
Einführung UNIX
(WS 2016/17)

Martin Held

FB Computerwissenschaften
Universität Salzburg

A-5020 Salzburg, Austria
held@cosy.sbg.ac.at

9. Jänner 2017

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG

mailto:held@cosy.sbg.ac.at

Personalia

LVA-Leiter: G. Eder, M. Held.
Email-Adresse: geder@cosy.sbg.ac.at, held@cosy.sbg.ac.at.
Büro (G. Eder): FB Computerwissenschaften, Zi. 0.28, Jakob-Haringer Str. 2,

Salzburg.
Büro (M. Held): FB Computerwissenschaften, Zi. 1.20, Jakob-Haringer Str. 2,

Salzburg.
Telefonnummern: 8044-6304 (M. Held), 8044-6327 (G. Eder),

8044-6328 (Sekr.).
Basis-URL: http://www.cosy.sbg.ac.at/˜held.

WWW-Homepage: Basis-URL/held.html.
LVA-Homepage: Basis-URL/teaching/unix/unix.html.

Allg. Information: Basis-URL/for_students.html.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 2

mailto:geder@cosy.sbg.ac.at
mailto:held@cosy.sbg.ac.at
http://www.cosy.sbg.ac.at/~held
http://www.cosy.sbg.ac.at/~held/held.html
http://www.cosy.sbg.ac.at/~held/teaching/unix/unix.html
http://www.cosy.sbg.ac.at/~held/for_students.html

Formalia

Abhaltezeit der LVA: Der Vorlesungsteil dieser Lehrveranstaltung wird jeweils sine
tempore im T01 wie folgt für alle Parallelgruppen gemeinsam
abgehalten:

am: MO 3.10., 10.10., 17.10., 24.10., 7.11. und
MO 21.11.2016

um: 1240–1545.

Der Übungsteil dieser Lehrveranstaltung wird in etlichen
Parallelgruppen im Zeitraum Oktober bis Dezember 2016
abgehalten. (Siehe LVA-Homepage.)

Achtung: Für den Übungsteil ist eine separate Anmeldung
erforderlich!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 3

Lehrziele und Lehrinhalte

Die Lehrveranstaltung VP „Einführung UNIX“ ist ein Service von uns an Sie. Ziel
dieser Lehrveranstaltung ist es, Sie alle mit Unix-Computern so weit vertraut zu
machen, dass Sie einfache Arbeiten auf diesen Computern effizient und sicher selbst
ausführen können, ohne bereits an den Eingangshürden zu scheitern und ohne
ununterbrochen in den Manuals blättern zu müssen — auch wenn Sie bisher wenig
oder noch gar keinen Umgang mit (Unix-)Computern hatten!

Insbesondere sollte die Kenntnis der Unix-Dienste und Unix-Werkzeuge Sie in die
Lage versetzen, im Rahmen des weiteren Studiums benötigte „Produkte“ (zum
Beispiel Programme) leichter herzustellen, dabei Arbeit und Zeit zu sparen, und eine
ordnungsgemäße Abgabe zu schaffen.

Es ist definitiv nicht das Ziel, in Windeseile wichtige Themen aus „Betriebssysteme“,
„Rechnerarchitekturen“ oder verwandten Lehrveranstaltungen detailliert zu
besprechen. Viele Themen werden daher zwangsweise und bewusst nur sehr
ungenau oder stark vereinfacht diskutiert werden. Eine detailliertere Behandlung wird
im Rahmen Ihres Studiums in nachfolgenden Lehrveranstaltungen geboten werden.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 4

Beurteilungsrichtlinien

Die Beurteilung findet mittels Mitarbeit in der Lehrveranstaltung sowie zweier
Klausuren am 13.1.2017 (1400–1600) und 10.3.2017 (1400–1600) statt, von denen
genau eine Klausur zu absolvieren ist. Bitte beachten Sie, dass

I die Teilnahme an der Abschlussklausur nur für jene Studierenden möglich ist,
welche für den Übungsteil dieser Lehrveranstaltung angemeldet waren und
daran auch regelmäßig teilgenommen haben;

I eine Teilnahme an einer Klausur nur nach erfolgter Anmeldung zu dieser Klausur
(im PLUSonline) möglich ist;

I es definitiv keinen dritten oder weiteren Klausurtermin geben wird;
I ein Nichtantreten bei beiden Klausurterminen automatisch eine Beurteilung mit

“NGD5” nach sich zieht;
I ein Antreten zum zweiten Termin nicht möglich ist, wenn bereits die erste

Abschlussklausur absolviert wurde, egal mit welchem Erfolg;
I zur Klausur Schreibmaterial sowie die Unicard oder zumindest ein (aktueller)

Lichtbildausweis mitzunehmen ist;
I Bücher, Notizen oder andere Unterlagen nicht zugelassen sind; auch keine

Wörterbücher.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 5

Prüfungsimmanente Lehrveranstaltung

Achtung: Diese Lehrveranstaltung ist prüfungsimmanent ! Dies bedeutet aufgrund
des geltenden Studienrechts sowie entsprechenden Weisungen des Rektorats,

I dass Anwesenheitspflicht während der gesamten Dauer der Lehrveranstaltung
herrscht;

I Leistungsüberprüfungen jederzeit und ohne Vorankündigung möglich sind;
I dass auch bei einem Abbruch dieser Lehrveranstaltung eine Beurteilung an

Hand der (bis zum Abbruch) erbrachten Leistung erfolgt, sofern der Abbruch
samt Abmeldung nicht vor der dritten UV-Einheit erfolgt; in der Praxis bedeutet
dies bei einem Abbruch fast immer eine Beurteilung mit NGD5;

I dass nach erfolgter Beurteilung eine Verbesserung der erhaltenen Note nur
durch neuerliches Absolvieren der gesamten Lehrveranstaltung in einem
späteren Semester erfolgen kann!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 6

Lehrbehelf — Worte der Warnung

Die von uns in dieser Lehrverstaltung verwendeten Dias stehen Ihnen als PDF-Datei
auf der Home Page dieser Lehrveranstaltung als Lehrbehelf zur Verfügung. Eine
Kopiervorlage mit allen Dias können Sie auch im Sekretariat des Fachbereich
Computerwissenschaften (Jakob-Haringer Str. 2, Zimmer 1.18a) zwecks Anfertigung
eigener Kopien ausborgen.

Wir behalten uns allerdings vor, in der Lehrveranstaltung auch über Themen zu
sprechen (und Sie dann auch darüber zu prüfen), welche nicht notwendigerweise in
den Dias aufscheinen! Prüfungsstoff der Lehrveranstaltung ist alles, was in der
Lehrveranstaltung besprochen wird — egal ob es in den PDF-Dias steht. Keinesfalls
sollte die Bereitstellung der PDF-Dias als Lehrbehelf für Sie dazu führen, dass Sie
diese Lehrveranstaltung nicht mehr regelmäßig besuchen.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 7

http://www.cosy.sbg.ac.at/~held/teaching/unix/unix.html

Acknowledgments

I am happy to acknowledge that I benefited from material published by colleagues on
diverse topics presented in this lecture. In particular, sections of the text have been
taken verbatim from the online Unix/Linux man-pages. While some of the material
used for this lecture was originally presented in traditional-style publications (such as
textbooks), many more items have their roots in non-standard publication outlets
(such as online documentations, tutorials, FAQ’s, man-pages, or user manuals). Many
of the slides in the section on Communication and Data Transfer were created by
Regina Bernhaupt. Recent revisions of the slides were carried out by Tobias Berka,
Günther Eder, Dominik Engel, Stefan Huber, Stefan Lukesch and Andreas Maier.

Salzburg, July 2016 Martin Held

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 8

Legal Fine Print and Disclaimer

To the best of our knowledge, these slides do not violate or infringe upon somebody
else’s copyrights. If copyrighted material appears in these slides then it was
considered to be available in a non-profit manner and as an educational tool for
teaching at an academic institution, within the limits of the “fair use” policy. For
copyrighted material we strive to give references to the copyright holders (if known).
Of course, any trademarks mentioned in these slides are properties of their respective
owners.

Please note that these slides are copyrighted. The copyright holder(s) grant you the
right to download and print it for your personal use. Any other use, including non-profit
instructional use and re-distribution in electronic or printed form of significant portions
of it, beyond the limits of “fair use”, requires the explicit permission of the copyright
holder(s). All rights reserved.

These slides are made available without warrant of any kind, either express or
implied, including but not limited to the implied warranties of merchantability and
fitness for a particular purpose. In no event shall the copyright holder(s) and/or their
respective employers be liable for any special, indirect or consequential damages or
any damages whatsoever resulting from loss of use, data or profits, arising out of or in
connection with the use of information provided in these slides.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 9

Recommended Textbooks

A. Robbins.
UNIX in a Nutshell. 4th edition.
O’Reilly, 2005. ISBN 9780596100292.

S. Powers, J. Peek, T. O’Reilly, M. Loukides.
Unix Power Tools. 3rd edition.
O’Reilly, 2003. ISBN 9780596003302.

C. Easttom, B. Hoff
Moving From Windows To Linux. 2nd edition.
Charles River Media, 2004. ISBN 9781584504429.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 10

Table of Content

Introduction

Working with Unix

Advanced Use of Unix

Communication and Data Transfer

Recap and Self-Assessment

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 11

Introduction
What is Unix/Linux?
History of Unix
Login and Password
Getting Started with Unix

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 12

What is Unix?

I Unix, like Windows and Mac OS X, is an operating system, or OS for short.
I An OS is a software system that a computer runs when you first turn it on.
I An OS is not an application program like Microsoft Word and is not a set of

programs like Microsoft Office.
I Every personal computer has to have an OS or it will not work in the way you are

used to see it work.
I Basically, an OS coordinates all of a computer’s components into a single,

integrated unit.
I Examples of proprietary Unix systems are Mac OS X (by Apple), HP-UX (by

Hewlett-Packard, and Solaris (by Sun Microsystems, now Oracle).

Spelling
The standard spelling is “Unix”, with the term “UNIX” being reserved for the
trademark. (The present owner of the trademark is The Open Group.) In its early days
the spelling “UNIX” was also widely used.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 14

What is Linux?

I Linux is a Unix clone (OS) created by Linus Torvalds when he was a student at
the University of Helsinki.

I To be precise, Linux is the so-called kernel of an OS.
I The job of the kernel is manifold: providing interfaces to hardware, multi-tasking

programs, managing memory, offering file system access, etc.
I All other applications and utilities needed for a full-fledged Unix OS are programs

re-compiled to run on Linux.
I Typical examples for such application programs are file editors, mail readers, etc.
I Different groups or organizations package all those utilities into different

distributions: see, e.g. (in alphabetical order) Arch, Caldera, Debian, Fedora,
Gentoo, Mandriva, openSUSE, Red Hat, and Ubuntu.

I The Linux kernel is distributed under the GNU General Public License (GPL).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 15

Excerpt from the GNU GPL

“When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute
copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use
pieces of it in new free programs; and that you know you can do these things.
To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to
certain responsibilities for you if you distribute copies of the software, or if you modify
it.
For example, if you distribute copies of such a program, whether gratis or for a fee,
you must give the recipients all the rights that you have. You must make sure that
they, too, receive or can get the source code. And you must show them these terms
so they know their rights.”

I Many different “GPL-like” licenses are used in practice — make sure to read the
full license terms in order to catch the (sometimes subtle) differences!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 16

Typical Flavors of Software Licenses

Public Domain: Public domain software is software that is not copyrighted. It is
software that you are allowed to copy, modify, redistribute, include into
commercial products in any form, and even make money by doing so.

Free: Free software, in the sense of ‘freedom’ to modify and redistribute, is
the preferred term for software governed by a copyright license that
follows the spirits of the GPL.

Open Source: Open Source is a catch phrase that is ambiguous. It may refer to
“free” software in the spirits of the GPL, but it may also refer to code
which can be incorporated into commercial packages (for free) where
later versions will be unavailable in source form. However, the
differences are slim: nearly all free software is open source, and
nearly all open source software is free.

