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Abstract- We present experiments investigating the use
of multi–chromosomal representations in evolutionary
algorithms. Specifically, the conventional representation
of parameters on a single chromosome is compared to
a genotype encoding with multiple chromosomes on a
set of test functions. In this context we present chromo-
some shuffling, a genetic operator recombining complete
chromosomes based on biological evidence. The hypoth-
esis that the multi–chromosomal representation amelio-
rates the transmission of good sub–solutions to the pop-
ulation is tested on functions of varying degree of com-
plexity.

1 Introduction

In this paper we investigate the potential benefits of multi–
chromosomal representations for genotypes processed by
an Evolutionary Algorithm (EA) (Fogel, 1995; Schwefel,
1995). With the growing complexity of EA applications the
search spaces sampled by the solutions encoded in a geno-
type become increasingly large. A human measure to coun-
teract the problem of growing complexity is the strategy of
Divide–and–Conquer, which arguably already plays an im-
portant role in EAs, as promoted by the Building Block Hy-
pothesis (BBH) (Goldberg, 1989). However, with increas-
ing complexity the building blocks identified by the BBH
may be too small, calling for an additional layer of building
blocks encoding complete sub–solutions of a problem. We
could argue that nature has evolved such a layer by pack-
ing genes (small building blocks) into much larger chro-
mosomes (big building blocks). Evidently, this is a gross
oversimplification as it is known that cooperating wild–type
genes can be found on different chromosomes in nature
(Lodish et al., 1995).

The biological motivation for the use of multiple chro-
mosomes comes from Meiosis, a complicated cell division
process involving sexual reproduction. A maternal and a
paternal set of chromosomes (humans have 23 arranged in
Diploid Sets, i.e., each chromosome occurs in two homol-
ogous variants) is combined into one cell. Homologous
chromosomes of father and mother align in a phase called
Synapsis, and parts of the genetic code can be exchanged
by crossing over at certain sites. Usually, 1 to 8 crossover
points can be identified on one chromosome (Lodish et al.,
1995). This process is the model for the recombination op-
erator in EAs; however, a very interesting step occurs af-
ter crossover. The two recombined chromosomes (actually,

four, because of diploidy) separate randomly to different ar-
eas of the cell. Thus, there is an additional shuffling of ge-
netic material at the level of chromosomes. In humans, this
process allows for
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different chromosome

combinations.
In the realm of artificial evolution we term this process

Chromosome Shuffling and model it simply by exchanging
the chromosomes of the two parents with a certain probabil-
ity. As is the case in nature, only homologous chromosomes
(describing the same variables of the solution with identical
representation) are shuffled, which allows the co–existence
of different chromosomes within an individual. E.g., an
artificial neural network could be encoded by a bit chro-
mosome (connections between neurons), an integer chro-
mosome (neuron parameters, e.g., type of activation func-
tion), and a real chromosome (connection weights). How-
ever, in this work we are concerned with multiple chromo-
somes having identical structure (real values encoded as bit-
strings).

From above statements potential benefits of multi-
chromosomal representations can be identified. First, a
complex problem can be decomposed into sub–problems
being encoded in corresponding chromosomes with specific
representations. Complete solutions of a sub–problem can
be exchanged by means of chromosome shuffling without
the disruptive effects of crossover. Second, each chromo-
some can be encoded using a representation adapted to the
specific sub–problem. Third, chromosome shuffling could
induce improved robustness of solutions, as a “specialist”
chromosome that contributes to good solutions in a few in-
dividuals only will be quickly weeded out by evolution. A
more general solution of the sub–problem being successful
in a great variety of individuals will have increased chances
of survival.

1.1 Related Work

Pierrot and Hinterding (1997) presented an investigation of
the use of multi–chromosomes to solve an allocation prob-
lem by means of an EA. 500 goods are to be produced on
three machines, where each machine has specific fixed and
variable costs. The fixed cost is incurred only, if the ma-
chine is utilized for the production of goods. The variable
costs are defined per good produced on a specific machine.
The main idea is to specify the usage of machines on one
chromosome, while the variables on the second chromo-
some encode the number of goods to be produced on the
corresponding machine. It has been found that a multi–



chromosomal representation has the potential to improve
solutions, but it should be noted that no attempt has been
made to adjust mutation and crossover rates in the experi-
ments with single and multiple chromosomes. As a conse-
quence, the different mutation and crossover rates have been
identified as main source of the improvements of the solu-
tion encoded on multiple chromosomes (Pierrot and Hinter-
ding, 1997).

