
Brain Computer Interfaces

Marion Kurz Wilhelm Almer Florian Landolt

 $26.\ 01.\ 2006$

▶ < 문 ▶ < 문 ▶</p>

M. Kurz, W. Almer, F. Landolt BCI

Outline

Motivation and Milestones Biological and Technical Principles Implementations Summary References

Outline

- 1 Motivation and Milestones
- 2 Biological and Technical Principles
 - Biological Principles
 - Technical Principles
- Implementations
 - Cursor-Control
 - Device Control Driver
 - Communication
 - Training Synchronous acting BCI
 - Training Asynchronous acting BCI
 - Alternative Data Processing
 - Brain Browser

Summary

Summary

< ≣ >

Motivation and Milestones

- Locked in Syndrome: Severe motor disabilities.
- 17th 19th Century:

Jan Swammerdam (1664), Benjamin Franklin (1747), Luigi Galvani (1781), André Marie Ampere (1820), Michael Farraday (1831), James Clerk Maxwell (1864), Robert Bartholow (1881), Jaques Arsenne d'Arsonval (1896).

- Hans Berger (1929): Electroencephalogram (EEG), 2 major rhythms.
- Jacques Vidal (1970s): Brain Computer Interface Project. Government sponsored research in biocybernetics and human computer interaction.
- 2006: Contributions from different disciplines, standardization, clinical trial

- Locked in Syndrome: Severe motor disabilities.
- 17th 19th Century: Jan Swammerdam (1664), Benjamin Franklin (1747), Luigi Galvani (1781), André Marie Ampere (1820), Michael Farraday (1831), James Clerk Maxwell (1864), Robert Bartholow (1881), Jaques Arsenne d'Arsonval (1896).
- Hans Berger (1929): Electroencephalogram (EEG), 2 major rhythms.
- Jacques Vidal (1970s): Brain Computer Interface Project. Government sponsored research in biocybernetics and human computer interaction.
- 2006: Contributions from different disciplines, standardization, clinical trial

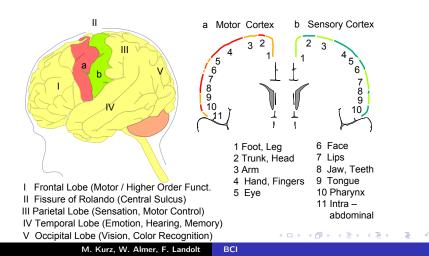
- Locked in Syndrome: Severe motor disabilities.
- 17th 19th Century: Jan Swammerdam (1664), Benjamin Franklin (1747), Luigi Galvani (1781), André Marie Ampere (1820), Michael Farraday (1831), James Clerk Maxwell (1864), Robert Bartholow (1881), Jaques Arsenne d'Arsonval (1896).
- Hans Berger (1929): Electroencephalogram (EEG), 2 major rhythms.
- Jacques Vidal (1970s): Brain Computer Interface Project. Government sponsored research in biocybernetics and human computer interaction.
- 2006: Contributions from different disciplines, standardization, clinical trial

- Locked in Syndrome: Severe motor disabilities.
- 17th 19th Century: Jan Swammerdam (1664), Benjamin Franklin (1747), Luigi Galvani (1781), André Marie Ampere (1820), Michael Farraday (1831), James Clerk Maxwell (1864), Robert Bartholow (1881), Jaques Arsenne d'Arsonval (1896).
- Hans Berger (1929): Electroencephalogram (EEG), 2 major rhythms.
- Jacques Vidal (1970s): Brain Computer Interface Project. Government sponsored research in biocybernetics and human computer interaction.
- 2006: Contributions from different disciplines, standardization, clinical trial

- Locked in Syndrome: Severe motor disabilities.
- 17th 19th Century: Jan Swammerdam (1664), Benjamin Franklin (1747), Luigi Galvani (1781), André Marie Ampere (1820), Michael Farraday (1831), James Clerk Maxwell (1864), Robert Bartholow (1881), Jaques Arsenne d'Arsonval (1896).
- Hans Berger (1929): Electroencephalogram (EEG), 2 major rhythms.
- Jacques Vidal (1970s): Brain Computer Interface Project. Government sponsored research in biocybernetics and human computer interaction.
- 2006: Contributions from different disciplines, standardization, clinical trial ・ロト ・回 ト ・ヨト ・ヨト

Biological Principles Technical Principles

Outline


- 2 Biological and Technical Principles Biological Principles Technical Principles Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser
 - Summary

▲御▶ ▲ 副▶

< ∃ >

Biological Principles Technical Principles

Brain

Biological Principles Technical Principles

Brain cont'd

- Each of the brain hemispheres is segmented into four lobes with different functions.
- The lobes are separated by fissures (sulcus).
- Signal generation / processing initially occurs at the outer surface (2.5 4 mm) = Grey Cortex (Grey Matter).
- The Primary Somatic Sensory Cortex (Parietal Lobe) and the Primary Motor Cortex (Temporal Lobe) are the most important regions for BCI research.
- Cross section: The amount of neural tissue associated with different regions of the body is in correlation with the complexity of the signals.

イロト イヨト イヨト イヨト

Biological Principles Technical Principles

Brain cont'd

- Each of the brain hemispheres is segmented into four lobes with different functions.
- The lobes are separated by fissures (sulcus).
- Signal generation / processing initially occurs at the outer surface (2.5 4 mm) = Grey Cortex (Grey Matter).
- The Primary Somatic Sensory Cortex (Parietal Lobe) and the Primary Motor Cortex (Temporal Lobe) are the most important regions for BCI research.
- Cross section: The amount of neural tissue associated with different regions of the body is in correlation with the complexity of the signals.