Shareware: Shareware refers to software that is encouraged to be redistributed,
but which requests a small royalty if you end up using it. Shareware
regulations come in a variety of flavors; sometimes, license fees are
only required for non-academic or site-wide use.

Proprietary: One is required to purchase the software (or a license key) prior to
being allowed to use it.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 17

Terminology

I Multi-tasking refers to the ability of an OS to execute several processes (“tasks”)
pseudo-simultaneously on one or more CPUs.

I In preemptive multi-tasking, the OS decides when a process is interrupted from
being executed by a CPU and another process is re-assigned to a CPU. In
general, the switching times are so short that it gives the appearance of
executing all processes in parallel.
The short time sections in which a process is executed are called a “time slice”.
The length of the time slices depends on the priority or the usage of resources
like memory or I/O.

I In cooperative multi-tasking, a process currently controlling the CPU needs to
offer control to other processes in order to allow them to be executed. It can hog
the CPU, though.

I Multi-user refers to the ability of an OS to administer two or more local or remote
users, and to protect them (and their processes) from each other.

I Multi-processor refers to the ability of an OS to administer two or more CPUs.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 18

Pros of Unix/Linux

I Unix/Linux is a true multi-tasking, multi-user and multi-processor OS.
I Unix/Linux almost never freezes under normal use. (Normal use means anything

but changing the OS itself.)
I Unix/Linux machines are known to run for months without a reboot. (The main

issue in Unix/Linux stability is the hardware it runs on!)
I Unix/Linux scales well across a wide range of hardware resources
I Unix/Linux can be fully customized to fit specific needs.
I Linux is very portable, and runs on virtually any computer hardware.
I Tons of Internet documents provide help and advice.
I Linux is entirely cost- and license-free.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 19

Cons of Unix/Linux

I Windows and Mac OS X have a GUI (graphical user interface). Traditionally,
Unix/Linux has sported a CLI, a command line interface. However, nowadays
also Linux distributions come with a variety of GUI systems.

I Many features of Unix/Linux are of a technical nature, and require patience to
learn, and experience to fully understand.

I To some extent, Linux still requires that you learn to perform administration tasks
like adding new users and installing software. (Recent Linux distributions, like
Ubuntu Linux, have made maintenance relatively easy, though.)

I There is no central support for Linux unless you buy it through companies
tailored to provide it.

I Finally, you use Linux at your own risk. There is nobody to sue!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 20

Early History of Unix

I In 1965, Bell Labs was working with General Electrics on an OS called “Multics”,
but the project did not get anywhere.

I In 1970, Ken Thompson of Bell Labs implemented a bare-bones OS for a PDP-7,
based on his ideas and ideas of Dennis Ritchie.

I Brian Kernighan, also with Bell Labs, suggested to call the new OS “Unix”, as a
pun on Multics.

I In 1973, after Dennis Ritchie had developed the C programming language, Unix
was rewritten and implemented almost entirely in C.

I When AT&T, which owned Bell Labs, was forbidden from competing in the
computing market, it licensed Unix very cheaply to several universities in the late
70’s.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 22

History of Linux

I In 1984, Richard Stallman left MIT and founded GNU. His mission has been to
work on “free” software.

I Linus Torvalds, an undergraduate student at Helsinki, was dissatisfied with
“Minix”, a Unix-like OS written by Andrew Tanenbaum.

I In 1991, Linus Torvalds had a kernel but no programs of his own, Richard
Stallman and GNU had programs but no working kernel.

I By combining the necessary programs provided by GNU and a kernel, Linux was
born.

I In subsequent years, people from around the world joined in the work on Linux.
I As of today, nearly 1.000 developers are involved in a single kernel release.
I Linux was officially in Beta testing until the release of version 1.0 on 14th March,

1994.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 23

Login Procedure

I Turn on your Unix box. You will then see a so-called “login prompt”, which will
state (perhaps in addition to other things) the name of the computer and the word
login:.

I Most likely, the login prompt will be neatly wrapped inside a graphical login and a
graphical session will be started after login.

I Now you should type your user name, and then press “return”.
I A “password prompt” will appear after which you should type your password

(“pwd”), and then press the “return” key again.
I Depending on the login system that is used your password will not be displayed

in plain text while typing. Usually the password is obfuscated by replacing each
character with * or other symbols, or not printed at all (e.g., for a terminal login).

I If the system re-displays the login prompt then the uid/pwd combination that you
entered was unknown to the systems. E.g., you might have mistyped your
password. Try again.

I The login procedure is necessary in order to tell the system who is using it.
Recall that Unix is a multi-user system!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 25

Changing Your Password

I After your first-time login, your very first task is to change the password assigned
to you by the creators of your Unix account.

I The command or procedure to be used for changing a password is
site-dependent.

I To change the password for your Unix account here at the Department of
Computer Sciences, use the command passwd.

I You will have to enter your current password. You will then be asked for a new
password, and will have to confirm the new password.

I If the password chosen is accepted by the system then it will take effect within a
few moments.

I Note that this will change the password for your account and all Unix machines of
the Department (and not just the password for a single computer terminal). So no
matter which computer in our network you log on to, use the new password.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 26

A Note on Passwords

I The password is the authentication procedure used by the computer to verify that
that someone logging in with your uid is really you.

Warning
If someone else obtains your password, they can use and misuse the computer,
including manipulating or destroying your data, or even performing illegal activities in
your name.

I Unfortunately, in such cases, it is difficult to find out who the real culprit was, and
you might be subject to prosecution.

I Also, any computer system, no matter how secure it is from network or dial-up
attack, Trojan horse programs, and so on, can be fully exploited by an intruder if
he or she can gain access via a poorly chosen password.

I Thus, by choosing a poor password, you do not only put at risk the security of
your own data but create a security hazard for the entire local network.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 27

Poorly Chosen Passwords

Do not use
I your login name in any form (as-is, reversed, capitalized, doubled, etc.).
I your first, middle, or last name in any form.
I your spouse’s or child’s name.
I other information easily obtained about you, like license plate numbers,

telephone numbers, social security numbers, etc.
I a word contained in dictionaries, spelling lists, or other lists of words, even when

using “obscure” languages or words.
I names of science fiction characters, chemical names, astronomical objects, etc.

If you can think of it, so can someone else!
I a password shorter than twelve characters.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 28

Recommendations Concerning Passwords

I Use a password with at least twelve characters in total, and at least two
non-alphabetic characters (digits and/or punctuation characters).

I Mix lower-case and upper-case characters.
I Keep in mind that German and English keyboards have different layouts and

provide different keys.
I If you use different-language keyboards then it may make sense to restrict your

password to characters contained in the common intersection of the characters
provided by the corresponding keyboards.

I Good passwords are based upon non-dictionary words.
I A good way to pick a password is to use the first letter of a phrase that you can

easily remember. E.g., “i love Penguin Power” would translate to “ilPP”.
I Another (possibly weaker) method is to intentionally use misspelled words, like

“pssawodr”. (Note: transposing only two characters is not enough!!)

Important Advice
In any case, do not write down your password, and do not hand it to anybody else!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 29

Getting Started with Unix

I Unix, and hence also Linux, is traditionally a command-line driven OS. That is,
most applications are run from a so-called “prompt”.

I Be warned that Unix is a powerful OS that might turn out to be potentially
dangerous for the uninitiated: Always check your command lines before hitting
“return”!!

I Unix comes with extensive (online) documentation about pretty much everything
you could want to know.

I The first command you should be aware of is man: It lets you display online
manual pages.

I In case of doubt: RTFM — “read the fabulous manuals”! (Yes, indeed!!)
I In particular, please make sure to consult the department’s local rtfm-server

https://rtfm.cosy.sbg.ac.at/doku.php before bothering anyone else with questions
about the set-up of the departmental computer network that would quickly be
answered by studying the documentation available.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 31

https://rtfm.cosy.sbg.ac.at/doku.php

Unix Text Terminal

I A text terminal (text console) is a computer interface for entry and display of text.
It is the fundamental concept of interaction with a Unix system.

I Non-graphical programs are usually bound to a text terminal to receive
(keyboard) input and to display program output and error messages.

I So-called “virtual” terminals are provided on Unix systems that utilize a graphical
user interface (GUI) or graphical desktop environment. Such a terminal is a
graphical application (usually a single window) that mimics a text terminal and is
used to execute non-graphical programs.

I In a GUI the virtual terminal can commonly be found in menus titled
“Accessories” or “System Tools”. (Look for xterm.)

I Unix commands discussed in this course are to be entered in a (virtual) terminal
except when explicitly stated otherwise.

I Note that any Unix command is case-sensitive: cat and Cat are different
commands! (In practice, Unix rarely makes use of different cases.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 32

Unix Shell

I The first thing you will see in a Unix text terminal is the prompt.
I A prompt may consist of as little as one character, e.g., “>” or “:”, but it might

also display more information like “79 held@ursus->”.
I In any case, as its name suggests, it is prompting you to enter a command. Note

that every Unix command has to be completed by pressing the “return” key.
I The program that displays the prompt is called a shell.
I The shell’s job is to interpret the commands and run the programs you request.
I Each user is allocated his/her own shell at login.
I Since Unix was designed to be a multi-tasking and multi-user OS, it can run

multiple shells.
I Shells can also be programmed in their own language, and programs written in

that language are called shell scripts.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 33

Unix Shell

I There are two major types of shells in Unix: Bourne shells and C shells.
I Bourne shells are named after their inventor, Steven Bourne, who wrote the

original Unix shell sh.
I C shells, csh, which were originally implemented by Bill Joy, are also very

common.
I Traditionally, Bourne shells have been used for shell scripts and compatibility with

the original sh, while C shells (csh, tcsh) have dominated interactive use.
I Most Linux systems come with a Bourne shell called bash (for “Bourne Again

Shell”) as default shell.
I Bash shells combine all the standard programming features of Bourne shells with

many interactive features commonly found in C shells.
I In recent years, the functional differences between tcsh and bash have blurred,

and it is mostly a matter of taste which shell is used.
I Your Unix account will be set up with bash as default shell.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 34

Files

I Common to every computer system invented is the file: it holds a single
contiguous block of data.

I A filename on a Unix machine can be up to 256 characters long.
I Although Unix filenames can contain almost any character, practical standards

dictate that only the following characters are to be used in filenames:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
a b c d e f g h i j k l m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9 . _ -

I The use of Germanic “umlauts” in file names may cause troubles for certain
applications.

I You should never use other punctuation characters, brackets or control
characters in filenames. Also, never use the space or tab character in a filename.

I Needless to say, filenames should be chosen such that they bear some
connotation with the data they contain.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 35

Directories

I Files are organized within directories.

/

bin home lib usr tmp var

bash cowi1 cowi2 bin include

man sshaugsten held

public-www

held.html

bin

cl.shpics

tmp

f.txt

img1.jpg img2.jpg img3.jpg

data

poly a.pnt

p.poly q.poly

I At any time, a user is said to be
“in” one of the directories.

I The first (top-most) directory is
the root directory, denoted by the
symbol /.

I Every file and every directory
lives in / or can trace its location,
or path, through a hierarchy of
directories to a directory that lives
in /.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 36

Directories: Absolute Pathnames

I The location of any file can be specified by its absolute pathname, or by a relative
pathname.

/

bin home lib usr tmp var

bash cowi1 cowi2 bin include

man sshaugsten held

public-www

held.html

bin

cl.shpics

tmp

f.txt

img1.jpg img2.jpg img3.jpg

data

poly a.pnt

p.poly q.poly

I Absolute paths always start with /.
I The names of directories in a

path are separated by /.
I E.g., absolute path to f.txt:
/home/cowi1/held/tmp/f.txt

Note
The first / in an absolute path is the
“name” of the root directory, while all
other / symbols are meta symbols
used to limit the names of directories.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 37

Directories: Absolute Pathnames

I Relative paths are relative to the directory you are currently in.