Ronald and colleagues (1997) performed experiments
with differently encoded chromosomes in a genotype
(Mixed Encoding). The authors modified the Tavelling Sales
Person (TSP) problem by a number of modes of trans-
port with different costs available in each city. Change of
the transport mode is associated with a penalty (additional
cost). While the tour of cities is encoded by a conven-
tional permutation chromosome, the transport modes are de-
scribed by an integer chromosome. The best tour found in
the modified TSP problem differed from the best solution
for the unmodified problem, but unfortunately, in (Ronald
et al., 1997) no comparisons were made to assess the quality
of the solution generated by the multi–chromosomal repre-
sentation.

An important development in EAs is the evolution of the
genetic representation (Wu, 1996; Mayer, 1998). Clearly,
mechanisms evolving the location and linkage of building
blocks (Linkage Learning) (Kargupta and Park, 2001) could
be adapted to additionally evolve the number of chromo-
somes. However, in this work we a priori define the num-
ber of chromsomes and the genetic encoding on the spe-
cific chromosomes, the latter being common practice em-
ploying single chromosome genotypes. Nevertheless, chro-
mosome evolution including the location of genes on the
chromsomes is an interesting area of research, especially,
when considering the non–linkage of cooperating genes in
nature as referred to above.

2 Chromosome Shuffling

If we want to model the biological multi–chromosomal re-
combination process in an EA, the algorithm has to be en-
riched by an additional genetic operator, which we would
like to call Chromosome Shuffling. The details of the re-
combination of multi–chromosomal genotypes based on
crossover and shuffling are sketched in Figure 1.
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Figure 1: Recombination of two parents with three chromo-
somes involving 2-point crossover and chromosome shuf-
fling.

In this example the genotype of each of the two par-
ents is composed of three chromosomes. The conventional
crossover operation (2–point crossover in Figure 1) can be
used with the restriction that it operates only on single chro-
mosomes. As usual the occurrence of crossover is governed
by the crossover probability !#" . The shuffling of chromo-
somes is simply achieved by exchanging homologous chro-
mosomes of the parents. For this process we introduce the
Shuffle Rate (or shuffling probability) !#$ with which each
parental chromosome pair is exchanged. In Figure 1 chro-
mosome % � is directly passed from the parents to the off-
spring, % � undergoes crossover only, and %'& experiences
both, crossover and shuffling. Note that chromosome shuf-
fling is analogous to Uniform Crossover exchanging homol-
ogous genes (or bases) with a certain probability. Occur-
ring on different levels of genetic representation chromo-
some shuffling preserves meaningful sub–solutions, while
uniform crossover is not aware of building blocks it may
exchange (or destroy).

In order to compare multi–chromosomal representations
with the standard single chromosome encoding we have to
consider that a unique crossover rate for both representa-
tions results in different numbers of crossover operations
(when employing ( –point crossover). In an effort to adjust
the crossover rate to different representations we calculate
the probability !*),+.- that an individual is not altered by re-
combination (crossover and shuffling), i.e., it “survives” the
recombination process. In the most general case of multi-
ple chromosomes with shuffling and crossover the survival
probability is

!*/10325476 ! "$98;: �=< ! $?> "3@ : �A< !*" > "CB (1)

where ! $ is the shuffle rate, !D" is the crossover rate, andE is the number of chromosomes. The first term takes into
account the probabilities of shuffling exchanging all or no
chromosomes, while the second term describes the prob-
ability of crossover not to occur. When comparing two
genotypes with a different number of chromosomes, the ad-
justed parameters are derived by equaling ! /1032 (Equation
1). When fixing E and ! " for both representations, !D$ may
take on illegal values, hence, in this and similar cases ! " has
to be set to different values for the genotypes to be com-
pared.

3 Experimental Setup

For an empirical evaluation of the influence of multi–
chromosomal representations on the success of artificial
evolution we utilize a set of well–known test functions.
The selection of the specific functions has been guided
by hypotheses on the benefits (or drawbacks) of utilizing
multi–chromosomal representations. The number of chro-
mosomes (always encoded as bitstrings) is commanded by
the number of parameters of the respective function. We
compare the multi–chromosomal encoding of solutions to
the optimization problems with the standard single chromo-
some representation by measuring the time (number of gen-
erations) to reach the optimum.



3.1 The Royal Road Function ( �9-#- )

The Royal Road functions ( � -#- ) have been designed to
study building block interactions in a Genetic Algorithm
(GA). These functions are characterized as having a pre-
defined optimal solution, pre-defined building blocks, and a
hierarchical building block structure (Mitchell et al., 1992).
In other words � -#- have been tailored to the expected needs
of a GA, where the short basic (lowest level) building blocks
should be easy to discover and could be quickly recombined
to higher level building blocks (Table 1).��� = 11111111********************************************************; � � = 8��� = ********11111111************************************************; � � = 8��� = ****************11111111****************************************; � � = 8�	� = ************************11111111********************************; � � = 8��
 = ********************************11111111************************; � 
 = 8��� = ****************************************11111111****************; � � = 8�� = ************************************************11111111********; � � = 8��� = ********************************************************11111111; � � = 8��� = 1111111111111111************************************************; � � = 16���	� = ****************1111111111111111********************************; � �	� = 16���� = ********************************1111111111111111****************; � �� = 16� �	� = ************************************************1111111111111111; � �	� = 16� �	� = 11111111111111111111111111111111********************************; � �	� = 32� ��� = ********************************11111111111111111111111111111111; � ��� = 32� �	
 = 1111111111111111111111111111111111111111111111111111111111111111; � �	
 = 64

Table 1: A Royal Road Function (from (Mitchell et al.,
1992)).

The Royal Road fitness function is given by:

� -#- :	� > 4 �
$���� E $�� $ :	� >��*$ :�� > 4�� �

� if � instance of �
otherwise,

(2)
where � is the encoded parameter value, and E $ is a value

assigned to the schema � (here E $ = � �"!$#%� : � > ). With above
fitness function and a chromosome length of 64 the optimal� 4 �'&'( .

If � -#- are tailor–made for a GA with a single chro-
mosome genotype, they should be even more amenable to
a multi–chromosomal representation, where each building
block � is encoded on a chromosome (yielding eight chro-
mosomes for above function (Table 1)). Specifically, chro-
mosome shuffling should quickly spread the building blocks
in the population once they are discovered.

3.2 The Rosenbrock Function ( � � )
Rosenbrock’s function (Digalakis and Margaritis, 2002),
(Whitley et al., 1995) is a unimodal function with two vari-
ables given by

� � 4 � ��� :	� � ) < � � > � 8 : �=< � ) > � (3)

It has a very narrow ridge, whose tip is sharply pro-
nounced running around a parabola. The parameter values
are limited to the interval

< �
	 ��� �+* �-, * � 	 � � �
. The func-

tion has its minimal value � � 4 � 	 � at �., 4 ��	 �
.

Here, we expect the nonlinear interaction of the two vari-
ables not to favor the multi–chromosomal representation, as
shuffling of a single variable (chromosome) contributing to
a good solution in an individual does not necessarily im-
prove another solution.

3.3 The Schwefel Function ( �0/ )
Schwefel’s function (Gordon and Whitley, 1993; Whitley
et al., 1995) (labeled � � in (Digalakis and Margaritis, 2002)
is a multimodal function with a large number of local min-
ima given by

�0/ 4 ���$1 8
)32� ,54 ) : < � ,'687:9 :<; = � , = >3> B 1 4 � ��� 	 > � ��?@( � 	

(4)
A peculiarity of �A/ is the large distance of the second–

best to the global minimum making it hard for many algo-
rithms once going into the wrong direction. The value

1
has

to be ore–adapted to the numerical resolution enabled by
the encoding. In our experiments

1 4 � ��� 	 > � �$?"( � , the ten
variables are limited to the interval

<B& � �C* � , *D&
���
. En-

coding each variable with 10 bases (bits) the optimal value�E/54 �
	 � at � , 4 � � � .
Though, � / is a complicated function, there are no

nonlinear interactions between any two variables. As a
consequence, minimization of each variable contributes to
improvement of the fitness function, which makes � / a
promising candidate for chromosome shuffling to increase
the EA’s convergence rate.

3.4 The Goldstein–Price Function ( �AFHG )

The Goldstein–Price function (Desai and Patil, 1996) is a
highly nonlinear function of two variables as defined by

IKJMLON P�Q-RSP5TVUWRCT'XYRZQ8[ X P�Q<\^]OQ3_`TVUWRba�T X U ]OQ3_`T'XcROd�TVUeT'XYROa�T XX [	["fPga`hERZPgi�TVUY]+a�T'X�[ X P�Q<jA]+a`i�TVU.RZQ<i�T X U RO_kj�T'X0]la`d�TVU3T'XYROikm�T XX [	[
(5)

The parameter values are limited to the interval
< � 	 �n*� , * �
	 �

. the function’s minimal value �AFHG 4 & 	 � at � ) 4�
	 �
and � � 4 < � 	 �

.
We included � FHG under the assumption that the strong

nonlinear interactions will even make matters worse for
the multi–chromosomal representation, as the chances that
shuffling can successfully spread single variables should be
lower than with � � .
3.5 EA Parameters

Each variable of the functions � � , � / , and � FHG is en-
coded using a chromosome length o 4 ���

. The mutation
rates have been either taken from the literature, or have
been determined by a small number of pre–experiments
( � -#-qp !Wr 4 �
	 ���$& (Mitchell et al., 1992), � � p?!.r 4 � 	 � 4�" s , �0/"p !.r 4 �
	 � & 4 �" s , and �0FEGtp !.r 4 �
	 � 4vu""s ).

Population size = 128 (400 with �A/ ), Crossover = 2–
point, Crossover rate = adjusted, Shuffle rate = adjusted, Se-
lection method = Binary tournament without replacement,
Generation gap = 1.0.

The evolutionary process has been stopped, when we
found the optimal solution for � -#- , or came within a dis-
tance of 0.001 to the optimum for the other functions. In
case of � / we halted evolution after a maximum of 2000
generations.



In the experiments (Section 4) we investigate the follow-
ing variants of representation and operators: single chro-
mosome with crossover � , multiple chromosomes with
crossover ��� , multiple chromosomes with shuffling � � ,
and multiple chromosomes with crossover and shuffling
��� � .

The crossover and shuffle rates for multi–chromosomal
representations have been adjusted based on the survival
probability ! /1032 (Equation 1). As often the adjusted
crossover and shuffle rates are rather small we ran some
more experiments a with standard crossover and shuffle
rates, the latter also set to a biologically plausible rate of!*$,4 � 	 & .

Each experiment is repeated 200 times using a different
random seed for each run generating the start population
with equal probabilities for the alleles 0 and 1.

4 Experimental Results

Table 2 shows the number of generations to find the opti-
mum for � -#- comparing single and multiple chrosomome
representations.

Genotype (!�� , ! � ) Mean StdDev Median
� : �
	 ? > 199.63 127.34 176

��� : � 	 � & >$? B � 	 � > 326.16 151.30 304
� � ) : �
	 � B �
	 � & >V? > 311.19 180.76 280
� � � ) : �
	 �$? B � 	 �V?@& > 235.23 144.55 205

� � � : � 	 � B �
	 & > 285.01 204.31 227
��� � � : � 	 ? B � 	 & > 115.20 65.06 97

Table 2: Statistical parameters on the number of generations
to find the optimum for � -#- (averaged on 200 runs).

It can be seen that the best result is achieved by the single
chromosome representation � , when compared to the ad-
justed multi–chromosomal representations. Clearly, recom-
bination relying on crossover or shuffling only is not capa-
ble of improving the result of the single chromosome geno-
type. The local crossover operator certainly helps to find
building blocks, but they cannot be transmitted efficiently to
the population. On the other hand shuffling on its own could
spread building blocks quickly, but mutation without being
assisted by crossover needs more time to discover building
blocks. The latter is supported by the second block of (un-
adjusted) experiments, where � � � despite a much larger
shuffle rate cannot beat ��� � ) utilizing crossover and shuf-
fling, however, at probably too small rates. “Standard” val-
ues for crossover and shuffling improve the result consid-
erably, which could be expected for �9-#- . Note also that
all results in Table 2 improve the best mean value of 590
generations in (Mitchell et al., 1992). As we could identify
only two differences in the algorithms (1–point crossover
and proportional selection with sigma scaling in (Mitchell
et al., 1992)), we believe that binary tournament selection
exerting less selection pressure is the main source of im-
provment.

The results for � � are presented in Table 3.

Genotype (! � , !-� ) Mean StdDev Median
�
) : � 	 & > 104.11 102.43 72

��� : � 	 �'> �'> B � 	 � > 109.97 106.78 76
� � : �
	 � B �
	 & > 125.82 148.39 78

��� � ) : � 	 � B �
	 � ��& > 105.40 105.13 73

��� � � : �
	 & B � 	 & > 121.83 116.50 86
� � : � 	 ? > 122.75 106.82 97
� � : � 	 & > 101.05 85.31 70

Table 3: Statistical parameters on the number of generations
to find the optimum for � � (averaged on 200 runs).

As expected the multi–chromosomal representation does
not improve the results for this function, however, the ad-
justed versions generate results very similar to �

)
. An ex-

ception is � � supporting the hypothesis that pure shuffling
of parameters is inefficient in the presence of Epistasis. In-
trinsically, crossover applied to a single chromosome rep-
resentation has shuffling capabilities, however, this is not
true for the special case of � � ( two variables) and 2–point
crossover. Thus, we speculated that 1–point crossover (with
shuffling capability over two variables) used with � � could
improve performance, but the small difference is likely to
be of statistical nature.

The results for � / are presented in Table 4.

Genotype (! � , !-� ) Mean StdDev Median
�
) : � 	 ? > 278.33 552.64 93

��� : � 	 � � & � B � 	 � > 1652.41 716.27 2000
� � ) : �
	 � B �
	 ��� & � > 527.34 759.60 110
��� � ) : �
	 ��& B �
	 �'(�($?'? > 808.27 898.85 124

� � � : � 	 � B �
	 & > 485.72 744.66 106
� � � � : � 	 ? B � 	 & > 288.92 571.85 98

� � � � : �
	 ��& B �
	 ��� & � > 329.57 607.27 96

Table 4: Statistical parameters on the number of generations
to find the optimum for �0/ (averaged on 200 runs).

Again, the single chromosome representation leads the
field, but some interesting trends can be observed. The ad-
justed � � ) is performing much better than � � , which sup-
ports our initial hypothesis that �A/ is amenable to shuffling
due to the missing interactions between variables. The ad-
justed values for � � � � might be too small, as suggested
by the much better results for � � � � with only a slightly
increased shuffle rate. The multi–chromosomal representa-
tion with “standard values” comes very close to �

)
.

The results for � FEG are shown in Table 5.
So far the results have been roughly in accordance with

our hypotheses, and when looking at the results for � � (Ta-
ble 3, we would not expect that the even more complex� FEG can be optimized efficiently by multi–chromosomal
representations. However, the results favor multiple chro-
mosomes in this case exhibiting an interesting trend. The
best results are achieved by using crossover or shuffling ex-
clusively. Also, our assumption that 1–point crossover hav-
ing shuffling capability in the case of two variables (which
is not true for 2–point crossover) may improve performance



Genotype (! � , !W� ) Mean StdDev Median
�
) : �
	 & > 5740.64 5897.06 3958

���
) : � 	 �'> �@> B � 	 � > 4844.89 4752.97 3628
� � : �
	 � B � 	 & > 4846.08 4724.53 3408

� � � ) : �
	 � B �
	 � �'& > 5512.07 5616.94 3530

� � � � : �
	 & B �
	 & > 5336.40 5883.66 3626
� � : �
	 ? > 5316.91 5348.06 3436
� � : �
	 & > 5092.61 4510.33 3729

��� � : �
	 & B � 	 � > 4677.84 4187.79 3366

Table 5: Statistical parameters on the number of generations
to find the optimum for � FEG (averaged on 200 runs).

is confirmed by the results for � � (1–point crossover). At
the moment we are working on collecting more data of in-
dividual �0FEG runs so as to find possible explanations for
this behavior.

5 Summary

We have presented experiments with evolutionary optimiza-
tion of test functions investigating the possible benefits of
multi–chromosomal representations in evolutionary algo-
rithms. For recombination of genotypes with multiple chro-
mosomes the additional genetic operator chromosome shuf-
fling being based on biological evidence has been intro-
duced. It has been found that multi–chromosomal repre-
sentations expectedly perform well when facing problems,
where solutions of a problem can be linearly decomposed
into partial solutions. Unfortunately, this is not the type of
problems that occur in the real world, however, we could
also report on encouraging results with a highly nonlinear
test function, where the multi–chromosomal representation
showed to be superior to standard genotypes with a single
chromosome, when comparing the time (number of gener-
ations) spent to find the optimum. First results of ongoing
work utilizing multi–chromosomal representations for the
evolution of fuzzy controllers indicate that the generaliza-
tion capabilities of the evolved controllers can be improved,
a property, which can be directly linked to the survival of
“robust” chromosomes. In extension to linkage learning
methods further work will certainly include attempts to find
mechanisms allowing the evolution of the number of chro-
mosomes, the type of encoding, and the location of param-
eters encoded on each chromosome.
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