イロト イヨト イヨト イヨト

Biological Principles Technical Principles

Brain cont'd

- Each of the brain hemispheres is segmented into four lobes with different functions.
- The lobes are separated by fissures (sulcus).
- Signal generation / processing initially occurs at the outer surface (2.5 4 mm) = Grey Cortex (Grey Matter).
- The Primary Somatic Sensory Cortex (Parietal Lobe) and the Primary Motor Cortex (Temporal Lobe) are the most important regions for BCI research.
- Cross section: The amount of neural tissue associated with different regions of the body is in correlation with the complexity of the signals.

(D) (A) (A)

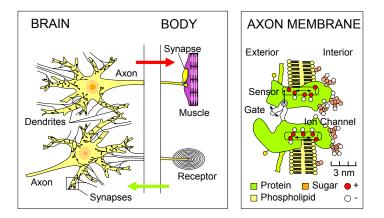
Biological Principles Technical Principles

Brain cont'd

- Each of the brain hemispheres is segmented into four lobes with different functions.
- The lobes are separated by fissures (sulcus).
- Signal generation / processing initially occurs at the outer surface (2.5 - 4 mm) = Grey Cortex (Grey Matter).
- The Primary Somatic Sensory Cortex (Parietal Lobe) and the Primary Motor Cortex (Temporal Lobe) are the most important regions for BCI research.
- Cross section: The amount of neural tissue associated with different regions of the body is in correlation with the complexity of the signals.

イロト イポト イヨト イヨト

Biological Principles Technical Principles


Brain cont'd

- Each of the brain hemispheres is segmented into four lobes with different functions.
- The lobes are separated by fissures (sulcus).
- Signal generation / processing initially occurs at the outer surface (2.5 - 4 mm) = Grey Cortex (Grey Matter).
- The Primary Somatic Sensory Cortex (Parietal Lobe) and the Primary Motor Cortex (Temporal Lobe) are the most important regions for BCI research.
- Cross section: The amount of neural tissue associated with different regions of the body is in correlation with the complexity of the signals.

イロト イポト イヨト イヨト

Biological Principles Technical Principles

Nerve, Muscle, Receptor and Bioelectricity

BCI

4 日本

Biological Principles Technical Principles

- Signal transduction pathway: Receptor → Nerve → Primary Sensory Cortex → Higher Order Sensory Region → Association → Pre Motor Region → Primary Motor Cortex → Nerve → Muscle.
- A nerve cell consists of the cell body (soma), a great number of short, highly branched cellular processes (dendrites), and one long projection (axon).
- The axon terminates into a number of buds. These form specialized cell cell contacts (synapses) with dendrites of other nerve cells or muscle cells.
- A cortical nerve cell may via its dendrites be contacted by several 100.000 axon ends.

Biological Principles Technical Principles

- Signal transduction pathway: Receptor \rightarrow Nerve \rightarrow Primary Sensory Cortex \rightarrow Higher Order Sensory Region \rightarrow Association \rightarrow Pre Motor Region \rightarrow Primary Motor Cortex \rightarrow Nerve \rightarrow Muscle.
- A nerve cell consists of the cell body (soma), a great number of short, highly branched cellular processes (dendrites), and one long projection (axon).
- The axon terminates into a number of buds. These form specialized cell cell contacts (synapses) with dendrites of other nerve cells or muscle cells.
- A cortical nerve cell may via its dendrites be contacted by several 100.000 axon ends.

Biological Principles Technical Principles

- Signal transduction pathway: Receptor \rightarrow Nerve \rightarrow Primary Sensory Cortex \rightarrow Higher Order Sensory Region \rightarrow Association \rightarrow Pre Motor Region \rightarrow Primary Motor Cortex \rightarrow Nerve \rightarrow Muscle.
- A nerve cell consists of the cell body (soma), a great number of short, highly branched cellular processes (dendrites), and one long projection (axon).
- The axon terminates into a number of buds. These form specialized cell cell contacts (synapses) with dendrites of other nerve cells or muscle cells.
- A cortical nerve cell may via its dendrites be contacted by several 100.000 axon ends.

Biological Principles Technical Principles

- Signal transduction pathway: Receptor → Nerve → Primary Sensory Cortex → Higher Order Sensory Region → Association → Pre Motor Region → Primary Motor Cortex → Nerve → Muscle.
- A nerve cell consists of the cell body (soma), a great number of short, highly branched cellular processes (dendrites), and one long projection (axon).
- The axon terminates into a number of buds. These form specialized cell cell contacts (synapses) with dendrites of other nerve cells or muscle cells.
- A cortical nerve cell may via its dendrites be contacted by several 100.000 axon ends.

Biological Principles Technical Principles

Nerve, Muscle, Receptor and Bioelectricity cont'd

- Chemical signal transduction: Synapse (Axon end \rightarrow Synaptic gap \rightarrow Dendrite) \rightarrow Soma \rightarrow Axon origin.
- Electric signal transduction: Axon origin \rightarrow Axon \rightarrow Axon end.
- The mechanism guarantees unidirectional signal transmission.
- The electric signals are generated via ion flux (sodium, Na⁺, potassium, K⁺, and chloride, Cl⁻) across protein channels in the axon membrane.
- The direction of ion flux is actively regulated in response to stimulation / inhibition. As a result, characteristic potentials are generated over the axon membrane.