/

bin home lib usr tmp var

bash cowi1 cowi2 bin include

man sshaugsten held

public-www

held.html

bin

cl.shpics

tmp

f.txt

img1.jpg img2.jpg img3.jpg

data

poly a.pnt

p.poly q.poly

I Hence, a relative path depends
on your current directory and,
likely, will not make sense when
your current directory has
changed.

I The parent directory of the
directory you are currently in is
specified by .. (that is, by two
dots).

I E.g., relative path from the
directory pics to the file p.poly:
../../data/poly/p.poly

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 38

Listing of Basic Unix Commands

Directory functions:
I pwd

short for “print working directory”; this shows you the directory
you are currently in.

I cd <dir>
short for “change directory”; this allows you to “move into the
directory” named <dir>.

I cd ..
move into the parent directory of your current working directory.

I cd
move into your home directory.

I ls
lists files in the current working directory.

I ls <dir>
lists files in the directory named <dir>.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 39

Listing of Basic Unix Commands

Listing the contents of files:
I more <file>

for viewing files; the file <file> will be displayed in sections that
fit into your screen/window.

I less <file>
similar to more, but with more functionality.

I cat <file1> ...
short for "concatenate"; this is the simplest way of viewing one or
more files.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 40

Listing of Basic Unix Commands

Creating and moving files and directories:
I cp <file1> <file2>

short for "copy"; copies files and directories.
I mv <file1> <file2>

short for "move"; moves files and directories.
I mkdir <dir>

short for "make directory"; creates a new directory.
I rm <file>

short for "remove"; deletes a file – use with caution!
I rmdir <dir>

short for "remove directory"; deletes an empty directory – use
with caution!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 41

A Word of Caution

I To prevent accidents, rmdir will refuse to remove directories that contain files
and/or other directories.

I In any case, you should be very careful with cp, mv, and rm!

Warning

1. Note that neither cp nor mv checks whether a file already exists, and will remove
any old file in its way.

2. Furthermore, note that Unix does not provide any system-inherent means for
recovering files that were accidentally removed.

I However, there is a way to make these commands ask for a confirmation: all
three of these commands accept the -i option, which makes them query the
user before actually performing the operation.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 42

Listing of Basic Unix Commands

Finding files and commands:
I man <app>

display the online reference manual for the application.
I which <app>

tells you where to find the binary of an application.
I locate <pattern>

lists files in databases that match a pattern.
I whatis <app>

displays manual page descriptions.
I apropos <app>

searches the manual page names and descriptions.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 43

Working with Unix
X Window System
Basic Security Issues
Getting the Job Done
File Editor

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 44

X Window System

I The X Window System is a network-transparent window system for producing
graphical user interfaces (GUI’s) in a networked environment.

I It is maintained by the X.Org Foundation, which was founded on
22-January-2004.

I The X Window System standard was originally developed at MIT’s CS
Laboratory, with development work started in 1984. Since its 11th release, in
1987, it has been considered stable and, thus, got to be known as “X11”.

I All rights to it were assigned to the X Consortium, which was the predecessor of
the X.Org Foundation, on 01 January 1994.

I It is commonly called “X11R7”, to denote that the current release is version 11,
release 7. (The current version X11R7.7 was released on 06-June-2012.)

I X11 is the industry standard for window systems on bitmap displays linked to
Unix/Linux machines.

I Local and network-based computing look and feel the same, and distributed
applications can be realized easily.

I Mac OS X does no longer support X11 directly, but X11 server and client libraries
for OS X are available from the XQuartz project. (Apple is a contributor to the
XQuartz project and seems to support the integration of X11 into OS X.)

I For Windows 8/7/Vista/. . ., Xming has provided X11 Servers.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 46

http://www.x.org

Client-Server Model

I X11 is based on the client-server model.
I An X client is an application or program, such as a clock or a calculator.
I The X server acts as an intermediary between the client (application) and the I/O

devices (e.g., keyboard and display).
I The server takes information from an input device, such as the keyboard or a

mouse, and sends it to the client. It also takes information from the client and
sends it to the graphics hardware.

I Typically, the server and a client run on the same workstation.
I Clients, however, can be run from other machines via a local network or even via

the Internet, involving machines with different operating systems.
I Note that such a “remote display” requires you to enable X11 forwarding.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 47

X Protocol

I The communication between the X server and an X client is carried out via the
standardized X protocol.

I The X protocol defines a client-server relationship between an application (the X
client) and its display (the X server).

I The X protocol hides the peculiarities of the OS and the underlying hardware.
I This masking of architectural and engineering differences simplifies X client

development and provides the springboard for the X Window System’s high
portability.

I The X server is highly portable allowing support for a variety of languages and
operating systems.

I X clients also have a high degree of portability.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 48

Window Manager and Desktop Environments

I Unix and X11 allow you to interact with your computer via a variety of different
graphical features, and, most notably, via so-called windows.

I A window manager is essentially the component which controls the appearance
of windows and provides the means by which you can interact with them.

I Virtually all windowing systems allow you to move, resize, maximize and also to
minimize/iconify windows, i.e., to shrink a window to a small icon when it is not
needed.

I Most window managers are regular (albeit complex) X client programs, and a
variety of different GUI’s has been built for X11.

I Popular window managers include Xfwm (default for Xfce), KWin (default for
KDE), Metacity (default for Gnome 2.x), Mutter (default for Gnome 3), IceWM
(compatible to Gnome and KDE), Marco (default for MATE), and Compiz (based
on OpenGL rather than X!).

I So-called desktop environments, such as Gnome, KDE, Xfce, Unity or MATE,
aim to provide an even more complete interface to the OS than a standard
window manager.

I E.g., desktop environments offer a file manager, task field, toolkit, options for
configuring the system, menus for running applications, etc.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 49

Users and Groups

I Every user has a personal home directory, typically /home/<username> or
some variation thereof, in which their own files are stored.

I Other than the super-user (sysadmin), every other user has limited access to
files and directories.

I Users are also divided into so-called groups — a user may belong to several
groups.

I Every file on a system is owned by a particular user and is also associated with
one of his groups.

I Use ls -l to list the user and group information for files.
I The ownership of files can be changed by using the chown command.
I Only the owner of a file (or the super-user) may change the ownership

information of that file. For security reasons, sysadmins prefer to disable the
chown command.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 51

File Protections

I Every file and directory has access flags specifying what kind of access that user
and group has to the file.

I This is an extract from a listing of my home directory:

drwx------ 2 held inst 512 Oct 10 16:39 Mail/
-rwx------ 1 held inst 7 Oct 10 18:56 up.sh*
drwxr-x--- 12 held compgeo 512 Sep 6 11:04 papers/
drwx------ 54 held inst 1024 Sep 22 17:06 work/
drwx--x--x 9 held inst 1024 Oct 10 10:17 public/
-rw------- 1 held inst 149960 Sep 8 11:01 foo.txt

I The nine characters after the d or - are interpreted as three sets of three bits
each. The first set refers to the owner’s permissions; the next to permissions of
others in the user-group of the file; and the last to all others.

I Within each set, the three characters indicate the permissions granted. For a file:
r: Read permission, i.e., the right to gain access to the data stored in the file.

w: Write permission, i.e., the right to modify the data of the file and to delete the
file.

x: Execute permission, i.e., the right to have the file (program, script) executed
by the OS.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 52

File Protections

I Within each set, the three characters indicate the permissions granted. For a
directory:

r: Read permission, i.e., the right to see the contents of the directory, e.g., by
issuing the ls command. (It does not affect the readability of its files,
though!)

w: Write permission, i.e., the right to create new files/subdirectories in the
directory and to delete the directory. (It does not affect the writeability of its
already existing files, though!)

x: Execute permission, i.e., the right to access the directory and its
files/subdirectories, e.g., by issuing the cd command.

I The r and w privileges of a directory affect only the directory for which they are
speficied but have no effect on its subdirectories.

I A missing x privilege of a directory disables all operations that require the name
of the directory to be specified in the absolute/relative path to a file/subdirectory,
such as access to its files/subdirectories from outside of the directory. Hence,
whether or not an x privilege is specified for a directory does have an impact on
the accessibility of all its subdirectories and the files contained therein!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 53

File Protections

I This is an extract from a listing of my home directory:

drwx------ 2 held inst 512 Oct 10 16:39 Mail/
-rwx------ 1 held inst 7 Oct 10 18:56 up.sh*
drwxr-x--- 12 held compgeo 512 Sep 6 11:04 papers/
drwx------ 54 held inst 1024 Sep 22 17:06 work/
drwx--x--x 9 held inst 1024 Oct 10 10:17 public/
-rw------- 1 held inst 149960 Sep 8 11:01 foo.txt

I The next entries after the file protections show (from left to right)
I the number of files contained in a directory,
I the owner and group of the file/directory,
I the number of bytes occupied by the file or directory entry,
I the last time that contents of the file/directory were modified, and
I the name of the file or directory.

I If ls -F is used then a trailing slash (/) indicates a directory, an asterisk (*)
indicates an executable file, and an at-sign (@) indicates a symbolic link.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 54

Modifying File Protections

I The chmod command is used to change the protections of a file or directory:
chmod [-R] [u|g|o|a][+|-|=][r|w|x|s|t] <file>.

I Check the online documentation for details on the “s” option (setuid-on-execution
or setgid-on-execution permission) and the so-called sticky bit “t”.

I The -R options means recursive, i.e., to traverse subdirectories recursively.
I Permission bits are often represented in their octal form, where a read permission

corresponds to 4, a write permission to 2, and an execute permission to 1.
I For instance, chmod 0754 <filename> explicitly sets the permissions for
<filename> to rwxr-xr--. (The leading 0 could be ignored, but is preferred in
order to be explicit; it can take on a meaning.)

I The default protection usually is set to 0644, meaning rw-r--r--.
I The shell command umask can be used to set the default user file creation mask.

E.g., the command umask 077, to be specified in an init file, ensures full privacy.
(See the documentation for details.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 55

Unix Commands for Modifying File Protections

Changing ownership and protections:
I groups

shows the groups you belong to.
I newgrp <group>

short for "enter new group"; changes the current group ID. (Only
sysadmin can establish a new group, and users are allowed to
enter only those groups to which they belong.)

I chown <usr[:<group>]> <file>
short for "change owner"; used to change who owns a file. (Often
disabled for security reasons.)

I chmod <perms> <file>
short for "change mode"; used to grant or revoke file access
permissions.

I umask <perms>
set the default file protection.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 56

Password File

I If a system like LDAP is not used then, typically, the only place in a Unix system
where a user name is registered is in the password file /etc/passwd.

I This is one line of a password file:
held:x:7010:7001:Martin Held:/home/dijkstra/held:/bin/tcsh

It lists (from left to right)
I the user’s login name,
I the user’s encrypted password (or an x if a shadow password file is used,

see next slide),
I the user’s user identification number, UID,
I the user’s group identification number, GID,
I the user’s full name,
I the user’s home directory, and
I the shell that is started when the user logs in.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 57

Shadow Password File

I The problem with traditional passwd files is that they have to be accessible by a
variety of application programs in order to allow them to extract information about
the user, such as the user’s full name.

I This means that everybody could see the encrypted passwords
I A typical encrypted password is obtained by applying a one-way hash function

which is known to produce a unique result for every password.
I Trying to guess a password from the hash can only be done by encrypting every

possible password and comparing it to the password stored, and is therefore
considered computationally expensive but not impossible.

I A so-called dictionary attack will simply try tons of words until a match is found.
I In order to avoid making encrypted passwords public, the actual encrypted

passwords are stored in a shadow password file, /etc/shadow, which is only
accessible by the system.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 58

LDAP

I LDAP stands for Lightweight Directory Access Protocol.
I LDAP offers a directory service that can be used to store and query information

about the individuals in an organization.
I LDAP can be used to manage different kinds of information relating to these

individuals, like name, contact info, and office location, but also passwords and
security keys.

I Utilizing the stored authentication information and an authentication procedure,
LDAP can be used to authenticate users when they log on to a computer in the
network.

