = %, as the win rate is the
text of game play, is that good players often lose the abilitpumber of wins) of a player challenging one or more Go
to defeat weak players. When all or most weak individuplayers in a number of gamegs In the following experi-
als have been sorted out, the remaining good players are ments (Section 4) the strength has been measured in games
longer forced to beat weak players. against three computer players (Section 3) of different-qua
As a consequence to these known problems and inspiréid ranging from a pure random player to a heuristic player
by the concept oCultural Algorithms[11] we devised the including search for common Go patterns on the board.

simple, but intuitively appealing strategy©filtural Coevo- The strength value of an ANN player does not indicate to
lution presented in the next section. which degree the network "understands” the game. A basic

indicator of game comprehension is the number of illegal
2.3.1 Cultural Coevolution moves a network tries to play. Consequently, we defined

, ) _the competencé€’ measuring the ability of a neural player
In cultural coevolution a population evolves based on itg, distinguish between legal and illegal moves as
own culture, i.e., individuals of former generations prese

and accumulate knowledge being available for the current 1 & ti
generation. However, in our simple model of evolution C= n Z - ; 3)
knowledge cannot be transferred explicitly, but individua =0 ’
that brought new knowledge to the culture become part of For each of: games the ratio of all illegal movestried
the culture. In the context of neural Go players, the culll & game to the number of all illegal movgs possible
ture is a collection of master players being the dynamdenerates the competence’s raw value. An ANN player with
cally growing number of opponents (but also teachers) ¢f = 1.0 did not select a single illegal move in allgames,
the evolving population. whereas a player with' = 0.0 always tried all illegal moves

In more technical terms, coevolution starts with a ranPefore it placed its stone correctly. A competence of 0.85
dom start popu|ation and an empty culture (no Go know|i.ndicates that on average the neural player intended to play
edge). To get things going a random member of the stakp% of all possible illegal moves but avoided all others.
population is added to the culture. Though, this certainly
is no master player it resembles the current cultural knowB Computer Go Players
edge. Each individual plays two games (black and Whitelg ) .
against each player in the culture. The individual’s fitriess FOr the (co)evolution of neural Go players and their evalua-
determined by the overall win rate. If an individual wins alltion we utilized three heuristic computer players of ditfer
the games against the master players, it becomes a maﬁ@\ylng abilities, which are briefly described in the follow
itself and is added to the culture. Ing.

In order to analyze, if cultural coevolution has a measur- 1he Randomplayer’s only “knowledge” of the game is
the ability to discern between legal and illegal moves, i.e.



out of all legal moves (including the pass move) one is chat.1 Experimental Setup

sen randomly with uniform probability distribution. This . .
layer’s main purpose is to detect very basic Go skills ir|1n all experiments games are conducted on a 5x5 board with
P fkomi of5.5 for the white player. Evolution (Section 2) is

; . a
I h h h ) . . L O
a compu_ter player, as a human novice with some hours %\kmg place in a population of 50 individuals, which ini-
Go practice should easily beat the Random player. Also, | o
A ially are created by random. The alleles of the two bitstrin
serves as a test for a neural player that possibly is able t(t:%romosomes representing the hidden neurons and all con-
win against a modest computer player, but does not have a : fep 9

general concept of Go, i.e., it may lose against Random. nectionsz are set accprdingto_aprobability randomly chose
The Naive player mé\y b’e compared to a human knoWfo_r.each individual (biased coin). The random value; for the
: X . nitial real number chromosome are drawn from the interval
ing the rules of Go, and having played some games is f =010 1
miliar with basic concepts. It is able to save and captur 'I;h7e .mz;lximal GMLP network consists of 50 input, 20
stones, and knows when stones are definitely lost. We%k d d 26 outout ding t i
stones, i.e., stones in danger of being captured, are save'g en, an output neurons corresponcing to a maxi

by connecting them to a larger group, so that a weak stonr%um of 3,010 connections. This transfers to a length of

becomes a member of a living group (or at least of one with € r_eal number chromqsome 8056 enpodmg the con-
more liberties). nection weights and6 bias values for hidden and output

JaGois a Go program written in Java by Fuming nel'JI'rr?gss.tructure of the recurrent ANN is composed of 25
Wang. JaGo is the best computer player we have used.. It . P .
input and 26 output neurons, which are fully connected (in-

knows standard Go playing techniques (saving and CapturI_uding self—-connections) resulting i 601 connections.

ing stones), and searches the board for 32 well—known C:Cﬁ]e board situation is encoded by a value for each intersec-
patterns and its symmetrical transformations. A few minofr. y

X ; tion (black = -1, empty = 0, white = 1), which is fed into the
program errors have been fixed, and time performance has . L
been increased in some parts by the authors Input layer via the neurons’ bias. As the number of neurons

iS not evolved, the genotype consists of two chromosomes,

In order to rate a Go player’s strength there are ranking bitstring chromosomes with a length 2601 encoding
systems for amateur and professional players. The amatetzHr

ranking system starts with the studekyy) ranks from 35 © connectipns, and a real numper chromosome of length
kyu up to 1 kyu (best). When an amateur becomes a mas?erG52 encoding the weights and.blases. .
(dar) player, she gets the rank of 1 dan (best is 7 dan). Pro- For both structures the mutation rates of the binary chro-
fessional ranks being above all amateur ranks are on a scalg>omes are set t%).' y\{herel IS th? chromosome Ier_lgth.
from 1 to 9 dan o—mutation with an initiab = 0.02 is used for the weight
GNU Go®is éfree Go program being able to play game%:hromosome. All neurons employ the sigmoidal activation
on 5x5 to 19x19 boards. We used GNU Go 3.2 to deter-un_lc_ﬂzn' laying quality of the (co)evolved ANNS is eval-
mine the strength of JaGo, and arrived at a rank of about playing q y o :
16 kyu. GNU Go's rating is slightly better than 10 kyu Onuated by their strength, which is computed by playing

theNo Name Go Servef (as of June 1, 2003), which cor- 2,000 games 1, 000 with each color) against each of the

responds to an advanced amateur player’'s capabilities Or:]%rlee computer players Random, Naive, and JaGo (Sec-

19x19 board. n3).
Recently, Go on a %5 board has been solved [13].
Black wins with a score of 25 points (no komi), when play

ing the optimal opening move C3 (board center). Black alsm this section we describe experiments in which the ANNs

wins starting play with C2, C4, B3, and D3 (by a score of 3have been evolved by playing against each of the dedicated

no komi), however, with a komi of 5.5 these games are lostomputer players Random, Naive, and JaGo. Each experi-
GNU Go optimally opens a game (C3) with the blackment has been repeated times. The fitness of an ANN is

stones on a &5 board, and passes correctly in reaction tevaluated by the win percentage after playing a number of

black C3 playing the white stones. However, it also passgmmes (with both colors) against the fixed opponent. The

after black B3, C2, C4, or D3, but with optimal play couldmaximal number of generations 35000, but evolution is

win with a score of2.5. As an evolved ANN only would halted, when a neural player wins all games against its op-

have to learn the correct opening move, GNU Go has n@bnent, as this ANN is of maximal fitness.

been utilized in evolution experiments, however, it defi-

nitely is an interesting evolution opponent on larger beard 4 2 1 Evolution versus Random

4.2 Evolution Experiments

During evolution each ANN has to play 64 games against
Random. Nearly all of them won more thad% of games

This section presents experiments (co)evolving neural Gigainst the Random player. The strongest reached a win

players employing feed—forward and recurrent ANNs, ~ ate 0f0.9545, the weakest a value 0£8820. The strate-
gies developed by the ANNs to defeat Random do not work

2http: // waw. cs. vu. nl / ~j brar kes/ j ago/ well against the Naive player. The best ANN achieved a
3t t p: // www. gnu. or g/ sof t war e/ gnugo/ win rate 0f0.2695, while the worst reached.0285. Not _
4t tp: //nngs. cosni c. or g/ surprisingly, the evolved ANNSs are not able to keep up with

4 Experiments




JaGo. Except for two ANNSs that reached a win rate around 3aGo Evoluton
0.08 all others played below.04. All of the ANNs reached ' ' '
a similar competence value in the range of 0.45 up to 0.50.
The low competence is due to stubborn attempts to placees
stones in the board center even though the intersection may
be occupied. 06
Only three evolved ANNSs open a game with the opti$
mal move C3 (Section 3). The ANNSs rather place their first
stones anywhere on the board, except the corners and thé*| i
middle of the edges (A3, C1, C5, and E3). This reflects the ||
obvious fact that Random is not able to capitalize on weak oz
opening moves.

Mean Fitness
Best Fitness -------
Mean Compglence ,,,,,,,,

0 ! ! ! !
0 500 1000 1500 2000 2500 3000

4.2.2 Evolution versus Naive Generation

In the next experiments Random is replaced by the strong'glrgure 1. Fitness and competence statistics of evolving

Naive player. Again, the fithess of each neural player is as-

prlﬁxyers against JaGo.

sessed in 64 games. The best ANNs (single best of each ru
evolved against Naive have a strength ranging fto#8 to
0.69. The ANN with lowest strength0(4815) achieved a and Naive, the neural players often exhibit a preference to
win rate 0f0.8205 against Naive being the fifth best win rateplace their stones onto key intersections regardless of the
of the evolved ANNs. The moderate strength results frongtate. The evolved ANNs have strength values ranging from
low win rates against Random (0.6030) and JaGo (0.0216)35 to 0.77. On average they defeat Random in 81%, Naive
indicating the ANN'’s specialization in defeating Naive.  in 25%, and JaGo in 68% of games played. These win rates
The evolved ANNs place their stones in the board censhow that in this setting evolution generates specialists p
ter, and try to keep them connected, which is the same bgyrming well against the single player they face during evo-
sic strategy the ANNs evolved against Random performelition, but fails to generalize. Specifically, one would ex-
However, the Naive nets are slightly more reactive to spgect that a net beating JaGo should easily beat the much
cific moves of its opponent. 25% of the best evolved ANNgyeaker Naive.
played the optimal opening move C3. Ten ANNs play Nine ANNs open the game optimally playing the first
around C3, while the remaining five ANNs play the edg&tone at the board center, and not a single neural playés star
of the board, which normally is a bad choice, but exploitg|ay at the edge. Remember that even though 25% of the
a weakness of Naive. It immediately tries to capture thifjajve nets opened at an edge intersection they beat Naive in
stone, which gives the net enough time to establish a goegost cases. This indicates that evolution has adapted to the

position in the center. stronger play of JaGo. The strength of the evolved networks
clearly corresponds to the opening move, as the nine nets
4.2.3 Evolution versus JaGo playing C3 have an average strength0a§748, the seven

The next challenger for evolution is JaGo, a fairly sophistine’tS playing B3 or D3.5276, and the the three remaining

; . laying B2, C4, and D4.4248.
cated player (Section 3), on average winngs and81% P o ; .
of the games against Naive, playing black and white, re- A main problem associated with the feed—forward struc-

spectively. As JaGo needs much more time than the weal}é‘fe and a simple board representation is that the informa-

players to consider its moves, but also exhibits less randoﬁjﬁ’n on neighborhood refations of intersections is not pro-

behavior, we reduced the number of games against each nvéfi-ed to the network. We could argue that most of evolution

work from 64 to 32 (in 19 runs, one run halted due to techi e IS spent to acquire knowledge, which is |n|t|§1IIy gvall
nical problems). able to a human seeing a Gq board for the very f|_rst time. A
In Figure 1 the development of the mean and best fitnesfé‘”y Zolnne_cted mptIJttI_ayetrhwnh reth;rlr_teni connectlontsé-se
and the mean competence of a population of an evolutionaﬁJ n t. ) gl\'/tis e\gcl)vu II<0nt et possl|_| ity to repr(fasen q arl
run employing JaGo as opponent is shown. structure with network structure. Here, we performed only

While a Naive population acquires a mean fitness of 0.%”0 runs, where each evolved recurrent net played 32 games

- . . L ainst JaGo.
within about 200 generations, in a JaGo population it take . .
about 1,000 generations to redtH leading to a mean fit- Compared 10 e_vo[utu_m of feed—forward ANNs (F'.g'.
ness of approx.0.55 in the last generation 3,000. FourYre 1) the population’s fitness increases faster, and within

evolution runs proliferated a network winning all 32 gameé"oqo generations a recurrent network wms.all 32 games
against Jago. against JaGo. The two star players play with a strength

The JaGo ANNSs connect their center stones quickly, & f 0.6927 and 0.6517. Though, these values are similar to

otherwise Jago would win easily. Additionally, they some.® best evolved feed—forward ANNS, the recurrent players

times play elsewheradnuk) sacrificing single stones in or- S€€M to have more general abilities, as the best recurrent ne

der to distract Jago. Similar to evolution versus RandorﬁChieves higher win rates against Naive (0.4940) and Ran-
om (0.9465). Interestingly, the number of connections is



very similar in both star networks (1,296 and 1,294 out opopulation stays at a level of 0.85, although, the ANNs had
maximally available 2,601). to compete against the culture of growing quantity and qual-
Though, both evolved ANNs open the game at the opty. The competence of 0.4 is considerably lower than in
timal C3, they adhere to different strategies. One attaclevolution against a computer player (0.5). This can be
enemy stones and defends its own stones, while the otragtributed to the networks’ missing ability to pass early in
tries to distract its opponent by playing the weak move ABhe end game, when few legal moves are left. As now two

with the second stone. such players meet each other, the competence even drops.
Most culture nets consist of nine to 15 hidden neu-
4.3 Coevolution Experiments rons. Rarely, two successive masters have the same num-

ber of hidden neurons pointing out that cultural coevolu-

Though, eyolution generated neurgl players.being able {®n enables diversity. The number of connections increase
defeat its single opponent faced during evolution, the abo‘élightly with improving culture, i.e., the ANNs become
experiments also demonstrated the known problem of PORlore complex

generahzaﬂon_of the evolved player, €.g.a network hgat_| In Figure 3 the graphical representation of the strength
JaGo lost against the much weaker Naive. In order to IMs5¢ each player in the culture is shown

prove the generalization capabilities we employed coevolu The strength increases steadily indicating that the caltur

tionary scenarios, where the networks never face a Go PrRNNS' Go playing abilities become more sophisticated.

gram representing human expertise, but only play againghe oldest net in the culture is able to win games against

qther coevolved networks. W € compare the two coevolys o, only, and expectedly, loses all games to Naive
tion approaches presented in Section 2.3, namely, cultur, d JaGo. Up to master 18 the strength rises above 0.35,

and elite coevolution. mainly because of improvements against Random. Subse-
quently, the strength increases due to wins against Naive
and JaGo, and continuing success against Random, which

In th|S experiment the ﬁxed Computer Opponent iS rep'acéacely demonstrates that the Culture does not |Ose the abil'
by the dynamically growing culture. The fitness of eachy to beat the weakest player. Beginning with master 58
ANN in the population is the overall win rate of gamesa" players exhibit a strength above 0.4. From masters 36 to
against each culture net. Usually, two networks always pl§8 @ disproportional rise in win rates against JaGo can be
the same game against each other, hence, in most cases glserved. Analysis of these culture nets showed that, when
games (with changing colors) are sufficient. The only explaying the black stones, the nets often force JaGo into a
ception are networks suggesting different moves for a boaktfP. where it makes a bad mistake.
situation (identical maxima), which then are selected ran- The opening moves of the 78 master nets are another in-
domly resulting in different games. In this case a series gticator for the potential of the culture. The oldest 29 maste
eight games is played. As no Go external knowledge is pré/ay various openings, but all others play the optimal move
vided to the system, in a single run the number of gener&3. Very weak openings (e.g., E4 by master 2, E2 by 3, pass
tions had been increased to 55,000, which resulted in rdy 4) have been discarded quickly beginning with master 5.
times of up to twenty days. All other parameters are identi- AN example game of the youngest master 77 (beating all
cal to the feed—forward setup described in Section 4.1.  Others) playing the black stones against JaGo is presemted i

In preliminary experiments we realized that evolutiorf-igure 4.
progress stagnated quickly due to saturated output neurons e first moves until 10 is a standard and correct open-
with the exact maximal value of 1.0. Increasing numbers dfg of both sides. After 10 the move both players should
saturated output neurons turn the neural player into a ran-
dom player, as moves are selected randomly out of those
with a value of 1.0. In evolutionary settings these players :
are weeded out, as they do not succeed against a fair player.
However, in the coevolutionary scenario the opponents are ,
also likely to exhibit pseudo-randomness leading to stagna
tion. Thus, we switched to singte-mutation, which seems
to be less prone to above saturation effects.

Figure 2 shows statistical details of a cultural coevolu
tion run.

Up to generation 10,000, 73 ANNSs entered the culture,
only five more nets were added, hereafter. The last cul- |
ture net entered in generation 41,936 having a strength of

4.3.1 Cultural Coevolution

Cultural Coevolution

v T T

Win'Rate
o
o

o
IS

Mean Fitness

0.4513. Note that the mean fithess seems to drop slightly, e —

. . . N N X Net has ban added to Cu\lur‘e *
however, with the culture growing dynamically, the evolved °% To000 20000 30000 20000 50000
networks may face different cultures, hence, only phases Generation

of evolution without culture changes (addition of a neur

player) can be compared exactly. The mean fitness of 3]1L ure 2: Mean and best fitness, competence, and culture

additions in a cultural coevolution run.



prefer is 15, but Net plays 11 to create eye space. JaGo
prepares an attack at 7 with 12, which results in death of
white’s main group, if black plays correctly. Net answers
with the weak move 13 reducing own territory. JaGo at-
tacks with 14, but Net does not save its stone 7, but attacks
(and kills) the white group with the text book move 15. The
moves up to 21 are all forced, and explain why 15 was the
key move. JaGo passes, and Net plays some superfluent and . .
territory decreasing stones (23-31) until its pass ends t egure 4: A coevolved ANN (playing the black stones) wins
game. Net controls a territory of eleven points and has caf)‘gaInSt JaGo (7 at 19, 15 at 21).

tured ten stones. JaGo is without territory, but has cagture

two stones and receives the komi of 5.5 yielding a score @fgainst the challenger. With all other parameters being-ide
13.5in favor of Net. tical to those in Section 4.3.1 we compared elite and cultura

It must be noted that above game is not the rule, as Nebevolution in a run of 3,000 generations with an elite size
playing black achieves only a win rate 6f1170 against of 1.

JaGo. Nevertheless, it shows that Net is able to win and to We defined the single elite network after the last gener-
play some fairly sophisticated Go moves. ation, and the youngest master of the culture, to be the re-
In Section 4.2.3 promising results of evolution of recursulting player of elite and cultural coevolution, respesy.

rent ANNs have been presented. Consequently, we also ggfainst our assumptions the elite net was replaced in every
up an experimental run with 10,000 generations using reingle generation, i.e., 3,000 networks have been calted in

current networks for cultural coevolution with, apart fromthe elite (similar observations have been made with larger
the network structure, parameter settings identical to thalite sizes), which may be an indicator for the occurrence of
feed—forward case. The mean fitness of the populatiafycles. The final culture consisted of 49 masters, where the
stayed above 0.8, despite the growing culture of increagoungest was added in generation 2,705. A detailed com-

ing strength. Master 10 already had a win rate above Ogrison of the strength of the two players is given in Table 1.
against Random. From then, all younger masters had win

rates above 0.2 against Naive, whereas using feed—forwgrd Win Rate
ANNSs the first to reach 0.15 was master 36. The rather loyw AFI\IN Strength | Competence] Random| Naive | JaGo
_Elite | 0.3625 0.4729 0.9230 | 0.1145 | 0.0500

per_formance qf the rgcurrent ANNSs versus JaGo can be X cutture | 04440 0.4052 0.9625 | 02245 | 01450
plained by their opening moves.

The youngest 21 masters open a game by placing a stofgnle 1: Strengths of neural players generated by elite and
at C2 instead of the optimal C3, which makes JaGo hard qltural coevolution.
beat. However, in the youngest five masters the intention
for opening at C3 steadily increases, which makes it likely Consistently, the stronger culture net defeats each com-

that a longer run would produce the optimal opening. puter player more often than the elite network. This picture
did change a bit with increasing elite sizes. In an elite of
4.3.2 Elite Coevolution 16 masters after 3,000 generations three of them exhibited

a strength above 40% (0.4012, 0.4403, and 0.4317), how-

In elite coevolution a fixed number of master networksy ey the strength of all masters in the culture added after
builds the elite, in which a network from the evolving popu-

. . ) generation 500 was above 40%, too.
lation replaces a master, if the elite network looses allemm

5 Tournament of Neural Players

Culture Strength

! L, S Finally, we compare the best networks generated in the var-
NN " Competence ------- . . . .
o i Rate aganst Random ious (co)evolution experiments by performing a tournament
osf in Rate sgeinst jago === among them. Each competitor had to play against each

other with both, the white, and the black stones.

Four evolved ANNs and six coevolved ANNs entered
the contest: The player of greatest strength evolved agains
RandomR, against NaiveV, against JaGoJ), and the re-
current net evolved against JaGh). The coevolved ANNs
are the youngest masters of the three culture rafs €1,

(C5), of the culture run using recurrent networks,§, the
AT . last elite net in the elite of size Ef) and the net of greatest
T n = - = strength in the last elite of size 167(;). The number of
ANN Number wins of each player is displayed in Table 2.

Interestingly, the two players evolved against JaGo won
Figure 3: Strength of the master players ordered chronologhe fewest games, as these nets learned to pass at the right

ically (number O is oldest of culture). time, but they are not prepared for players continuing play

Strength
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