(D) (A) (A)

Biological Principles Technical Principles

Nerve, Muscle, Receptor and Bioelectricity cont'd

- Chemical signal transduction: Synapse (Axon end → Synaptic gap → Dendrite) → Soma → Axon origin.
- Electric signal transduction: Axon origin \rightarrow Axon \rightarrow Axon end.
- The mechanism guarantees unidirectional signal transmission.
- The electric signals are generated via ion flux (sodium, Na⁺, potassium, K⁺, and chloride, Cl⁻) across protein channels in the axon membrane.
- The direction of ion flux is actively regulated in response to stimulation / inhibition. As a result, characteristic potentials are generated over the axon membrane.

Biological Principles Technical Principles

Nerve, Muscle, Receptor and Bioelectricity cont'd

- Chemical signal transduction: Synapse (Axon end → Synaptic gap → Dendrite) → Soma → Axon origin.
- Electric signal transduction: Axon origin \rightarrow Axon \rightarrow Axon end.
- The mechanism guarantees unidirectional signal transmission.
- The electric signals are generated via ion flux (sodium, Na⁺, potassium, K⁺, and chloride, Cl⁻) across protein channels in the axon membrane.
- The direction of ion flux is actively regulated in response to stimulation / inhibition. As a result, characteristic potentials are generated over the axon membrane.

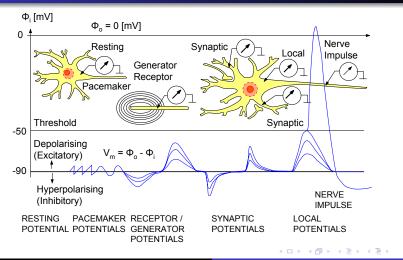
イロト イポト イヨト イヨト

Biological Principles Technical Principles

Nerve, Muscle, Receptor and Bioelectricity cont'd

- Chemical signal transduction: Synapse (Axon end → Synaptic gap → Dendrite) → Soma → Axon origin.
- Electric signal transduction: Axon origin \rightarrow Axon \rightarrow Axon end.
- The mechanism guarantees unidirectional signal transmission.
- The electric signals are generated via ion flux (sodium, Na⁺, potassium, K⁺, and chloride, Cl⁻) across protein channels in the axon membrane.
- The direction of ion flux is actively regulated in response to stimulation / inhibition. As a result, characteristic potentials are generated over the axon membrane.

Biological Principles Technical Principles


Nerve, Muscle, Receptor and Bioelectricity cont'd

- Chemical signal transduction: Synapse (Axon end \rightarrow Synaptic gap \rightarrow Dendrite) \rightarrow Soma \rightarrow Axon origin.
- Electric signal transduction: Axon origin \rightarrow Axon \rightarrow Axon end.
- The mechanism guarantees unidirectional signal transmission.
- The electric signals are generated via ion flux (sodium, Na⁺, potassium, K^+ , and chloride, Cl^-) across protein channels in the axon membrane.
- The direction of ion flux is actively regulated in response to stimulation / inhibition. As a result, characteristic potentials are generated over the axon membrane.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

Biological Principles Technical Principles

Signal Transduction and Potentials

M. Kurz, W. Almer, F. Landolt

BCI

Biological Principles Technical Principles

- Characteristic potentials result from different charge distribution across the axon membrane.
- The resting potential is at approximately -90 mV. It is lowered by inhibitory (hyperpolarisation) and raised by excitatory signals (depolarisation).
- A threshold level of ca. -50 mV has to be exceeded in order to generate a nerve impulse (action potential) that leads to further transmission across the synapse.
- After excitation, there is a latency period of decreased sensitivity (4 10 ms) during which the resting potential is re-established.
- EEG measures the electric activity of thousands of nerve cells. Therefore, the resulting signal contains considerable noise.

Biological Principles Technical Principles

- Characteristic potentials result from different charge distribution across the axon membrane.
- The resting potential is at approximately -90 mV. It is lowered by inhibitory (hyperpolarisation) and raised by excitatory signals (depolarisation).
- A threshold level of ca. -50 mV has to be exceeded in order to generate a nerve impulse (action potential) that leads to further transmission across the synapse.
- After excitation, there is a latency period of decreased sensitivity (4 10 ms) during which the resting potential is re-established.
- EEG measures the electric activity of thousands of nerve cells. Therefore, the resulting signal contains considerable noise.

Biological Principles Technical Principles

- Characteristic potentials result from different charge distribution across the axon membrane.
- The resting potential is at approximately -90 mV. It is lowered by inhibitory (hyperpolarisation) and raised by excitatory signals (depolarisation).
- A threshold level of ca. -50 mV has to be exceeded in order to generate a nerve impulse (action potential) that leads to further transmission across the synapse.
- After excitation, there is a latency period of decreased sensitivity (4 10 ms) during which the resting potential is re-established.
- EEG measures the electric activity of thousands of nerve cells. Therefore, the resulting signal contains considerable noise.

Biological Principles Technical Principles

- Characteristic potentials result from different charge distribution across the axon membrane.
- The resting potential is at approximately -90 mV. It is lowered by inhibitory (hyperpolarisation) and raised by excitatory signals (depolarisation).
- A threshold level of ca. -50 mV has to be exceeded in order to generate a nerve impulse (action potential) that leads to further transmission across the synapse.
- After excitation, there is a latency period of decreased sensitivity (4 10 ms) during which the resting potential is re-established.
- EEG measures the electric activity of thousands of nerve cells. Therefore, the resulting signal contains considerable noise.