I LDAP is a protocol, not a database. LDAP implementations usually access a
special kind of database, optimized for fast reads. (OpenLDAP for example uses
the Sleepycat Berkeley DB.)

I LDAP is used at our department for user account management.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 59

Login Procedure

I You use the login command at the beginning of each session to identify
yourself to the system. Login asks for your user name and your password.
Where possible, echoing is turned off while you type your password, so it will not
appear on the written record of the session.

I If you make several mistakes in the login procedure, all login attempts may be
logged in a login log, and you may be silently prevented from further logins for a
certain period of time.

I Typical diagnostics include "Login incorrect" (if a user name and password
cannot be matched), "Not on system console" (if root login is attempted from an
inappropriate source), "No directory!" (if the user’s home directory cannot be
found; contact your sysadmin), and "No shell" (if the system cannot execute the
shell named in the password file; contact your sysadmin).

I At login time, the UID, GID, and home directory are initialized, and the command
interpreter (shell) is started.

I You can temporarily become another user by using the set user command, su.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 60

Getting the Job Done

I Unix is a powerful system for those who know how to use its power.
I We start with examining some of the commands and features that make it easier

to “get the job done” in a Unix environment.
I Recall that Unix sports several shells which do not offer an identical functionality.
I Unless noted otherwise, the commands listed in the subsequent slides should

work with tcsh and bash.
I At our Department, bash is assigned as the standard login shell to new users.

(Currently a user needs to ask our sysadmins to change the LDAP entries if (s)he
would like to switch to another default login shell.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 62

Wildcards

I The ls command can produce a lot of output if there is a large number of files in
a directory.

I The asterisk “*” and the question mark “?” allow you to define names that match
some given pattern. While “*” matches any number of characters, “?” matches
exactly one character. E.g.,

ls ?oop*.c

will list “loop_X11.c” but it will not list “main_loop_X11.c”.
I Please see the documentation on more details for pattern matching.
I Always keep in mind that the asterisk and the question mark have a special

meaning for a shell!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 63

Command-Line Editing

I It is important to note that the arrow keys serve an important purpose in a tcsh
and bash shell: They allow you to manipulate shell commands.

I The left and right keys are used for moving backward/forward inside a command
that you have typed (but not yet completed by pressing the “return” key).

I The up and down keys are used for moving upward/downward in the
command-line history.

I Thus, you can recall a command typed previously, and can then edit it (in a style
akin to Emacs) as needed.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 64

Name Completion

I Whenever a filename is needed, you may try typing the first few characters of the
filename, and then pressing the “tab” key.

I The shell will then look for a file that starts with those characters and will
complete the filename, if it exists and is unique, or beep in order to warn you.

I Similarly for directories.
I If more than one filename matches (and if the shell does not display all possible

matches):
I In a tcsh, typing “C-d” (i.e., pressing “control” and “d” together) will cause

all possible completions to be displayed if the string that you typed does not
allow for a unique completion.

I In a bash, press “tab” a second time to get a list of all possible completions.
I A similar concept works in tcsh and bash shells for command completions.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 65

History Expansion and Substitution

I Both tcsh and bash support history expansion, i.e., the inclusion of words from
the history list into the input stream.

I This makes it easy to repeat commands, insert the arguments to a previous
command into the current input line, or fix errors in previous commands quickly.

I The history command lists a (user-defined) number of previously executed
commands in chronological order.

I The simplest ways to recycle previous commands are listed below:

!n refers to the command numbered n,
!-n refers to the current command minus n,
!! refers to the previous command; identical to !-1,
!<string> refers to the most recent command that started with <string>.

I Both shells support more complex history substitutions — see the manual pages
for details.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 66

Standard I/O and I/O Redirection

I Unix provides three standard input/output channels that allow a program to
communicate with you: standard input (stdin), standard output (stdout), and
standard error (stderr).

I Stderr is virtually always connected to a terminal in order to have a human read
the message.

I Data written to stdout can be redirected to a file by means of “>” (greater sign).
I For instance, ls > dir_listing.txt causes the directory listing to be stored

in the file dir_listing.txt.
I If the target file does not exist then it is created; if it exists then its data gets

overwritten!
I When using “>>”, data is appended to a file.
I An interactive program, like a shell, reads commands from stdin.
I Similarly to output redirection, instead of reading input from your keyboard, a

program can be told to read its input from a file by using the “<” sign.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 67

Pipes and Filters

I Pipes can be used to make one program read its input from the output of another
program.

I For instance, ls /usr/bin | more lists the directory /usr/bin in a
page-wise mode by feeding the output of ls as input into more.

I The vertical bar “|” indicates the pipe.
I A useful tool in conjunction with pipes are filters.
I A filter is a program that reads data from stdin, manipulates it, and outputs to
stdout.

I Typical (albeit simple) filters are cat, sort, head and tail.
I For instance, ls /usr/bin | tail will only display the last (ten) lines of the

directory listing.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 68

Tape Archives

I Several tasks, such as the creation of so-called backups, require the creation and
manipulation of duplicates of certain subsets of your files.

I When many files are packed together into one, this packed file is called a tape
archive. Typically, (tape) archives have the extension .tar.

I The following command packs all files of <directory> into the file filename:
tar -cvf <filename> <directory>.

I It is common practice to use <directory>.tar as <filename>.
I It is advisable to watch for any error messages that tar reports.
I Also, list the file and check that its size is appropriate for the size of the directory

you are archiving.
I A tar file is unpacked by the command tar -xvf <filename>.
I Unpacking <filename> will re-create your directory with all its files intact.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 69

File Compression

I One of the best utilities for lossless compression is gzip, due to its good
compression rate and its wide availability on most platforms.

I It is based on the Deflate Algorithm by Phil Katz, which uses Lempel-Ziv 77 and
Huffman encoding.

I The default extension for a gzip-compressed file is .gz.
I The command gzip [-<rate>] <filename> causes <filename> to be

replaced by its compressed version <filename>.gz, applying the compression
level <rate>.

I Maximum compression is requested by 9 while 1 applies least compression.
I The greater the compression, the longer it takes to encode and decode a file.
I Compressed files can be restored to their original form by using gunzip.
I The gunzip utility can decompress files created by gzip, zip, and compress.
I It recognizes the special extensions .tgz and .taz as shorthands for .tar.gz

and .tar.Z, respectively.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 70

File Compression

I bzip2 is another compression tool that generally provides even higher
compression ratios than gzip, typically at the expense of a (significantly)
increased processing time.

I The default extension for bzip2-compressed files is .bz2.
I The equivalent to gunzip is bunzip2.
I Both, gzip and bzip2, can be invoked directly with the tar-command by using

the flags z and j, respectively.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 71

Searching for Files

I The command find can be used for searching for files.
I Basically, the find utility recursively descends the directory hierarchy and, for

each path, seeks files that match a Boolean expression.
I For instance, find . -name ’*.c’ will list all files with the extension .c,

starting from the current working directory.
I Note that find actually traverses a directory hierarchy; it should be expected to

be slow when applied to large file systems!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 72

Searching within Files

I The command grep does a line-by-line search through a file and prints out those
lines that contain a user-specified pattern.

I Its command syntax is grep [options] <pattern> <filename>.
I For instance, grep ’Linux’ *.c searches for all occurrences of the string

’Linux’ in the files with extension .c, in the current working directory.
I The option -i instructs grep to perform a case-insensitive search.
I Be careful when using the characters $, *, [, ^, |, (,), and \ in the

pattern — they are also meaningful to the shell!
I It is safest to enclose the entire pattern in ’. . .’, i.e., in single quotes. (Single

quotes are located on the same key as # on a German keyboard.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 73

More Information Commands and Utilities

I The wc utility, shorthand for word count, lets you count the number of characters,
words and lines in a file:
wc [-clw] [<filename>].

I If <filename> is omitted then wc operates on stdin.
I Piping the output of ls to wc yields a simple way for counting all files in a

directory with, say, the extension .c: ls -l *.c | wc -l.
I The diff utility, diff [options] <filename1> <filename2>, compares

the contents of <filename1> and <filename2> and writes a list of differences
to stdout.

I No output will be produced if the files are identical.
I It operates on a line-per-line basis, but is reasonably smart and attempts to

determine the smallest set of differences (deletions and insertions) that would
allow to transform the contents of <filename1> into those of <filename2>:
“Levenshtein distance”.

I Details of its use and its diverse options are explained in its manual page.
I The touch command updates the time stamps of files.
I It creates an empty file if no file with the name specified as its argument exists.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 74

More Information Commands and Utilities

I The sort command, sort <filename1> [<filename2> ...], sorts lines
of all the named files together and writes the result to stdout.

I The comparisons are based on one or more sort keys extracted from each line of
input. The default sort key is the entire input line, relative to alphabetical order.

I The tr utility copies from stdin to stdout with substitution or deletion of
selected characters.

I Instead of specific character strings, it can also be applied to classes of
characters, such as letters (alpha), numbers (digit), punctuation characters
(punct), etc.

I For instance, the following command translates all lower-case characters of
<filename1> to upper-case and writes the result to stdout:
tr "[:lower:]" "[:upper:]" < <filename1>

I The next example outputs all words of <file1> in alphabetical order to
<file2>:
tr -cs "[:alpha:]" "[\n*]" < <file1> | sort > <file2>

I The tr utility can be used for a (very simple!) encryption, which dates back to
Caesar (100AD–44AD):
echo "alea iacta est" | tr ’A-Za-z’ ’E-ZA-De-za-d’
yields
epie megxe iwx.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 75

Soft and Hard Links

I You may find it convenient to have one file in two different directories at the same
time. In order to avoid creating an administrative nightmare by simply copying the
file, Unix provides the concept of links.

I The command ln -s <orig_filename> <new_filename> creates a soft
link, also known as symbolic link (symlink), from <new_filename> to
<orig_filename>.

I The file <new_filename> does not contain any actual data but only the path of
the file it is linked to.

I A program operating on a link will actually operate on the file (or directory)
referenced.

I Links are also applicable to directories, and can span file systems.
I Note: If the object referenced by a symlink is deleted then the symlink constitutes

a dangling reference.
I Unix also provides hard links — see the manual page.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 76

Introduction to Multi-Tasking

I A process is a command/program/shell-script that is being executed in memory.
I After a process terminates it is removed from memory.
I Every process is associated with a unique process identification number (PID).
I Every process is owned by somebody; typically the user who initiated the

process.
I If a process wants to access a file, its ownership is compared to that of the file, in

order to check whether an access is permissible.
I Typically, several dozen processes are running simultaneously at any time when

a user is logged in.
I CPU time and other resources are distributed in a so-called time-sharing mode

among different processes.
I If the main memory is not sufficient to hold all processes, parts of processes will

be temporarily moved (“swapped”) to auxiliary memory like external disks.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 77

Job Control

I Job control refers to a shell’s ability to control processes and to put them into the
background or bring them to the foreground again.

I Unless noted otherwise, all job-control commands refer to processes run in the
shell in which the command is issued. (To be precise, those commands are
shell-builtins.)

I Pressing ^c (“control” and “c”) kills a process, i.e., it terminates it for good.
I Pressing ^z stops a process, i.e., it suspends its execution.
I The status of a process can be checked using the jobs or ps command. For

instance, the jobs command might generate the following listing:
[1] + Suspended dummy.sh.
The number in brackets is the job number of the process.

I A stopped process can be terminated for good by referring to its job number in
the kill command: kill %1.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 78

Job Control

I Typing fg causes a stopped process to resume execution in the foreground.
I Typing bg causes a stopped process to resume execution in the background.
I A process can also be put into the background right when it is started by adding

a trailing ampersand (&) to the command: xemacs foo.c &.
I Note that a process run in the background is immune to ^c and ^z!
I Such a process can be killed by using the kill command, or by putting it into

the foreground again and then hitting it with an interrupt (^c).
I The kill command, kill <PID>, kills the process whose PID was specified.
I The PID can be listed by means of the ps command.
I If killing a process does not seem to work, use the option -9 as a last resort:
kill -9 <PID>.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 79

Obtaining System Statistics

I The du command counts the disk space a given directory and all its
subdirectories take up. E.g., du -h --max-depth=1 lists the disk space
consumed.

I Note that it depends on the system whether du reports disk usage in units of 1
byte, 512 bytes, or 1024 bytes — check your manual pages!

I The df command, short for disk filling, reports for every filesystem (that is
mounted) the total amount of disk space, the amount in use, and the amount
available.

I The uptime command prints the current time, the length of time the system has
been up, the current number of users, and the average number of processes in
the run queue over the last 1, 5, and 15 minutes.

I The w command displays the current users of the system, and what they are
doing. Basically, it combines the information given by uptime and who.

I The top command displays the top CPU-consuming processes on the system
and periodically updates this information.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 80

A Note on Disk Space

I Please note: Disk space is precious even though a 1TB disk can be bought for
less than 100 Euros!

I The key bottleneck is the back-up system!!
I We do not have a fixed disk quota, but we monitor the consumption of disk space.
I Please react if one of our technicians sends an email and requests that you

reduce the amount of data stored.
I If you get such a warning:

I Recall du -h --max-depth=1 and use it!
I Check the cache of, e.g., Firefox, Ubuntu Tracker, Java, Google Earth.
I Check the wastebasket if you use xfce (GNOME) or kde.

I If you do not react despite of email warnings then access to your account will be
suspended!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 81

How to Deal with Problems

1. Check your doing if things do not seem to work the way you expect them to work.
This is particularly important for late-night sessions . . .

2. Read manual pages and other sources of documentation to confirm that your
intended use of a command/program matches its described use.

3. Think twice before labeling any problem as a “bug” in someone else’s software!

4. If you get an error message, make sure to take enough time to digest the
message completely. And, needless to say, act appropriately.

5. Check the available sources of information, such as online documentation and
news groups, for whether your problem is known. If it is known then somebody
else might have already found (and published) a fix for it.

6. Never post to online forums (like news groups) without prior checking whether
your problem is a known problem!

7. As a last resort, seek help by others (sysadmin, news groups, etc.).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 82

How to Deal with Bugs

I If you are absolutely convinced that you have found a genuine bug then you have
to make sure that the appropriate information gets to the appropriate place.

I Check the documentation in order to see who wrote the code, and to whom to
address bug reports.

I Please be specific when reporting any problem/bug.
I In particular, include as much detail as possible on what you think is wrong, when

the problem occurred, on how you used the command/code, in which
environment it was used, etc.

Politeness Wins!
In any case, be polite to those to whom you report a problem!! Always remember that
Linux is based on volunteer work! (And when dealing with a commercial enterprise it
will not help your case either when you piss off their folks . . .)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 83

File Editor

I A file editor is a tool for manually entering or modifying data in files. (Some
modern editors are much more powerful, though!)

I Terminal-based editors:
vi: Powerful Unix editor.

nano: Simple text-based editor; it is the license-free sibling of pico.
I GUI-based editors with a look&feel similar to MS-Windows:

gedit: Standard editor of the GNOME environment.
kwrite: Standard editor of the KDE environment.

I Two more editors that can be run either in a terminal or GUI-based:
emacs/xemacs: Powerful and highly extendible editor.

vim/gvim: Extended versions of vi.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 85

File Editor

I Historically the standard text editor on Unix systems used to be ed. It is hardly
used any more, except in its streaming version, sed.

I Today’s standard Unix editor is vi.
I It is the only editor which is installed by default on any Unix system.
I Knowing vi is imperative for sysadmin work.
I However, new users (and many experienced users ;-) find vi unintuitive and

tedious to work with.
I Therefore, we provide basic information on XEmacs (and its close relative,

Emacs).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 86

XEmacs

I XEmacs is the second defacto-standard editor for Unix systems.
I It is a powerful tool for editing files, sending emails, compiling programs, etc.
I It is started by typing the command xemacs & in a shell. (Or xemacs foo.txt
& to edit the file foo.txt.)

I Like most editors, XEmacs uses the concept of a buffer : When you open a file for
editing, XEmacs copies the contents of the file into a memory region called a
buffer and works with this copy.

I XEmacs autosaves your buffer to prevent disaster in case of power loss or a
crash. The name of the autosave file is derived from the original file name by
enclosing it in a pair of hash marks “#”, e.g., #foo.txt# for a file foo.txt.

I Changes are written back to the actual file only when you save your work.
(Typically, the contents of the old file will be preserved in a file whose name is
derived by appending a tilde (“~”) to the original file name, e.g., foo.txt~.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 87

Basic XEmacs Concepts

I XEmacs is usually in insert mode; that is, text is inserted rather than typed over
(overwritten).

I You can toggle between insert and overwrite mode by pressing the “insert” key.
I This is a toggle switch, and pressing this key again gets you back to insert mode.
I XEmacs sports specialized modes that offer great support for editing specific

types of files, such as C codes, LATEX documents, etc. See the documentation for
details.

I Virtually every feature of XEmacs can be customized. (More on this later.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 88

XEmacs Commands

I Experienced users often find it more convenient to enter commands via the
keyboard than via manipulating menus.

I Virtually all XEmacs commands involve the “control” key, the “meta” key, or both.
I The standard notation is C-<key> for pressing and holding down the “control”

key and then pressing the <key> key.
I For instance, C-x C-s means holding the “control” key down and pressing the

“x” key, then releasing the “x” key and pressing the “s” key (while keeping the
“control” key pressed).

I Similar for M-<key> as a command that uses the “meta” key.
I On keyboards that do not have a “meta” key the “escape” (esc) key often takes

the part of the “meta” key. (However, the “escape” key normally is not kept
pressed while pressing a second key.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 89

Sample XEmacs Commands

C-x C-s : Saves the file in the current buffer.

C-x C-w : Prompts for a filename and then saves the file in the current buffer.

C-x C-f : Loads (and creates, if it does not exist) the file that you name.

C-x C-c : Exits XEmacs.

C-h t : Start XEmacs built-in tutorial.

C-d : Deletes the character the cursor is on.

C-k : Deletes the rest of the line.

C-y : Brings back (yanks) what was just deleted.

C-v : Scrolls down one screen at a time.

M-v : Scrolls up one screen at a time.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 90

Sample XEmacs Commands

C-s : Search (forward).

C-f : Moves the cursor forward, i.e., to the right.

C-b : Moves the cursor backward, i.e., to the left.

C-n : Moves the cursor down, i.e., to the next line.

C-p : Moves the cursor up, i.e., to the previous line.

C-a : Moves the cursor to the start of the line.

C-e : Moves the cursor to the end of the line.

M-< : Moves the cursor to the beginning of the buffer.

M-> : Moves the cursor to the end of the buffer.

M-x : Starts the dialog for more advanced commands; e.g.: M-x
query-replace as the long version for M-%.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 91

XEmacs Window Layout

I The XEmacs window comes with a series of menus at its top, like “File”, “Edit”,
“Options”, etc. Those menus provide easy access to some of the more common
commands used in XEmacs.

I Below the menus a row of icons for the most common commands is provided.
I The mode line and the command line are at the bottom of the XEmacs window.
I The mode line displays information about the buffer itself, such as the name of

the file being edited
I The command line is used to enter commands, path names, and file names from

the keyboard instead of using a mouse to click on the menus and icons.
I It is a matter of personal taste whether to use the mouse, menus and cursor

keys, or XEmacs commands.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 92

nano Overview

I nano is a small but relatively user-friendly text editor. It is a clone of pico under
GPL license.

I nano is keyboard-oriented and controlled with control keys:
C-o : Save file.
C-w : Search text.
C-k : Cut line(s) and store in buffer (clipboard).
C-u : Paste line(s) from buffer (clipboard).
C-x : Exit nano.

I nano displays a two-line "shortcut bar" at the bottom of the screen (so you don’t
have to remember all commands).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 93

nano

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 94

gedit

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 95

Advanced Use of Unix
Customization
Advanced Unix and Shell Programming

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 96

Shell Customization

I The design philosophy of Unix was to make it easy for every user to tailor the
Unix computing environment to their particular needs.

I This so-called customization is mainly done through configuration files.
I Configuration files are also known as “init files”, “rc files” (for “run control”), or “dot

files” (since the filenames often begin with a dot).
I Note that ls lists dot files only if the option -a is used.
I The most important configuration files are the ones used by the shell.
I Typically, a shell is configured by setting environment variables and defining

aliases.
I Needless to say, the appropriate configuration commands depend on the shell

used. We will cover instructions for both bash and tcsh.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 98

Shell Start-up and Initialization

I There are essentially two different types of a shell, depending on how it is run:
interactive shells and non-interactive shells.

I An interactive shell is a shell that presents a prompt to you and accepts
commands and other input. A typical representative of an interactive shell is a
shell run inside of an xterm.

I The login shell is a special type of interactive shell. It is started at login time, and
is the first shell that you will see.

I Non-interactive shells are used for executing commands in batch. A typical
representative of a non-interactive shell is a so-called (shell) script.

I In the sequel, ˜/<filename> refers to the file <filename> in your home
directory.

I As a meta warning, please be advised that the following slides will barely reveal
the most important aspects of customization.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 99

Initialization Files for bash

I When bash is invoked as a login shell, it first reads and executes commands
from the file /etc/profile, if this file exists. After reading this file, it looks for
˜/.bash_profile, ˜/.bash_login, and ˜/.profile, in that order, and
reads and executes commands from the first one that exists and is readable.

I When a login shell exits, bash reads and executes commands from the file
˜/.bash_logout, if it exists.

I When an interactive shell that is not a login shell is started, bash reads and
executes commands from ˜/.bashrc, if this file exists.

I For non-interactive shells, no init file is sourced by default. See the manual page
for details.

I Note that the shell will not automatically re-read any of these files after its
start-up. Thus, changes to any of these files will only take effect for the current
shell once you source the file.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 100

Initialization Files for tcsh

I When tcsh is invoked as a login shell, it first reads and executes commands
from the files /etc/csh.cshrc and /etc/csh.login, if these files exist. After
reading these files, it executes commands from ˜/.tcshrc or, if ˜/.tcshrc
does not exist, ˜/.cshrc, then ˜/.history, ˜/.login, and finally
˜/.cshdirs.

I When a login shell exits, tcsh reads and executes commands from the files
/etc/csh.logout and ˜/.logout, if they exist.

I When an interactive shell that is not a login shell is started, tcsh reads and
executes commands from /etc/csh.cshrc and ˜/.tcshrc or ˜/.cshrc, if
these files exist.

I For non-interactive shells, no init file is sourced by default.
I Note that the shell will not automatically re-read any of these files after its

start-up. Thus, changes to any of these files will only take effect for the current
shell once you source the file.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 101

Environment Variables

I Environment variables are used to pass information to other utility programs; they
do get passed on to new processes.

I E.g., the environment variable MANPATH tells the man command where it should
look for manual pages.

I In a bash environment, the export command is used to set an environment
variable:
export TGIFPATH=/usr/local/openwin/lib/tgif.
Note that there should not be any space between the variable and the equal sign
and the value.

I In a tcsh environment, environment variables are set by the setenv command
and unset by the unsetenv command. E.g.,
setenv TGIFPATH /usr/local/openwin/lib/tgif.

I The value of an environment variable is obtained by prefixing it with “$”.
I You can output the value of an environment variable by using the echo

command: echo $TGIFPATH.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 102

Environment Variables

I The env command lists all environment variables currently set.
I Some of the most important environment variables include:

HOME your home directory; e.g., /home/cowi/held.
TERM your terminal type; e.g., xterm or vt100.
SHELL the path to your shell; e.g., /bin/tcsh or /bin/bash.
USER your login name; e.g., held.
PATH a list of directories to search for commands.

I The TERM variable describes the characteristics and basic functionality of a
terminal, such as how to write characters to the screen, move the cursor, etc.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 103

Setting the PATH

I The PATH environment variable contains a list of directories that your shell will
look in for commands.

I Commands on a Unix system are simply executable files, usually compiled from
C source code, or (shell) scripts. (To be precise, every shell also sports built-ins.)

I The shell looks through all directories in PATH when it first starts up and builds an
internal list of executable files available in the directories.

I For instance, the rm command typically resides in /usr/bin or /bin, but if your
PATH variable does not contain /usr/bin or /bin then you will not be able to
execute rm. (Unless you’d specify the full path, that is /usr/bin/rm or
/bin/rm.)

I If an executable gets added to one of those directories after you started a tcsh
shell then you need to use the rehash command to have the shell rebuild its
internal hash table.

I In a tcsh environment, you can discard this list by using the unhash command.
I In a bash environment no full hash table is built and, thus, the rehash command

is not needed and not available. Use hash -r if you used a program in the
current shell and later moved it elsewhere.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 104

Setting the PATH

I Normally, sysadmins will put a reasonable setting for PATH in a system-wide
startup file.

I The following entry in a bash environment is typical for a basic user-defined
set-up:

export PATH=${HOME}/bin:/usr/bin:/usr/local/bin:${PATH}:.

In a .cshrc file, for a tcsh environment:

setenv PATH ${HOME}/bin:/usr/bin:/usr/local/bin:${PATH}:.

It instructs the shell to search the subdirectory bin of your home as the first
directory, followed by /usr/bin and /usr/local/bin. In addition, any
directories specified by a pre-defined (system-wide) PATH variable are searched.
Finally, your current working directory is searched.

I Note that there is some controversy about whether or not to include your current
working directory in the search path!

I Allowing the implicit use and execution of files within the current working directory
makes you vulnerable to “Trojan-Horse” attacks in hostile environments.

I And, after all, you can always execute a binary foo in your current directory by
typing ./foo!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 105

Shell Variables

I Shell variables are strictly internal to the running shell. That is, shell variables are
not passed on to another shell or to an application program.

I Shell variables can be regarded like variables in programming languages.
I A typical shell variable is PWD, which contains the (absolute) path of the current

working directory. (The command echo $PWD will display its current value.)
I Some shell variables automatically set the matching environment variable for

you. E.g., setting term causes the environment variable TERM to be set.
I As a general guideline, it is advisable to use environment variables rather than

shell variables (if and when environment variables are available) — unless use
inside a shell script is intended.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 106

Setting the Prompt

I You can set the tcsh shell variable prompt to be what you want the prompt to
be.

I For bash, the respective variable is called PS1 (shorthand for “prompt
statement”).

I The shell will recognize formatting sequences inside the prompt string.
I Some of the more useful formatting sequences available are:

tcsh bash
%m \h . . . computer’s name (with full domain specification omitted).
%n \u . . . user’s name.
%t \@ . . . time.
%/ \w . . . the current working directory.
\! \! . . . the history number of this command.

I For instance, the command set prompt="\! %n@%m-> " defines my
personal prompt for tcsh: “79 held@ursus->”.

I In a bash shell, the equivalent command would be PS1="\! \u@\h-> ".

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 107

Aliases

I The basic form of an alias command is
alias <command> <string> for (t)csh,

and
alias <command>=<string> for bash.

I E.g., alias ll ’ls -l’ or alias ll=’ls -l’.
I When typing “ll” followed by pressing “return”, the shell intercepts it – since it is

watching for aliases – and expands it to “ls -l”.
I More generally, the first word of a simple command, if unquoted, is checked to

see if it has an alias. If so, that word is replaced by the text of the alias.
I Aliases allow you to replace frequently used long commands by shorter

equivalents, to change commands such that they get called with certain flags by
default, or to mimic commands that work on other systems.

I When used without options, the alias command lists all currently defined
aliases.

I A previously defined alias can be removed by means of the unalias command.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 108

Aliases

I Some sample aliases (for tcsh):
alias del ’rm -i’
alias dir ’pwd; ls -xF’
alias lit ’cd \$HOME/papers/biblio/martin; dir’
alias gzip ’gzip -9’
alias ftps ’ftp ursus.cosy.sbg.ac.at’

I Some sample aliases (for bash):
alias del=’rm -i’
alias dir=’pwd; ls -xF’
alias lit=’cd \$HOME/papers/biblio/martin; dir’
alias gzip=’gzip -9’
alias ftps=’ftp ursus.cosy.sbg.ac.at’

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 109

Aliases That Take Arguments

I For tcsh:
I Use \!\$ to indicate that the last command line argument should be

appended to alias, and \!:n to specify the n-th argument.
I Use \!* to indicate that all command line arguments should be appended to

alias instead of just last one.
I Some sample aliases (for tcsh):
alias sd ’cd \!*; dir’
alias addheader ’cat ~/code/my_header.txt \!:1 > \!:2’
alias search ’find . -name "\!*" -print’
alias trash ’mv \!* ~/Trash’

I For bash:
I A bash alias does not accept parameters directly; you will have to create a

function.
I The arguments are specified in the same way as for sh shell scripts.
I E.g., for bash:
sd() { cd $1; dir; }
addheader() { cat ~/code/my_header.txt $1 > $2; }
search() { find . -name "$1" -print; }
trash() { mv $@ ~/Trash; }

I Observe all spaces and don’t forget the semi-colon before the closing right
curly brace!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 110

Sample .cshrc File

Set file permissions.
#
umask 077

Use $prompt for key to determine whether we should read these
aliases. If running a script, $prompt # will be unset.
#
if ($?prompt) then

Start aliases for interactive work
#
alias del "rm -i"

endif

Grab any local .cshrc file
#
if (-r ~/.cshrc.loc) then

source ~/.cshrc.loc
endif

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 111

Sample .profile File

Uncomment for debugging purposes:
echo "HOME/.profile"

Get aliases and functions
if [-f ~/.bashrc]; then
. ~/.bashrc

fi

User specific environment and startup programs

PATH=$PATH:/usr/local/sw/jdk/bin:$HOME/bin

export PATH

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 112

Sample .bashrc File

Uncomment for debugging purposes:
echo "HOME/.bashrc"

Get system-wide aliases first
if [-f /etc/bashrc]; then
source /etc/bashrc

fi

alias del="rm -i"

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 113

Other Configuration Files

I Most utilities can be configured and customized to one’s liking by means of
utility-specific configuration files. E.g.,

.acrorc configuration file for acroread;

.emacs configuration file for emacs;

.mozilla configuration directory for mozilla;

.thunderbird configuration directory for mozilla-thunderbird.

I Unless the default name and location is used, an appropriate environment
variable has to be set in order to tell the utility where to look for its configuration
file.

I It is one of the harsh facts about customization that pretty much every utility has
its own idiosyncratic customization syntax.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 114

Advanced Unix and Shell Programming

I Unix puts powerful tools at your finger-tips, some of which we will explore on the
subsequent slides.

I As well as using the shell to run commands you can use its built-in programming
language to write your own commands or programs.

I You can put commands into a file – known as a shell script – and then execute
that file as you would execute a program.

I It is widely recommended to use the Bourne shell (sh) for shell scripts.
I Note that sh shell scripts will also work in a bash environment.
I The syntax of csh and tcsh scripts is different, though!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 116

Simple Shell Script

#!/bin/sh
#
This script displays the date, time, username and current
directory.
#
echo "Date and time is:"
date
echo
echo "Your username is: ‘whoami‘"
echo "Your current directory is: ‘pwd‘"

I Lines 2–5, which begin with a hash “#”, are comments and are not interpreted by
the shell.

I Use comments to document your shell script; you will be surprised how easy it is
to forget what your own programs do!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 117

Simple Shell Script Dissected

I To make sure that your shell script is run from a standard Bourne shell, always
have the line
#!/bin/sh
as the first line of the script. (A line that starts with #! is called shebang.)

I The back-quotes around the command who am i illustrate the use of command
substitution.

I The argument to the echo command is quoted to prevent the shell from
interpreting it.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 118

Passing Arguments to a Shell Script

I Shell scripts can act like standard Unix commands and take arguments from the
command line.

I Arguments are passed from the command line into a shell program using the
positional parameters $1 through to $9.

I Each parameter corresponds to the position of the argument on the command
line.

I The positional parameter $0 refers to the command name or name of the
executable file containing the shell script.

I Only nine command line arguments can be accessed in this straightforward way;
additional arguments can be accessed by using the shift command.

I All the positional parameters can be referred to using the special parameter $?.
(This is particularly useful when passing filenames as arguments.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 119

Passing Arguments to a Shell Script

#!/bin/sh
This script converts ASCII files to PostScript
It uses a local utility "a2ps"
#
echo "usage: ascii2ps <ascii-file> <postscript-file>"
a2ps --columns=1 --portrait $1 > $2

I The shift command gives access to command line arguments greater than
nine by shifting each of the arguments.

I The second argument ($2) becomes the first ($1), the third ($3) becomes the
second ($2), and so on.

I Successive shift commands make additional arguments available.
I Note that there is no "unshift" command!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 120

Handling Shell Variables

I The shell has several variables which are automatically set whenever you login.
I Any name defined in your environment can be accessed from within a shell script.
I Special shell variables (command-line parameters):

$1 – $9 these variables are the positional parameters.
$0 the name of the command currently being executed.
$# the number of positional arguments given.
$? the exit status of the last command executed.

0 (zero) if successfully completed, non-zero otherwise.
$$ the PID of this shell.
$! the PID of the last command run in the background.
$- the current options supplied to this invocation of the shell.
$* a string containing all the arguments to the shell, starting at $1.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 121

Command-Line Parameters

#!/bin/sh
#
command-line parameters
#
echo "Number of command-line parameters $#"
echo "List of command-line parameters: $*"
echo "Parameter #1: $1"
echo "User: $USER"
echo "Shell: $SHELL"
echo "File name of shell script: $0"
echo "PID: $$"
a=17.89 # without a blank around "="!
echo "A set to $a"

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 122

Evaluating Shell Variables

I The following set of rules governs the evaluation of all shell variables.

$var signifies the value of var or nothing, if var is undefined.
${var} same as above except the braces enclose the name of the

variable to be substituted.
${var-thing} if defined, $var; otherwise thing.
${var=thing} if defined, $var; otherwise thing.

if undefined, $var is set to thing.
${var?message} if defined, $var; otherwise print message and exit the shell.
${var+thing} thing if $var is defined; otherwise nothing.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 123

Variable Referencing

#!/bin/sh

a=37.5
hello=$a
No space permitted on either side of = sign.

echo "hello"

echo $hello
echo ${hello} #Identical as above.

echo "$hello"
echo "${hello}"

echo ’$hello’
Variable referencing disabled by single quotes.
Notice the effect of different types of quoting!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 124

Reading User Input

I To read standard input into a shell script use the read command. E.g.,
echo "Please enter your name:"
read name
echo "Welcome back, $name!"

I If there is more than one word in the input, each word can be assigned to a
different variable. Any words left over are assigned to the last named variable.
E.g.,
echo "Please enter your surname\n"
echo "followed by your first name: \c"
read name1 name2
echo "Welcome back, $name2 $name1"

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 125

Conditional Statements

I Every Unix command returns a value on exit which the shell can interrogate. This
value is held in the read-only shell variable $?.

I The if statement uses the exit status of the given command and conditionally
executes the statements following.

I The words then, else and fi are shell-reserved words and as such are only
recognized after a newline or semicolon “;”.

I Make sure to end every if-construct with a fi statement.
I You can use the && operator to execute a command and, if it is successful,

execute the next command in the list.
I You can use the || operator to execute a command and, if it fails, execute the next

command in the command list.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 126

Conditional Statements

#!/bin/sh
usage: available.sh username
if who | grep $1 &> /dev/null
then
echo "$1 is logged on to this machine"
else
echo "$1 is not available"
fi

I This lists who is currently logged on to the sytem and pipes the output through
grep to search for the username.

I The -s option causes grep to work silently; any error messages are directed to
the file /dev/null instead of the standard output.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 127

Conditional Expressions

“s1” = “s2” true if the strings s1,s2 are identical
“s1” != “s2” true if the strings s1,s2 are not identical
-z “s1” true if string s1 is empty (i.e., has length zero)
-n “s1” true if string s1 is not empty
n1 -eq n2 true if the numbers n1,n2 are identical
n1 -ne n2 true if the numbers n1,n2 are not identical
n1 -gt n2 true if n1 is greater than n2
! negation
-a logical and
-o logical or
-e <file> true if <file> exists
-f <file> true if <file> is a regular file (no subdirectory or symbolic link)
-r <file> true if <file> is readable

I The shell provides the test command to evaluate conditional expressions. See
its manual page for details.

I The command [<cond>] may be used as an alias for test <cond>.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 128

Conditional Expressions

#!/bin/sh
#
echo "hello. answer Y to proceed:"
read answer
echo "your answer was" $answer
if test "$answer" != "n"
then echo "yes"
else echo "no"

fi

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 129

More Control Statements: Case

case word in
pattern1) command(s)
;;
pattern2) command(s)
;;
patternN) command(s)
;;

esac

I The case statement provides for multi-way branching based on patterns.
I When all the commands are executed control is passed to the first statement

after the esac statement. Every list of commands must end with a double
semicolon “;;”.

I Patterns are checked for a match in the order in which they appear.
I The asterisk “?” can be used to specify a default pattern.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 130

More Control Statements: For

for var in list-of-words
do

commands
done

I Here,commands is a sequence of one or more commands separated by a
newline or a semicolon.

I The reserved words do and done must be preceded by a newline or a semicolon.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 131

Sample For-Loop

#!/bin/sh
see if a number of people are logged in
for i in $*
do

if who | grep -s $i > /dev/null
then
echo "$i is logged on to this machine"
else
echo "$i is not available"
fi

done

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 132

More Control Statements: While

while command-list1
do

command-list2
done

I The commands in command-list1 are executed; and if the exit status of the
last command in that list is 0 (zero), then the commands in command-list2 are
executed.

I The loop is executed as long as the exit status of command-list1 is 0 (zero).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 133

More Control Statements: Until

until command-list1
do

command-list2
done

I Identical in function to the while command except that the loop is executed as
long as the exit status of command-list1 is non-zero.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 134

Another Sample Script

#!/bin/sh
case $# in

1) ;;

*) echo "usage: watch.sh username" ; exit 1
esac
until who | grep -s "$1" >/dev/null
do

sleep 60
done
echo "$1 has logged in"

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 135

Break and Continue Statements

I The break command terminates the execution of the innermost enclosing loop,
causing execution to resume after the nearest done statement.

I To exit from n levels, use the command break n.
I The continue command causes execution to resume at the while, until or
for statement which begins the loop containing the continue command.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 136

More Shell Functions

I The shell does not have any arithmetic features built in and so you have to use
the expr command. See the manual pages for details.

I Another built-in function is eval which takes the arguments on the command line
and executes them as a command.

I The exec statement causes the command specified as its argument to be
executed in place of the current shell without creating a new process.

I The exit statement will exit the current shell script. It can be given a numeric
argument which is the script’s exit status. If omitted the exit status of the last run
command is used.

I Shell scripts may use the trap command to catch (or ignore) OS signals. Again,
see the manual pages for details.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 137

Debugging Shell Scripts

I To see where a script produces an error use the command

sh -x <script_name> <arguments>.
I The -x option to the sh command tells it to print commands and their arguments

as they are executed.
I Other debugging options include

-e in non-interactive mode, exit immediately if a command fails.
-v print shell input lines as they are read.
-n read commands but do not execute them.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 138

Regular Expressions and Stream Editor

I A regular expression is a sequence of characters that forms a template used to
search for strings within text.

I E.g., grep -w ’t[a-i]e’ matches the words tee, the or tie. The brackets
have a special significance. They mean to match one character that can be
anything from “a” to “i”.

I Similar, grep -w ’cr[a-m]*t’ matches the words credit, craft or cricket. The
“*” means to match any number of the previous characters, which in this case is
any character from “a” through “m”.

I The grep command works nicely in conjunction with the stream editor, sed. In
the way that grep can search for words and filter lines of text; sed can do
search-replace operations and insert and delete lines into text.

I See the online documentation for details.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 139

Communication and Data Transfer
Internet
Remote Access, ftp, E-Mail
WWW

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 140

What is the Internet?

I The Internet is the largest computer network in the world.
I The Internet is the back-bone connection of local, national and international

networks which are locally administrated (domains).
I It connects more than 109 (computing) devices.
I Communication within the Internet is based on a standardized protocol (TCP/IP).
I The Internet supports a variety of services, e.g., telnet, ftp, e-mail, Usenet news,

IRC, and WWW.
I The Internet is not to be confused with its supported service WWW.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 142

History of the Internet (–1979)

I 1957: USSR launches Sputnik, the first artificial earth satellite.
I 1958: The Sputnik Shock motivates the US Department of Defense to found

ARPA (Advanced Research Project Agency). Goal: world-wide military
leadership for the USA.

I 1962–1968: Concepts of ‘packet-switching-networks’ are developed.
I 1969: The first ’Interface Message Processor’ is installed at UCLA. Four sites

(UCLA, UCSB, SRI, U. of Utah) form the first nodes of the ARPANET.
I 1971: Electronic mail (email) invented.
I 1972: First public demonstration of ARPANET among 40 machines.
I 1973: Metcalfe’s Harvard PhD Thesis outlines idea for Ethernet.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 143

History of the Internet (1980–1989)

I 80’s: Several other networks spawn off ARPANET: e.g., BITNET (Because It’s
Time NETwork), CSNET (Computer Science NETwork), MILNET (Military
Network).

I 1982: TCP/IP established by ARPA as protocol suite for ARPANET.
I 1983: IAB (Internet Activities Board) established; EARN (European Academic

and Research Network) established.
I 1984: Number of hosts breaks 1 000; Domain Name System (DNS) introduced.
I 1986: First meeting of IETF (Internet Engineering Task Force).
I 1988: Internet worm burrows through the Internet, affecting about 6 000 of the

60 000 hosts on the Internet; CERT (Computer Emergency Response Team)
formed by DARPA in response to the worm.

I 1989: Number of hosts breaks 100 000.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 144

History of the Internet (1990–1999)

I 1990: 3 000 networks; number of hosts breaks 300 000; ARPANET ceases to
exist.

I 1991: World-Wide Web (WWW, developed by Berners-Lee) released by CERN;
PGP (Pretty Good Privacy) released by Zimmerman; Internet Society founded.

I 1992: Number of hosts breaks 1 000 000; Internet Activities re-organized and
re-named the Internet Architecture Board.

I 1993: Al Gore’s initiative (in the early 90’s) for an “Information Super Highway”
leads to Internet boom; White House (.gov) and and the United Nations (.org)
go online; Mosaic becomes first graphical web browser; Internet Engineering
Task Force (ITEF) turns international under auspices of Internet Society.

I 1994: Netscape Navigator.
I 1995: New WWW technologies emerge: mobile code (Java, JavaScript), virtual

environments (VRML); Traditional online dial-up systems (Compuserve, AOL)
begin to provide Internet access; Amazon online.

I 1996: HoTMaiL provides the first webmail service.
I 1998: IPv6 protocol defined to replace IPv4; Google search engine; Internet

Corporation for Assigned Names and Numbers (ICANN) incorporated.
I 1999: IEEE 802.11b wireless networking.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 145

History of the Internet (2000–Present)

I 2000: Dot-com bubble bursts.
I 2001: New top-level domains active (aero, biz, coop, info, name, museum, pro);

Wikipedia online.
I 2003: Skype makes VoIP widely available.
I 2004: Facebook, Flickr, Podcast; Web 2.0.
I 2005: YouTube.
I 2006: Twitter.
I 2007: WikiLeaks; iPhone makes its debut.
I 2008: Dropbox.
I 2010: First unassisted live Internet link into low earth orbit.
I 2012: ICANN starts accepting proposals for new generic top-level domain names

(gTLD).
I 2013–2015: Many new gTLDs launched, for a total of more than 220 gTLDS.

I Widespread use and growth: Blogging, gaming, video streaming, social
networking, cloud computing/storage, VoIP (Voice over Internet Protocol).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 146

Growth of the Internet

I Aug 1981: 213 hosts; Oct 1984: 1024 hosts; Jan 2000: 72 398 092 hosts;
July 2015: 1 033 836 245 hosts. (Credit: Internet Systems Consortium.)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 147

http://www.isc.org

TCP/IP

I TCP/IP (Transmission Control Protocol / Internet Protocol) is the suite of
communication protocols used to connect hosts on the Internet.

I TCP/IP uses several protocols, the two main ones being TCP and IP.
I TCP/IP is built into the Unix OS, making it the de-facto standard for transmitting

data over networks.
I Basically, IP handles the flow of data between host computers within the Internet.
I TCP manages the flow of data between applications.
I Information is transmitted using packets. Data is split up by the sender and

combined at the destination.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 148

IP Addresses

I IPv4 addresses in the dotted-decimal format are unique sets of four
period-delimited octets that represent individual hosts on specific networks.

I An IP octet is a number between 0 and 255. Thus, an IP address might look
something like 141.201.2.2.

I The range 0 to 255 per octet implies that 4.3 billion (232 − 1) IP addresses could
exist.

I For technical and administrative reasons, the actual IP address space contains
less than 4.3 billion addresses.

I Shortage of IPv4 addresses: The Asian regional Internet registry, APNIC,
imposed restrictions on the allocation of new addresses in April 2011. On
14-Sept-2012 RIPE NCC, which serves Europe, started to distribute IPv4
addresses from its last block of addresses.

I Since the current address space will not be able to sustain a continued rapid
growth of the Internet, IPv6 (which is short for “Internet Protocol Version 6”) has
been designed by the IETF as the “next generation” protocol to replace the
current IPv4.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 149

IPv6

I IPv6 uses 128 address bits and thus allows 2128 IP addresses. For human
readability the numbers are split in eight blocks of four hexadecimal digits each,
separated by a colon, like: 2001:0db8:85a3:08d3:1319:8a2e:0370:7344.

I In addition, the IPv6 protocol supports multicast (sending data to different hosts
simultaneously), automatic network configuration of hosts, mobility of hosts,
multi-homing (a host has a number of different addresses at the same time).

I IPv6 is supported by almost all modern operating systems but service providers
still are slow in migrating to IPv6.

I Hosts can utilize IPv4 and IPv6 at the same time (“dual-stack operation”) and the
operation is transparent to the end user.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 150

Alternate Formats for IP Addresses

I Alternate “dotless” formats for IP addresses exist, such as dword (essentially two
16-bit binary words, base-10), octal (base 8), and hexademical (base 16).

I E.g., the dotted-decimal IP address 141.201.2.2 translates to 2378760706 in
dword-format:
2378760706 = 141 · 16777216 + 201 · 65536 + 2 · 256 + 2 · 1.

I Dotless IP calculators can be found in the WWW. See, for instance,
http://www.rootsolutions.com/tools/dotless/.

I Note that some browsers, firewalls, and proxy servers might not be able handle
the dotless IP addresses.

I Also, note that con artists have recently discovered dotless IP addresses as a
new way to obscure and disguise their identity. Stay alert!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 151

http://www.rootsolutions.com/tools/dotless/

IP Data Transmission

I Besides defining the address scheme, IP also handles the transmission of data
from the sending computer to the computer specified by the IP address.

I Large, unwieldy chunks of data are broken into easily manageable IP packets
that can be delivered across the network.

I Every packet gets its own destination address, check sum, and other information.
I Packets are routed individually across the network and may reach their

destination on different routes. The sender does not need to specify (or even
know) a route.

I Every time a packet arrives at an IP router, the router decides where to send it
next.

I Routers can send data along the path of least resistance, taking into
consideration local network traffic congestion.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 152

IP Data Transmission

I If a connection line on the network breaks down, traffic can still reach its
destination along an alternative path.

I Recent studies have sparkled a debate on how vulnerable the Internet is to a
concerted attack on some of its “main” nodes and links.

I Protocols like IP are called “connection-less” protocols.
I Contrary to a “connection-oriented” protocol, there is no concept of a session

with a pre-selected path for all traffic.
I Routing data in a dynamically changing environment is a challenging scientific

problem.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 153

Domain Name System

I A domain is a group of computers and devices on a network that are
administered as a unit with common rules and procedures.

I Domains are defined by their (range of) IP addresses. All devices sharing a
common part of the IP address are said to be in the same domain. E.g., the
computers within our network have IP addresses of the form 141.201.xxx .yyy .

I IP addresses are cumbersome for humans to handle. Thus, symbolic names for
computers (“host names”) were introduced and the Domain Name System (DNS)
created.

I Every host name must be unique within a domain.
I The typical structure of an academic host name is

mycomputer.mydept.myuniversity.mynetwork.mycountry.
I For instance, the host name ursus.cosy.sbg.ac.at translates to the IP

address 141.201.12.95.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 154

Domain Name

I Domain name: Every domain name has a suffix that indicates which top-level
domain (TLD) or country-code top level domain (ccTLD) it belongs to. Up to very
recently, there have been seven traditional “generic” TLDs,

I com – commercial business,
I edu – US and Canadian educational institutions,
I gov – US government agencies,
I int – International,
I mil – US Military,
I net – Network organizations,
I org – Organizations (non-profit),

one infrastructure TLD (arpa), and about 250 ccTLDs, such as
I at - Austria,
I ca - Canada,
I de - Germany.

I Due to a shortage of domain names at the top level, seven new top-level domains
were introduced in 2001: aero, biz, coop, info, name, museum, pro.

I More new top-level domains introduced since 2013.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 155

Domain Name Resolution

I IP addresses are cumbersome for humans to handle. Thus, symbolic names for
computers (“host names”) were introduced and the Domain Name System (DNS)
created.

I The DNS is an Internet service that translates host names into IP addresses.
I The DNS is based on a hierarchical tree structure. Below the root are the

top-level domains, the second-level domains and eventually further sub-level
domains, and finally the host name.

I If a DNS server does not know how to translate a particular host name, it asks
another DNS server, and so on, until the correct IP address is returned.

I The command host can be used to obtain the IP address of a device specified
by its host name.

I E.g., host www.cosy.sbg.ac.at returns the IP address 141.201.2.14.
I Reverse lookups: A DNS-Server gets an IP address and returns the name. E.g.,
host 141.201.2.14 returns the name bulldogge.cosy.sbg.ac.at, which
is an alias for www.cosy.sbg.ac.at.

I In order to cut down on spam emails some mailers employ a reverse lookup. (But
a reverse lookup should never be used for authentication purposes in a
security-relevant application!)

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 156

Remote Access

I In networks, remote refers to files, devices, and other resources that are not
connected directly to your workstation. Resources at your workstation are
considered local.

I There is no principal difference between remote access to a machine within one’s
own local-area network (LAN)and remote access to a machine in the Internet
(outside of one’s LAN).

I Remote control refers to taking control of another computer remotely, i.e., via the
network.

I Remote access, also called remote login, means that you are logged into a
remote computer that allows you to use it as you would use your own workstation
— up to the limits imposed by the utility that performs the remote access.

I Remote-access software is required in order to connect to a remote machine in a
network. (And, or course, one needs to have the right to access the remote
machine.)

I In a normal setting, the only difference between a remote host and a workstation
in front of you is a (possibly) lower rate of data transfer.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 158

Remote Access via Telnet

I Telnet is a terminal emulation program for TCP/IP networks.
I The telnet program runs on your computer and connects your computer to a

host computer.
I To start a telnet session, you must login to the host computer by entering a valid

username and password.
I Once a connection has been established, you can then enter commands through

the telnet program and they will be executed as if you were entering them
directly on the server console.

I Telnet is based on a low-level protocol and does not support the exchange of
graphics or similar complex data.

Security Hazard
The entire data transfer (including the user authentification) is carried out without
encryption!

I Hence, for security reasons, the telnet command often is disabled.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 159

Remote Access via Rlogin

I The rlogin utility establishes a remote login session from your workstation to a
remote machine.

I It offers a slightly higher level of functionality than telnet but it is not considered
to be safer.

Security Hazard
Similar to telnet, rlogin exchanges plain-text passwords (without using any
encryption).

I Thus, for security reasons, the rlogin command often is disabled. If enabled,
its use is discouraged; you should use ssh instead!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 160

Remote Access via Secure Shell

I The secure shell, ssh, was developed by SSH Communications Security Ltd.
I It is a program to log into a remote host over a network, to execute commands on

the remote host, and to move files from one machine to another. It provides
strong authentication and secure communication over insecure channels.

I Ssh is a replacement for rlogin. When using ssh’s login client slogin, instead
of rlogin, the entire login session, including the transmission of the password,
is encrypted.

I Thus, when using ssh it is almost impossible — or, at least, considerably more
difficult — for an outsider to collect passwords.

I Both host-based and certificate-based authentication is possible.
I Sample use:
ssh held@sshstud.cosy.sbg.ac.at.

I Of course, the IP address or full Internet name of the remote machine has to be
known.

I The ssh utility is widely regarded as the only safe way to access a remote host.
I X11 forwarding is enabled by ssh -X <hostname>. However, use this feature

with caution, and do not use it if the remote host is not entirely trustworthy!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 161

Data Transfer via Secure Copy

I Copying files between machines in a network can be achieved by using secure
copy, scp.

I Scp uses ssh for data transfer, and uses the same authentication and provides
the same level of security as ssh.

I It replaces the command rcp, which is based on rlogin.
I Sample use:
scp foo.txt held@krontaube.cosy.sbg.ac.at:/home/cowi1/held.

I Note that scp requires one to have an active user account on the remote
machine.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 162

Data Transfer via FTP

I Another protocol used for exchanging data within the Internet is called ftp (File
Transfer Protocol).

I In order to be able to transfer data via ftp between a local host and a remote
computer,

I both the local host and remote host need to support ftp,
I the IP address or full Internet name of the remote host has to be known,
I an active account on both machines is needed,

or one is restricted to “anonymous ftp”.
I To initiate an ftp data transfer, use the command ftp <host_name> or, if the IP

address is known, ftp <host_IP_address>.
I FTP does not encrypt its traffic and is prone to sniffing.
I If supported by both machines, you may want to resort to sftp in order to rely on

a secure ssh transport of your ftp session.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 163

Data Transfer via FTP

I Once the ftp session has been established, use
put <local_file> <remote_file>

and
get <remote_file> <local_file>

to send or receive a file.
I Sample ftp session:
ftp > cd rfc
250 CWD command successful.
ftp > bin
200 Type set to I.
ftp > get rfc1048.txt.gz
200 PORT command successful.
150 Binary data connection for rfc1048.txt.gz (5141 bytes).
226 Transfer complete.
ftp > quit
221 Goodbye.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 164

Data Transfer via FTP

I By default, ftp assumes the file being transferred is an ASCII file.
I You may need to use the command binary within the ftp session to instruct ftp

to handle a binary file, such as an executable or a compressed file.
I Newer ftp clients attempt to determine whether the ftp server is of the same

system type, and, if so, transfer all files in binary instead of ASCII mode.
I Transferring ASCII files in binary mode can be expected to reduce the

transmission time by decreasing the size of the data transferred and by
increasing the speed of the data exchange between the sender and the receiver.

I Use passive mode, by specifying passive, if the ftp server cannot establish a
connection to the ftp client. (E.g., if the network of the client is protected by a
firewall.)

I The option -d can be used for running ftp in debug mode, which causes it to
see the client commands in addition to the server’s reponses.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 165

Data Transfer via FTP

Possible Error Messages:
I Unknown host: The hostname you specified was not found, or does not exist.

Check the spelling of the hostname and try again.
I Foreign host did not respond within OPEN timeout: Either the specified host does

not support ftp, or the host is busy and could not open an ftp connection. Try
again later.

Keep in mind:
I Enter all ftp commands in lower case. (Unix machines are case-sensitive!)
I Type file names exactly as they are listed.
I Binary versus ASCII files – in case of doubt, use binary mode!
I For security reasons, keep all ftp sessions as brief as possible.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 166

Anonymous FTP

I Anonymous ftp is the mode of operation used for accessing public files on remote
machines.

I To use anonymous ftp, start a conventional ftp session, and then enter the word
“anonymous” or “ftp” when the host prompts you for a username; you can enter
anything for the password.

I Basically, this means that you do not need to identify yourself before accessing
files.

I However, please note that most ftp servers keep log files of all ftp transactions!
I Needless to say, accessing remote files via anonymous ftp is only possible if the

remote machine allows such an access.
I Please make sure to select an ftp server that is geographically close to your site

when downloading software.
I When downloading software via anonymous ftp you should always check

whether mirror sites exist that are closer to you than the original ftp server!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 167

Electronic Mail: Thunderbird

I Mozilla Thunderbird allows you to read e-mail and news.
I It supports POP (Post Office Protocol) and IMAP (Internet Message Access

Protocol).
I It has an address book to manage contacts.
I Thunderbird offers decent spam control. (Spam is unsolicited bulk commercial

email.)
I The initial configuration has been carried out during the lab sessions.

I Under Debian and Ubuntu Linux, Firefox and Thunderbird are called Iceweasel
and Icedove.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 168

Security Issues: Thunderbird

I Its password manager allows to save usernames and passwords for your e-mail
accounts.

Security Warning
The way in which Thunderbird stores these passwords is not secure! (Just like in the
case of the Mozilla/Firefox browser.)

I Thus, you should not use this feature unless you are in a secure environment.
I Alternatively, please use a master password!
I You can delete saved passwords in Firefox and Thunderbird as follows:
Edit → Preferences → Privacy → Passwords → View Saved
Passwords
→ Remove All

I See also: https://rtfm.cosy.sbg.ac.at/doku.php

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 169

https://rtfm.cosy.sbg.ac.at/doku.php

Security Issues

I A firewall filters (incoming) packets: Only packets matching specific rules are
allowed to pass on to the network. Rules might be: E-mail allowed, telnet only to
specific computers, exclude certain web servers.

I PGP (Pretty Good Privacy) uses a two-key encryption method: one key is
private, the other key public. Everyone may use the public key to encode a
message; the private key is used to decode the message.

I PGP may be used for authenticity checks: Using the private key to encrypt the
signature, the signature may be decoded with the public key. If the info in the
signature is the same, an unique identification of the sender is possible.

I GPG (GnuPG) is the GNU-Version of PGP. gpg is a commandline tool for
key-management, encryption, decryption, signing and verifying. There also exist
graphical front-ends for GPG.

I Enigmail is a plugin for Thunderbird that allows you to use GPG integrated into
Thunderbird.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 170

Basics of the WWW

I The World-Wide Web (WWW) is a service of the Internet. It is used to present
information in a hardware-independent way.

I Information is coded in a hypertext structure.
I Software used to “display” the information is called a browser.
I Information access is realized using the client/server principle (browser/web

server).
I Most web browsers also support ftp and email.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 172

Basics of the WWW

I A Web page is a document that uses the HTML-format (Hyper Text Markup
Language).

I A home page provides the start page of your web browser when it is launched,
e.g., your personal page.

I A Web server is a computer that uses specific protocols to support the transport
of data related to Web pages within the Internet.

I HTTP (Hyper Text Transport Protocol) is the protocol for the transport of hyper
text pages (such as HTML-pages).

I The client program (web browser) needs to know the URL (Uniform Resource
Locator) of a content (e.g., webpage) in order to obtain it from the server. The
URL may include information on the protocol, the address of the server (host
name), user name, password, port number, directory and filename of the file.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 173

History of the WWW

I In 1991, Tim Berners-Lee invented the WWW at CERN. Its original goal was to
facilitate the publication of internal documents.

I In 1993, the WWW-browser Mosaic by NCSA becomes available.
I In 1996, the first international conference on WWW is held in Geneva.
I In the mid 90’s, Hyper-G is introduced by the University of Graz. