
Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Secure Computing Environments
Memory, Compiler and Virtual Machines

Christian Barthel,
Christian Kawalar,

Daniel Schlager

30.01.2015

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

1 Introduction

2 Memory Protection
Problem
OpenBSD’s ASLR and WˆX

3 Compiler Options
Stack Smashing Protection

4 Virtual Machines
Overview of Virtual Machines

Security in Virtual machines

Process Virtual Machines
Dalvik

A Closer Look at Android and their Security
Platform Security Architecture

5 Conclusion

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

A word of caution...

Disclaimer

It is not our intent to show you how to break into computer
systems!

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

A word of caution...

Disclaimer

It is not our intent to show you how to break into computer
systems!

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

A word of caution...

Disclaimer

It is not our intent to show you how to break into computer
systems!

But!

“While you do not know life, how can you know about death?”

—Confucius

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

A word of caution...

But!

“While you do not know life, how can you know about death?”

—Confucius

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

1 Introduction

2 Memory Protection
Problem
OpenBSD’s ASLR and WˆX

3 Compiler Options
Stack Smashing Protection

4 Virtual Machines
Overview of Virtual Machines

Security in Virtual machines

Process Virtual Machines
Dalvik

A Closer Look at Android and their Security
Platform Security Architecture

5 Conclusion
Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Layout revisited

Stack

Heap

Data

Text

MAX

0

Each program has a virtual address space.

The TEXT section contains assembly
commands (eg ADD, SUB, ...)

The DATA section contains global
variables

The HEAP is the place where dynamic
allocated data is stored. (malloc)

The HEAP is also used to map libraries,
files or devices into the address space

The stack is the place for function calls

Almost everything is predictable

Most of the memory is write- and
executable

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...

an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

Stack / Process Address Space:

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

Stack / Process Address Space:

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

Stack / Process Address Space:

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

i n t d a n g e r o u s (i n t ∗a) {
c h a r i n p u t B u f f e r [1 0 0] ;
. . .
g e t s (i n p u t B u f f e r) ;
. . .

}

Stack / Process Address Space:

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

i n t d a n g e r o u s (i n t ∗a) {
c h a r i n p u t B u f f e r [1 0 0] ;
. . .
g e t s (i n p u t B u f f e r) ;
. . .

}

Stack / Process Address Space:

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

i n t d a n g e r o u s (i n t ∗a) {
c h a r i n p u t B u f f e r [1 0 0] ;
. . .
g e t s (i n p u t B u f f e r) ;
. . .

}

Stack / Process Address Space:
high addresses

low addresses

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

i n t d a n g e r o u s (i n t ∗a) {
c h a r i n p u t B u f f e r [1 0 0] ;
. . .
g e t s (i n p u t B u f f e r) ;
. . .

}

Stack / Process Address Space:
high addresses

low addresses

call to dangerous

Return Address

Local Variables...

inputBuffer[100]

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Where’s the problem?

Always the same old story...
an attacker finds a bug
which damages memory
(Bufferoverflow, ...)

he analyzes the side effects,
maybe to inject code or gain
other advantages

Various attacks possible:
Heap, Stack, Libraries, ..

i n t d a n g e r o u s (i n t ∗a) {
c h a r i n p u t B u f f e r [1 0 0] ;
. . .
g e t s (i n p u t B u f f e r) ;
. . .

}

Stack / Process Address Space:
high addresses

low addresses

call to dangerous

Return Address

inputBuffer[100]

string growth

injected code

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Protection

Some memory protection mechanisms within the realm of the
C/C++ runtime environment are

WˆX

Address space layout randomization (ASLR)

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Protection

Some memory protection mechanisms within the realm of the
C/C++ runtime environment are

WˆX

Address space layout randomization (ASLR)

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Memory Protection

Some memory protection mechanisms within the realm of the
C/C++ runtime environment are

WˆX

Address space layout randomization (ASLR)

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

null page null page

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

null page

data, RW-

bss, RW-

text, R-X

null page

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

null page

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

null page

data, RW-

bss, RW-

text, R-X

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with static binaries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

stack, RW-

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

Statically compiled binaries have
a simple memory layout

The stack has a signal
trampoline, called sigtramp,
which has to be executable

Separate sigtramp from the
stack, give it its own page

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with dynamic libraries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

null page

shared libraries are mapped into
the address space of a process

They include additional GOT
and PLT tables which must be
written during execution

GOT is the shared lib global
offset table

PLT is the shared lib procedure
linkage table

Since the PLT needs to be
written and executed, an
additional conversion is
necessary.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with dynamic libraries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

null page

libc, RWX

ld.so, RWX

shared libraries are mapped into
the address space of a process

They include additional GOT
and PLT tables which must be
written during execution

GOT is the shared lib global
offset table

PLT is the shared lib procedure
linkage table

Since the PLT needs to be
written and executed, an
additional conversion is
necessary.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with dynamic libraries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

stack, RW-

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

libc, RWX

ld.so, RWX

shared libraries are mapped into
the address space of a process

They include additional GOT
and PLT tables which must be
written during execution

GOT is the shared lib global
offset table

PLT is the shared lib procedure
linkage table

Since the PLT needs to be
written and executed, an
additional conversion is
necessary.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with dynamic libraries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

stack, RW-

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

libc, RWX

ld.so, RWX

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

shared libraries are mapped into
the address space of a process

They include additional GOT
and PLT tables which must be
written during execution

GOT is the shared lib global
offset table

PLT is the shared lib procedure
linkage table

Since the PLT needs to be
written and executed, an
additional conversion is
necessary.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with dynamic libraries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

stack, RW-

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

libc, RWX

ld.so, RWX

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

shared libraries are mapped into
the address space of a process

They include additional GOT
and PLT tables which must be
written during execution

GOT is the shared lib global
offset table

PLT is the shared lib procedure
linkage table

Since the PLT needs to be
written and executed, an
additional conversion is
necessary.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

WˆX with dynamic libraries

stack, RWX

sigtramp, RWX

null page

data, RW-

bss, RW-

text, R-X

stack, RW-

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

libc, RWX

ld.so, RWX

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

shared libraries are mapped into
the address space of a process

They include additional GOT
and PLT tables which must be
written during execution

GOT is the shared lib global
offset table

PLT is the shared lib procedure
linkage table

Since the PLT needs to be
written and executed, an
additional conversion is
necessary.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

ASLR - Randomized Memory

stack, R-X

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

ASLR - Randomized Memory

stack, R-X

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

stack, R-X

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

ASLR - Randomized Memory

stack, R-X

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

stack, R-X

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

stack, R-X

sigtramp, R-X

null page

data, RW-

bss, RW-

text, R-X

got, data, RW-

text, plt, R-X

got, data, RW-

text, plt, R-X

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

1 Introduction

2 Memory Protection
Problem
OpenBSD’s ASLR and WˆX

3 Compiler Options
Stack Smashing Protection

4 Virtual Machines
Overview of Virtual Machines

Security in Virtual machines

Process Virtual Machines
Dalvik

A Closer Look at Android and their Security
Platform Security Architecture

5 Conclusion
Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

What is a Stack Smashing Attack ?

Listing 1 : Vulnerable Function

v o i d v u l n e r a b l e F u n c t i o n (c h a r ∗ s t r i n g) {
c h a r b u f f e r [2 0 0] ;
//BAD!
//No s i z e check !
s t r c p y (b u f f e r , s t r i n g) ;

}

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

What is a Stack Smashing Attack ?

char buffer[200] RA params other Data

low address high address

Buffer goes from
low to high address

Return Address

The stack contains the buffer, the return address and the
parameters of the function.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

What is a Stack Smashing Attack ?

RA

low address high address

Buffer goes from
low to high address

???

buffer databuffer data other data

With injected code, data gets overwritten.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

To make use of a bufferoverflow, code (ie payload) can be injected.

The Payload consist of three parts:

Most CPUs have a NOP instruction (no operation): the
instruction does nothing but increasing the Instruction Pointer
by one.
We insert shellcode that, most of the time, opens a (root)
shell.
Finally we set the RA (Return Address) back to a NOP
instruction (guess the jump distance).

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

To make use of a bufferoverflow, code (ie payload) can be injected.

The Payload consist of three parts:

Most CPUs have a NOP instruction (no operation): the
instruction does nothing but increasing the Instruction Pointer
by one.
We insert shellcode that, most of the time, opens a (root)
shell.
Finally we set the RA (Return Address) back to a NOP
instruction (guess the jump distance).

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

To make use of a bufferoverflow, code (ie payload) can be injected.

The Payload consist of three parts:

Most CPUs have a NOP instruction (no operation): the
instruction does nothing but increasing the Instruction Pointer
by one.

We insert shellcode that, most of the time, opens a (root)
shell.
Finally we set the RA (Return Address) back to a NOP
instruction (guess the jump distance).

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

To make use of a bufferoverflow, code (ie payload) can be injected.

The Payload consist of three parts:

Most CPUs have a NOP instruction (no operation): the
instruction does nothing but increasing the Instruction Pointer
by one.
We insert shellcode that, most of the time, opens a (root)
shell.

Finally we set the RA (Return Address) back to a NOP
instruction (guess the jump distance).

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

To make use of a bufferoverflow, code (ie payload) can be injected.

The Payload consist of three parts:

Most CPUs have a NOP instruction (no operation): the
instruction does nothing but increasing the Instruction Pointer
by one.
We insert shellcode that, most of the time, opens a (root)
shell.
Finally we set the RA (Return Address) back to a NOP
instruction (guess the jump distance).

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

NOP shell code RA RA RA other data

IP Walk

Payload

Buffer grown over his boundaries

low address high address

The stack contains the NOP instructions, our payload and the
altered return address.

We insert a bunch of NOP instructions to increase the chance
of finding the right position.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Stack Overflow Attack

NOP shell code RA RA RA other data

IP Walk

Payload

Buffer grown over his boundaries

low address high address

The stack contains the NOP instructions, our payload and the
altered return address.

We insert a bunch of NOP instructions to increase the chance
of finding the right position.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

As we’ve already seen, the success of such attacks is more unlikely
with ASLR.

Now I will show you how to prevent such attacks with GCC and the
-fstack-protector flag.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

As we’ve already seen, the success of such attacks is more unlikely
with ASLR.

Now I will show you how to prevent such attacks with GCC and the
-fstack-protector flag.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

Normally our subroutine would look like this:

Initialization: The preparation of space on the stack for local
variables.
Subroutine body: The subroutine’s implemented algorithm.
Clean-up: Removing local variables from the stack.
Return: Jump back to the original address before the branch.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

Normally our subroutine would look like this:

Initialization: The preparation of space on the stack for local
variables.
Subroutine body: The subroutine’s implemented algorithm.
Clean-up: Removing local variables from the stack.
Return: Jump back to the original address before the branch.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

Subroutine code with SSP:

SSP’s prolog
Initialization: The preparation of space on the stack for local
variables.
Subroutine body: The subroutine’s implemented algorithm.
Clean-up: Removing local variables from the stack.
SSP’s epilog
Return: Jump back to the original address before the branch.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

low address high address

Return Address

buffer [200] CA RA params other data

canary

The canary got saved before the Return Address.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

The canary is a randomly generated number.

GCC adds code at compile time, the code generates a random
canary which will be checked after strcpy.

It’s almost impossible to guess the actual canary, so there is
no way to overwrite the canary in the payload with the right
value.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

The canary is a randomly generated number.

GCC adds code at compile time, the code generates a random
canary which will be checked after strcpy.

It’s almost impossible to guess the actual canary, so there is
no way to overwrite the canary in the payload with the right
value.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Prevent the attack with GCC

The canary is a randomly generated number.

GCC adds code at compile time, the code generates a random
canary which will be checked after strcpy.

It’s almost impossible to guess the actual canary, so there is
no way to overwrite the canary in the payload with the right
value.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Prevent the attack with GCC

Listing 4 : -fno-stack-protector

v u l n e r a b l e F u n c t i o n :
.LFB2 :
; Re se r ve Space on the s t a c k

l e a q −4352(% r sp) , %r sp
orq $0 , (%r sp)
l e a q 4128(% r sp) , %r sp

; Arguments from Re g i s t e r onto Stack
movq %rd i , −216(%rbp) ; 1 s t a rg from r d i to s t a c k
; Params f o r s t r c p y
movq −216(%rbp) , %rdx ; 1 s t a rg to rdx
l e a q −208(%rbp) , %rax ; 2nd arg to rax
; C a l l S t r cpy
movq %rdx , %r s i ; s r c add r e s s from rdx to r s i
movq %rax , %r d i ; d e s t add r e s s from rax to r d i
c a l l strcpy@PLT ; c a l l s t r c p y () @PLT

Listing 5 : -fstack-protector

v u l n e r a b l e F u n c t i o n :
l e a q −4352(% r sp) , %r sp ; Rese r ve space on s t a c k
orq $0 , (%r sp)
l e a q 4128(% r sp) , %r sp

; Args from r e g i s t e r onto s t a c k
movq %rd i , −216(%rbp) ; 1 s t a rg from r d i to s t a c k

; SSP pro log , put cana ry to
s t a c k

movq %f s : 4 0 , %rax ; cana ry from %f s : 40 to r a s
movq %rax , −8(%rbp) ; cana ry from rax to s t a c k
x o r l %eax , %eax ; s e t r ax to z e r o

; Params f o r s t r c p y
movq −216(%rbp) , %rdx ; 1 s t argument to rdx
l e a q −208(%rbp) , %rax ; 2nd argument to rax

; C a l l s t r c p y
movq %rdx , %r s i ; s r c add r e s from rdx to r s i
movq %rax , %r d i ; d e s t add r e s s from rax to r d i
c a l l strcpy@PLT ; c a l l s t r c p y ()

; SSP e p i l o g
movq −8(%rbp) , %rax ; cane r y from s t a ck to rax
xorq %f s : 4 0 , %rax ; o r i g i n a l cana ry XOR rax
j e .L2 ; no o v e r f l ow > xo r == 0 , jump
c a l l s t a c k c h k f a i l @PLT ; o v e r f l ow > xo r != 0 , k i l l

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

1 Introduction

2 Memory Protection
Problem
OpenBSD’s ASLR and WˆX

3 Compiler Options
Stack Smashing Protection

4 Virtual Machines
Overview of Virtual Machines

Security in Virtual machines

Process Virtual Machines
Dalvik

A Closer Look at Android and their Security
Platform Security Architecture

5 Conclusion
Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Overview of Virtual Machines

A virtual Machine (VM) is an emulation of a particular computer
system.

Classification of virtual machines can be based on the degree to
which they implement functionality of targeted real machines.

System Virtual Machines (also known as full virtualization VMs)

Process Virtual Machines

An example of Process Virtual Machines is Java virtual machine
(JVM), Microsoft Common Language Runtime (CLR) and Dalvik

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Overview of Virtual Machines

A virtual Machine (VM) is an emulation of a particular computer
system.

Classification of virtual machines can be based on the degree to
which they implement functionality of targeted real machines.

System Virtual Machines (also known as full virtualization VMs)

Process Virtual Machines

An example of Process Virtual Machines is Java virtual machine
(JVM), Microsoft Common Language Runtime (CLR) and Dalvik

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Overview of Virtual Machines

A virtual Machine (VM) is an emulation of a particular computer
system.

Classification of virtual machines can be based on the degree to
which they implement functionality of targeted real machines.

System Virtual Machines (also known as full virtualization VMs)

Process Virtual Machines

An example of Process Virtual Machines is Java virtual machine
(JVM), Microsoft Common Language Runtime (CLR) and Dalvik

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Overview of Virtual Machines

A virtual Machine (VM) is an emulation of a particular computer
system.

Classification of virtual machines can be based on the degree to
which they implement functionality of targeted real machines.

System Virtual Machines (also known as full virtualization VMs)

Process Virtual Machines

An example of Process Virtual Machines is Java virtual machine
(JVM), Microsoft Common Language Runtime (CLR) and Dalvik

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Overview of Virtual Machines

A virtual Machine (VM) is an emulation of a particular computer
system.

Classification of virtual machines can be based on the degree to
which they implement functionality of targeted real machines.

System Virtual Machines (also known as full virtualization VMs)

Process Virtual Machines

An example of Process Virtual Machines is Java virtual machine
(JVM), Microsoft Common Language Runtime (CLR) and Dalvik

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Overview of Virtual Machines

A virtual Machine (VM) is an emulation of a particular computer
system.

Classification of virtual machines can be based on the degree to
which they implement functionality of targeted real machines.

System Virtual Machines (also known as full virtualization VMs)

Process Virtual Machines

An example of Process Virtual Machines is Java virtual machine
(JVM), Microsoft Common Language Runtime (CLR) and Dalvik

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management
type safety
exception handling
garbage collection
security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management
type safety
exception handling
garbage collection
security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management

type safety
exception handling
garbage collection
security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management
type safety

exception handling
garbage collection
security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management
type safety
exception handling

garbage collection
security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management
type safety
exception handling
garbage collection

security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Security in Virtual machines

A virtual machine provides the following security features by default:

memory management
type safety
exception handling
garbage collection
security and thread management

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Source ... Dex File APK

Dex File

zip

install

Resources &
Native Code

Resources &

Native Code

Odex

File
ELF File

Dalvik Native Art Native

Libraries

dex & native codedexopt dex2oatquickened dex

Dalvik ART

package

install

Dalvik is the process virtual machine in Android.
Programs are commonly written in Java and compiled to bytecode.
Dalvik uses just-in-time (JIT) compilation
Android Runtime (ART) replaces the Dalvik Virtual Machine.
use of ahead-of-time (AOT) compilation (at installation)
ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Dalvik is the process virtual machine in Android.

Programs are commonly written in Java and compiled to bytecode.

Dalvik uses just-in-time (JIT) compilation

Android Runtime (ART) replaces the Dalvik Virtual Machine.

use of ahead-of-time (AOT) compilation (at installation)

ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Dalvik is the process virtual machine in Android.

Programs are commonly written in Java and compiled to bytecode.

Dalvik uses just-in-time (JIT) compilation

Android Runtime (ART) replaces the Dalvik Virtual Machine.

use of ahead-of-time (AOT) compilation (at installation)

ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Dalvik is the process virtual machine in Android.

Programs are commonly written in Java and compiled to bytecode.

Dalvik uses just-in-time (JIT) compilation

Android Runtime (ART) replaces the Dalvik Virtual Machine.

use of ahead-of-time (AOT) compilation (at installation)

ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Dalvik is the process virtual machine in Android.

Programs are commonly written in Java and compiled to bytecode.

Dalvik uses just-in-time (JIT) compilation

Android Runtime (ART) replaces the Dalvik Virtual Machine.

use of ahead-of-time (AOT) compilation (at installation)

ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Dalvik is the process virtual machine in Android.

Programs are commonly written in Java and compiled to bytecode.

Dalvik uses just-in-time (JIT) compilation

Android Runtime (ART) replaces the Dalvik Virtual Machine.

use of ahead-of-time (AOT) compilation (at installation)

ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Dalvik

Dalvik is the process virtual machine in Android.

Programs are commonly written in Java and compiled to bytecode.

Dalvik uses just-in-time (JIT) compilation

Android Runtime (ART) replaces the Dalvik Virtual Machine.

use of ahead-of-time (AOT) compilation (at installation)

ART uses the same input bytecode as Dalvik.

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model
Process isolation
Extensible mechanism for secure IPC
The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model
Process isolation
Extensible mechanism for secure IPC
The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model
Process isolation
Extensible mechanism for secure IPC
The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model

Process isolation
Extensible mechanism for secure IPC
The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model
Process isolation

Extensible mechanism for secure IPC
The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model
Process isolation
Extensible mechanism for secure IPC

The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

System and kernel security

The foundation of the Android platform is the Linux kernel.

The Linux kernel provides Android with several key security
features, including:

User-based permission model
Process isolation
Extensible mechanism for secure IPC
The ability to remove unnecessary and potentially insecure
parts of the kernel

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions

Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)

Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS

Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Application security

All applications run in an Application Sandbox. They can only
access a limited range of system resources.

Application-defined and user-granted permissions

Android Permission Model: Accessing Protected APIs

Camera funtions
Location data (GPS)
Bluetooth functions, Telephony functions, SMS/MMS
Network/data connections

Applications have to use APIs, they cannot access directly

Application signing

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

How to implement Security

Applications statically declare the permissions they require

Android system prompts the user for consent at the time the
application is installed

no mechanism for granting permissions dynamically (at run-time)

in AndroidManifest.xml, add one or more uses-permissions tags

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

How to implement Security

Applications statically declare the permissions they require

Android system prompts the user for consent at the time the
application is installed

no mechanism for granting permissions dynamically (at run-time)

in AndroidManifest.xml, add one or more uses-permissions tags

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

How to implement Security

Applications statically declare the permissions they require

Android system prompts the user for consent at the time the
application is installed

no mechanism for granting permissions dynamically (at run-time)

in AndroidManifest.xml, add one or more uses-permissions tags

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

How to implement Security

Applications statically declare the permissions they require

Android system prompts the user for consent at the time the
application is installed

no mechanism for granting permissions dynamically (at run-time)

in AndroidManifest.xml, add one or more uses-permissions tags

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

How to implement Security

Applications statically declare the permissions they require

Android system prompts the user for consent at the time the
application is installed

no mechanism for granting permissions dynamically (at run-time)

in AndroidManifest.xml, add one or more uses-permissions tags

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

How to implement Security

Listing 6 : AndroidManifest.xml

<p e rm i s s i o n s>
<p e rm i s s i o n name=” and ro i d . p e rm i s s i o n .CAMERA” >
<group g i d=”camera” />
</ p e rm i s s i o n>
<p e rm i s s i o n name=” and ro i d . p e rm i s s i o n .BLUETOOTH” >
<group g i d=” net bt ” />
</ p e rm i s s i o n>
</ p e rm i s s i o n s>

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Conclusion

Protecting computer systems from crackers is difficult

People have found ways to get around all those security
features we presented, especially in isolation

Nevertheless, it’s much harder to break into a computer
system with all those fancy security features

It’s difficult to find a good path between all those conflicting
goals: comfort, security, performance, clean and simple
implementation...

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Conclusion

Protecting computer systems from crackers is difficult

People have found ways to get around all those security
features we presented, especially in isolation

Nevertheless, it’s much harder to break into a computer
system with all those fancy security features

It’s difficult to find a good path between all those conflicting
goals: comfort, security, performance, clean and simple
implementation...

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Conclusion

Protecting computer systems from crackers is difficult

People have found ways to get around all those security
features we presented, especially in isolation

Nevertheless, it’s much harder to break into a computer
system with all those fancy security features

It’s difficult to find a good path between all those conflicting
goals: comfort, security, performance, clean and simple
implementation...

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

Introduction Memory Protection Compiler Options Virtual Machines Conclusion

Conclusion

Protecting computer systems from crackers is difficult

People have found ways to get around all those security
features we presented, especially in isolation

Nevertheless, it’s much harder to break into a computer
system with all those fancy security features

It’s difficult to find a good path between all those conflicting
goals: comfort, security, performance, clean and simple
implementation...

Christian Barthel, Christian Kawalar, Daniel Schlager Secure Computing Environments

	Introduction
	Memory Protection
	Problem
	OpenBSD's ASLR and W^X

	Compiler Options
	Stack Smashing Protection

	Virtual Machines
	Overview of Virtual Machines
	Process Virtual Machines
	A Closer Look at Android and their Security

	Conclusion