Biological Principles Technical Principles

- Characteristic potentials result from different charge distribution across the axon membrane.
- The resting potential is at approximately -90 mV. It is lowered by inhibitory (hyperpolarisation) and raised by excitatory signals (depolarisation).
- A threshold level of ca. -50 mV has to be exceeded in order to generate a nerve impulse (action potential) that leads to further transmission across the synapse.
- After excitation, there is a latency period of decreased sensitivity (4 10 ms) during which the resting potential is re-established.
- EEG measures the electric activity of thousands of nerve cells. Therefore, the resulting signal contains considerable noise.

Biological Principles Technical Principles

Outline

- Motivation and Milestones
- 2 Biological and Technical Principles
 - Biological Principles
 - Technical Principles
- 3 Implementations
 - Cursor-Control
 - Device Control Driver
 - Communication
 - Training Synchronous acting BCI
 - Training Asynchronous acting BCI
 - Alternative Data Processing
 - Brain Browser
 - Summary
 - Summary

▲御▶ ▲ 副▶

Biological Principles Technical Principles

Categories

Detection of Mental States

 Non - invasive: Without penetrating the skalp, mostly EEG, rarely magnetoencephalogram (MEG)

Operant Conditioning

Invasive:

Implanted sensors (electrode array, needle electrodes, electrocorticogram (ECoG)

BCI

Biological Principles Technical Principles

Categories

Detection of Mental States

 Independent from peripheral nerves and muscles, using only central nervous system (CNS) activity

Operant Conditioning

 Dependent on peripheral (non - CNS) activity, e.g., controlled eye movement

BCI

Biological Principles Technical Principles

Categories

Detection of Mental States

• Unstimulated Brain Signals: Users can voluntarily produce the required signals

Operant Conditioning

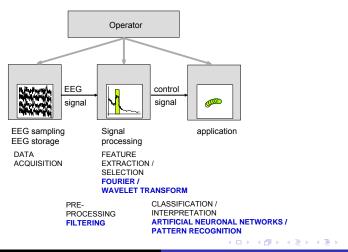
 Evoked Potentials: Users modulate brain responses to external stimuli (automatic or voluntarily)

Biological Principles Technical Principles

Categories

Detection of Mental States

 Asynchronous: The system detects when the user wants to emit a command


Operant Conditioning

- Synchronous:
 - Commands can only be emitted synchronously with external pace.

Biological Principles Technical Principles

BCI System

M. Kurz, W. Almer, F. Landolt

BCI

æ

Biological Principles Technical Principles

- In general, a BCI system comprises five units, all of which may be influenced by an external operator.
- The data acquisition unit is responsible for amplification, recording, and digitising of the brain signals.
- Preprocessing involves laplacian filtering to obtain reference free signals, bandpass filtering between 4 and 40 Hz (the known frequency range of main brain activity), and wavelet denoising in order to remove white noise.
- Signal extraction / selection finally discriminates the relevant signals. While Fourier - analysis allows identification of sine and cosine functions only within fixed time windows, wavelet analysis may reveal signal discontinuity by means of varying time windows.

Biological Principles Technical Principles

- In general, a BCI system comprises five units, all of which may be influenced by an external operator.
- The data acquisition unit is responsible for amplification, recording, and digitising of the brain signals.
- Preprocessing involves laplacian filtering to obtain reference free signals, bandpass filtering between 4 and 40 Hz (the known frequency range of main brain activity), and wavelet denoising in order to remove white noise.
- Signal extraction / selection finally discriminates the relevant signals. While Fourier - analysis allows identification of sine and cosine functions only within fixed time windows, wavelet analysis may reveal signal discontinuity by means of varying time windows.

Biological Principles Technical Principles

- In general, a BCI system comprises five units, all of which may be influenced by an external operator.
- The data acquisition unit is responsible for amplification, recording, and digitising of the brain signals.
- Preprocessing involves laplacian filtering to obtain reference free signals, bandpass filtering between 4 and 40 Hz (the known frequency range of main brain activity), and wavelet denoising in order to remove white noise.
- Signal extraction / selection finally discriminates the relevant signals. While Fourier - analysis allows identification of sine and cosine functions only within fixed time windows, wavelet analysis may reveal signal discontinuity by means of varying time windows.

Biological Principles Technical Principles

- In general, a BCI system comprises five units, all of which may be influenced by an external operator.
- The data acquisition unit is responsible for amplification, recording, and digitising of the brain signals.
- Preprocessing involves laplacian filtering to obtain reference free signals, bandpass filtering between 4 and 40 Hz (the known frequency range of main brain activity), and wavelet denoising in order to remove white noise.
- Signal extraction / selection finally discriminates the relevant signals. While Fourier - analysis allows identification of sine and cosine functions only within fixed time windows, wavelet analysis may reveal signal discontinuity by means of varying time windows.

Biological Principles Technical Principles

BCI System cont'd

- Since the signals produced by individuals differ significantly from each other, the classification and interpretation unit must implement machine learning techniques.
- Bayesian classifiers take into account all available information from a given data set to identify the features of interest.
- Neural computing applications for pattern recognition usually make use of feed - forward network architectures, such as the multi - layer perceptron and the radial basis function network.
- Classifiers that modulate the machine output are trained by application of non linear learning rules dependent on the proband's input.

(D) (A) (A)

Biological Principles Technical Principles

BCI System cont'd

- Since the signals produced by individuals differ significantly from each other, the classification and interpretation unit must implement machine learning techniques.
- Bayesian classifiers take into account all available information from a given data set to identify the features of interest.
- Neural computing applications for pattern recognition usually make use of feed - forward network architectures, such as the multi - layer perceptron and the radial basis function network.
- Classifiers that modulate the machine output are trained by application of non linear learning rules dependent on the proband's input.

イロト イヨト イヨト イヨト

Biological Principles Technical Principles

BCI System cont'd

- Since the signals produced by individuals differ significantly from each other, the classification and interpretation unit must implement machine learning techniques.
- Bayesian classifiers take into account all available information from a given data set to identify the features of interest.
- Neural computing applications for pattern recognition usually make use of feed - forward network architectures, such as the multi - layer perceptron and the radial basis function network.
- Classifiers that modulate the machine output are trained by application of non linear learning rules dependent on the proband's input.

イロト イポト イヨト イヨト

Biological Principles Technical Principles

BCI System cont'd

- Since the signals produced by individuals differ significantly from each other, the classification and interpretation unit must implement machine learning techniques.
- Bayesian classifiers take into account all available information from a given data set to identify the features of interest.
- Neural computing applications for pattern recognition usually make use of feed - forward network architectures, such as the multi - layer perceptron and the radial basis function network.
- Classifiers that modulate the machine output are trained by application of non linear learning rules dependent on the proband's input.

・ロト ・同ト ・ヨト ・ヨト

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Outline

- Biological Principles Technical Principles (3) Implementations Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser
 - Summary

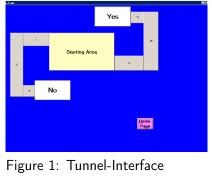
イロト イヨト イヨト イヨト

Cursor-Control

Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Frequency Thresholding

- Definition
- Nudge

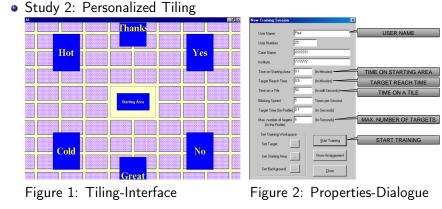



- Logical Navigation
- Implication of Frequency Thresholding using logical Navigation

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Discrete Acceleration

- The Cyberlink-Technology
- Study 1: Discrete Acceleration


Figure 2: Discrete Acceleration

・ロト ・回ト ・ヨト・・

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イヨト イヨト イヨト

Personalized Tiling

BCI

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イヨト イヨト イヨト

Outline

- 1 Motivation and Milestones
- 2 Biological and Technical Principles
 - Biological Principles
 - Technical Principles

Implementations

Cursor-Control

Device Control Driver

- Communication
- Training Synchronous acting BCI
- Training Asynchronous acting BCI
- Alternative Data Processing
- Brain Browser

Summary

Summary

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Device Control Driver

		Γ ^Υ		
Channel	0	Channel	1	OK
locel	0	Accel	0	Cancel
/elocity	6	Velocity	2	Position Ealculation Nethod:
Displacement	0	Displacement	0	Floating Constant
Constant	0	Constant	0	Cursor Jumpback
eft Bulton		Right Button		on Click
Channel	2	Channel	3	M WOUNG
Threshold	1	Threshold	1	
lin Settings		Constant Settings		
lin Width (noec)	100	Average runs	15	
lins to Average	7	Constant %	15	
				CAPS NUM SCRL

Parmouse Software

- A parallel mouse device driver allows neural signals to drive a cursor on a computer screen
- The pulses received from the signal processing computer are translated into cursor movements
- The graphical user interface allows configuring runtime parameters in order to tune the responsiveness of the interface

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イヨト イヨト イヨト

Outline

- Motivation and Milestones
 Biological and Technical Princip

 Biological Principles
 Technical Principles

 Implementations
 - Cursor-Control
 - Device Control Driver

Communication

- Training Synchronous acting BCI
- Training Asynchronous acting BCI
- Alternative Data Processing
- Brain Browser

Summary

Summary

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Communication

Talk Assist le <u>M</u> ainain <u>H</u> elp				_ @ ×
Sertance F	elders Close	Exit		
Folder Window		-		
хров: 1180 ур	** 785		$\mathbf{\hat{\Lambda}}$	
Hello	Uncomfor	Cold	Varm	
ady				

Talking to People

- Developed to assist nonverbal people in communicating
- Contains a customizable database of icons that are associated with phraces
- Can also be used as training aid storing also icons for navigation issues

・ロト ・ 同ト ・ ヨト ・ ヨト

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Communication

Ele Dustonia	NINCAP"1.KBI 10 Select &	2) dditions <u>H</u> elp					
Space		Period		Α	В	С	D
Ba	ick	E	F	G	H	Ι	J
K	L	Μ	N	0	P	Q	R
S	Τ	U	V	W	X	Y	Z

Virtual Keyboard

- Is used in conjunction with the WordPad and a speech synthesizer
- The synthesizer vocalizes words when the space or period keys are selected

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Communication

Node H						
C4	D4	E4	F4	G4	A4	B 4
C3	D3	E3	F3	G3	A3	вз
C2	D2	E2	F2	G2	A2	В2
C1	D1	E1	F1	G1	A1	B 1

Playing Piano

- The piano consists of 4 octaves for each one row
- A row consists of keys labeled with the note names
- Navigating the cursor horizontally plays the C scale
- Navigating the cursor vertically plays the note one octave lower or higher

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イポト イヨト イヨト

Outline

- 1 Motivation and Milestones
- 2 Biological and Technical Principles
 - Biological Principles
 - Technical Principles

Implementations

- Cursor-Control
- Device Control Driver
- Communication

• Training - Synchronous acting BCI

- Training Asynchronous acting BCI
- Alternative Data Processing
- Brain Browser

Summary

Summary

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イポト イヨト イヨト

- Synchronous acting BCIs base on fixed repetetive schemes, switching from one mental task to another
- A trial consists of two parts:
 - A cue is telling the subject to get ready
 - ② Next cue tells the subject to perform the desired mental task
- A trial lasts from 4 to 10 or more seconds
- This long time period is necessary because the phenomena of interest need time to recover

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Synchronous acting BCIs base on fixed repetetive schemes, switching from one mental task to another
- A trial consists of two parts:
 - A cue is telling the subject to get ready
 - 2 Next cue tells the subject to perform the desired mental task
- A trial lasts from 4 to 10 or more seconds
- This long time period is necessary because the phenomena of interest need time to recover

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Synchronous acting BCIs base on fixed repetetive schemes, switching from one mental task to another
- A trial consists of two parts:
 - A cue is telling the subject to get ready
 - ② Next cue tells the subject to perform the desired mental task
- A trial lasts from 4 to 10 or more seconds
- This long time period is necessary because the phenomena of interest need time to recover

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Synchronous acting BCIs base on fixed repetetive schemes, switching from one mental task to another
- A trial consists of two parts:
 - A cue is telling the subject to get ready
 - 2 Next cue tells the subject to perform the desired mental task
- A trial lasts from 4 to 10 or more seconds
- This long time period is necessary because the phenomena of interest need time to recover

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イポト イヨト イヨト

Outline

- Biological Principles Technical Principles (3) Implementations Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser
 - Summarv

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better undestand
- The response toward an arriving EEG sample is the class with the greatest probability
- Responses to EEG patterns under a given confidence threshold are treated as **unknown**

Device Control Driver Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better
- The response toward an arriving EEG sample is the class with
- Responses to EEG patterns under a given confidence threshold

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better undestand
- The response toward an arriving EEG sample is the class with the greatest probability
- Responses to EEG patterns under a given confidence threshold are treated as **unknown**

Device Control Driver Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better
- The response toward an arriving EEG sample is the class with
- Responses to EEG patterns under a given confidence threshold

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better undestand
- The response toward an arriving EEG sample is the class with the greatest probability
- Responses to EEG patterns under a given confidence threshold are treated as **unknown**

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better undestand
- The response toward an arriving EEG sample is the class with the greatest probability
- Responses to EEG patterns under a given confidence threshold are treated as **unknown**

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better undestand
- The response toward an arriving EEG sample is the class with the greatest probability
- Responses to EEG patterns under a given confidence threshold are treated as **unknown**

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Self-paced decisions when to begin and end are made
- Neural network classifier recognizes which mental task is concentrated on
- Analyzing continuous viariations of EEG rythms
- A mutual learning process is involved
- The neural network learns patient-specific EEG patterns
- The patient learns how to think to let the BCI better undestand
- The response toward an arriving EEG sample is the class with the greatest probability
- Responses to EEG patterns under a given confidence threshold are treated as **unknown**

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イポト イヨト イヨト

Outline

- Biological Principles Technical Principles (3) Implementations Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser
 - Summary

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Alternative Data Processing - Invasive Method

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down" signals
- Up signals are than mapped to horizhontal cursor movement
- Down signals are mapped to vertical cursor movements

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Alternative Data Processing - Invasive Method

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down" signals
- Up signals are than mapped to horizhontal cursor movement
- Down signals are mapped to vertical cursor movements

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

Alternative Data Processing - Invasive Method

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down" signals
- Up signals are than mapped to horizhontal cursor movement
- Down signals are mapped to vertical cursor movements

Device Control Driver Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down"
- Up signals are than mapped to horizhontal cursor movement
- ・ロン ・四と ・ヨン ・ヨン

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down" signals
- Up signals are than mapped to horizhontal cursor movement
- Down signals are mapped to vertical cursor movements

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down" signals
- Up signals are than mapped to horizhontal cursor movement
- Down signals are mapped to vertical cursor movements

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- Analyses of brain signal data turned out that waveshapes produced from a single electrode are not unique
- Phase Releationships between the spikes changes when the direction of e. g. the cursor changed
- Recognizing these different patterns allows the patient to think of the direction of the cursor
- This enables the patient navigating in two dimensions with a single electrode
- The different signals will be clustered into "up" and "down" signals
- Up signals are than mapped to horizhontal cursor movement
- Down signals are mapped to vertical cursor movements

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

イロト イポト イヨト イヨト

Outline

- Biological Principles Technical Principles (3) Implementations Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser
 - Summary

Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

æ

BrainBrowser

- Importance
- Problems with conventional Browsers in combination with BCIs

BCI

Design and Layout

M. Kurz, W. Almer, F. Landolt

Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser

- 3 ≥ >

BrainBrowser (cont'd)

Features

- Link Parsing
- Virtual Keyboard
- Serialization
- Alignment of components
- Grouping the Browsers controls

Summary

Outline

- Biological Principles Technical Principles Cursor-Control Device Control Driver Communication Training - Synchronous acting BCI Training - Asynchronous acting BCI Alternative Data Processing Brain Browser Summary
 - Summary

< 🗇 🕨 < 🖻 🕨

• Presently, BCI research is still in its infancy. Serious BCI use is restricted to completely paralised patients. Clinical Trial Phase.

Summarv

• Standardisation: BCI2000

General - purpose system for brain computer interface research. Incorporate currently used brain signals, implement objective measure of performance (bit rate), provide analysis tools, create common data pool.

< 17 > < 3 > <

» foster BCI research

• Ethical considerations: Guilty Knowledge Test.

- Presently, BCI research is still in its infancy. Serious BCI use is restricted to completely paralised patients. Clinical Trial Phase.
- Standardisation: BCI2000

General - purpose system for brain computer interface research. Incorporate currently used brain signals, implement objective measure of performance (bit rate), provide analysis tools, create common data pool.

- » foster BCI research
- Ethical considerations: Guilty Knowledge Test.

- Presently, BCI research is still in its infancy. Serious BCI use is restricted to completely paralised patients. Clinical Trial Phase.
- Standardisation: BCI2000

General - purpose system for brain computer interface research. Incorporate currently used brain signals, implement objective measure of performance (bit rate), provide analysis tools, create common data pool.

- » foster BCI research
- Ethical considerations: Guilty Knowledge Test.

Summary

References

Contact

Wilhelm Almer wilhelm.almer@inode.at Florian Landolt fl3@gmx.net

イロト イポト イヨト イヨト

臣

Marion E. Kurz marion.kurz@gmx.at www.nkis.info www.kultart.at

For Further Reading: Books

- B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts, and J. D. Watson.
 Molecular Biology of the Cell.
 Garland Publishing, Inc., ISBN 0-8240-7283-9, 1st edition, 1983.
- J. Dudel, R. Menzel, and R. F. Schmidt (Hrsg.). Neurowissenschaft. Vom Molekül zur Kognition. Springer-Verlag, ISBN 3-540-61328-5, 1st edition, 1996.
 - T. N. Lal.

Machine Learning Methods for Brain-Computer Interfaces, Reihe: MPI Series in Biological Cybernetics, Bd.12. Logos Verlag, ISBN 3-8325-1048-6, 1st edition, 2005.

For Further Reading: Books cont'd

J. Malmivuo and R. Plonsey.

Bioelectromagnetism. Principles and Applications of Bioelectric and Biomagnetic Fields.

Oxford University Press, ISBN 0-19-505823-2, 1st edition, 1995.

http://butler.cc.tut.fi/~malmivuo/bem/bembook/index.htm

J. Orear.

Physik.

Carl Hanser Verlag, ISBN 3-446-12977-4, 1st edition, 1982.

For Further Reading: Articles

🔋 G. Blanchard and B. Blankertz.

BCI Competition 2003: Data Set IIa - Spatial Patterns of Self-Controlled Brain Rhythm Modulations. IEEE Trans. Biomed. Eng. 51 (6), 1062-1066, 2004. http://ida.first.fhg.de/publications/BlaBla04.pdf

B. Blankertz et al.

BCI Competition 2003: Progress and Perspectives in Detection and Discrimination of EEG Single Trials.

IEEE Trans. Biomed. Eng. 51 (6), 1044-1051, 2004. http://ida.first.fhg.de/publications/ BlaMueCurVauSchWolSchNeuPfuHinSchBir04.pdf

For Further Reading: Articles cont'd

- G. Dornhege, B. Blankertz, C. Curio, and K.-R. Müller. Boosting Bit Rates in Non-Invasive EEG Single-Trial Classififcations by Feature Combination and Multi-Class Paradigms.
 IEEE Trans. Biomed. Eng. 51 (6), 993-1002, 2004. http://ida.first.fhg.de/publications/DorBlaCurMue04.pdf
- G. Dornhege, B. Blankertz, C. Curio, and K.-R. Müller. Increase Information Transfer Rates in BCI by CSP Extension to Multi-Class.
 Advances in Neural Inf. Proc. Systems (NIPS03) 16 (online), 2004. http://books.nips.cc/nips16.html

For Further Reading: Articles cont'd

- T. Hinterberger, S. Schmidt, N. Neumann, J. Mellinger, B. Blankertz, G. Curio, and N. Bierbaumer.
 Brain Computer Communication with Slow Cortical Potentials: Methodology and Critical Aspects.
 IEEE Trans. Biomed. Eng. 51 (6), 1011-1018, 2004. http://ida.first.fhg.de/publications/HinSchNeuMelBlaCurBir04.pdf
- J. Kohlmorgen and B. Blankertz. Bayesian Classification of Single-Trial Event-Related Potentials

in EEG. Int. J. Bif. Chaos 14 (2), 719-726, 2004. http://ida.first.fhg.de/publications/KohBla04.pdf

・ロト ・聞 ト ・ ヨト ・ ヨトー

For Further Reading: Articles cont'd

 S. Lemm, B. Blankertz, B. Curio, and K.-R. Müller. Spatio-Spectral Filters for Improving the Classification of Single Trial EEG.
 IEEE Trans. Biomed. Eng. 52 (9), 1541-1548, 2005. http://ida.first.fhg.de/publications/LemBlaCurMue05.pdf

J. del R. Millàn. Adaptive Brain Interfaces. Comm. ACM 46 (3), 74-80, 2003.

For Further Reading: Articles cont'd

N. Neumann and N. Birbaumer.

Predictors of Successful Self Control During Brain-Computer Communication.

J. Neurol. Neuros. Psych. 74, 1117-1121, 2003. http://jnnp.bmjjournals.com/cgi/content/full/74/8/1117

🔋 J. J. Vidal.

Toward Direct Brain-Computer Communication. Ann. Rev. Biophys. Bioeng. 2, 157-180, 1973. http://www.cs.ucla.edu/~vidal/BCI.pdf

For Further Reading: Articles cont'd

J. R. Wolpaw, D. J. McFarland, T. M. Vaughn, and G. Schalk. *The Wadsworth Center Brain-Computer Interface (BCI) Research and Development Program.* IEEE Trans. Neural Syst. Rehabil. Eng. 2, 204-207, 2003. http://www.cs.cmu.edu/~tanja/BCI/Wadsworth2003.pdf

For Further Reading: Proceedings

 P. Gnanayutham, C. Bloor, and G. Cockton. Discrete Acceleration and Personalised Tiling as Brain-Body Interface Paradigms for Neurorehabilitation.
 In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 261 - 270. ACM Press, ISBN 1-58113-998-5, 2005.

For Further Reading: Proceedings cont'd

🚡 T. N. Lal et al.

A Brain Computer Interface with Online Feedback based on Magnetoencephalography.

In: Proceedings of the 22nd International Conference on Machine Learning ICML '05, 465 - 472. ACM Press, ISBN 1-59593-180-5, 2005. http://www.machinelearning.org/proceedings/icml2005/ papers/059_BrainComputer_LalEtAl.pdf

For Further Reading: Proceedings cont'd

S. G. Mason, Z. Bozorgzadeh, and G. E. Birch. The LFD-ASD Brain Computer Interface: On-Line Identification of Imagined Finger Flexions in Subjects with Spinal Cord Injuries.

In: Proceedings of the Fourth International ACM Conference on Assistive Technologies, 109 - 113.ACM Press, ISBN 1-58113-314-8, 2000.

M. Moore and P. Kennedy.

Human Factors Issues in the Neural Signals Direct Brain-Computer Interfaces.

In: Proceedings of the Fourth International ACM Conference on Assistive Technologies, 114 - 120.

ACM Press, ISBN 1-58113-314-8, 2000. < = > < = > < = > < = >

For Further Reading: Proceedings cont'd

- J. Mankoff, A. Dey, U. Batra, and M. Moore.
 Web Accessibility for Low Bandwidth Input.
 In: Proceedings of the Fifth International ACM Conference on Assistive Technologies, 17 - 24.
 ACM Press, ISBN 1-58113-464-9, 2002.
- J. R. Thorpe, P. C. van Oorschot, and A. Somayaji.
 Pass-thoughts: Authenticating With Our Minds.
 Cryptology ePrint Archive, Report 2005/121, 2005.
 http://eprint.iacr.org/2005/121.pdf
 Revised Version: Proceedings of the ACSA 2005 New Security
 Paradigms Workshop, September 2005 (in print).

(ロ) (同) (三) (三)

For Further Reading: Abstracts

 M. Moore, P. Kennedy, E. Mynatt, and J. Mankoff. Nudge and Shove: Frequency Thresholding for Navigation in Direct Brain-Computer Interfaces. Conference on Human Factors in Computing Systems 2001.
 In: CHI '01 Extended Abstracts on Human Factors in Computing Systems, 361 - 362.
 ACM Press, ISBN 1-58113-340-5, 2001.

O. Tomori and M. Moore.

The Neurally Controllable Internet Browser (Brain Browser). Conference on Human Factors in Computing Systems 2003. In: CHI '03 Extended Abstracts on Human Factors in Computing Systems, 796 - 797. ACM Press, ISBN 1-58113-637-4, 2003.

For Further Reading: Theses

L. Laitinen.

Neuromagnetic Sensory Motor Signals in Brain Computer Interfaces (Thesis).

Department of Electrical and Communications Engineering, Helsinki University of Technology, 77 pp., 2003. http://www.lce.hut.fi/research/cogntech/bci/Lauras_Thesis.pdf

J. Lehtonen.

EEG-based Brain Computer Interfaces (Thesis).

Department of Electrical and Communications Engineering, Helsinki University of Technology, 105 pp., 2002. http://www.lce.hut.fi/research/cogntech/bci/jannes_thesis.pdf

イロト イポト イヨト イヨト

For Further Reading: Theses cont'd

🔋 T. Nykopp.

Statistical Modelling Issues for the Adaptive Brain Interface (Thesis).

Department of Electrical and Communications Engineering, Helsinki University of Technology, 113 pp., 2001. http://www.lce.hut.fi/research/cogntech/bci/tommis_thesis.pdf

For Further Reading: Links

Berlin BCI.

Cooperation between the Fraunhofer FIRST institute and the Charitè - University Medicine, Berlin. Development of EEG-driven systems for computer-aided working environments. http://ida.first.fhg.de/projects/bci/bbci_official/index_en.html

Braingate Neural Interface System. System for pilot clinical trial.

http://www.cyberkineticsinc.com/content/medicalproducts/ braingate.jsp

.

For Further Reading: Links cont'd

Cognitive Science and Technology. Research group at the Laboratory of Computational Engineering, Helsinki University of Technology. http://www.lce.hut.fi/research/cogntech/

 Laboatory of Brain Computer Interfaces at the Technical University of Graz.
 Several BCI - related research fields, platform for the BCI community. http://www.bci.tugraz.at/index.html

For Further Reading: Links cont'd

Oxford BCI.

Asynchronous BCI. Development of algorithms and dynamic models. Pattern Analysis and Machine Learning Research Group (PARG).

http://www.robots.ox.ac.uk/~parg/projects/bci/index.html

G. T. Toussaint.

School of Computer Science, McGill University, Quebec. Extensive list of links concerning pattern recognition and machine learning.

http://cgm.cs.mcgill.ca/~godfried/teaching/pr-web.html

・ロト ・同ト ・ヨト ・ヨト

For Further Reading: Links cont'd

Wadsworth BCI.

EEG-mediated cursor / robotic arm control. BCI2000, several videos.

< 47 ▶ <

http://www.bciresearch.org/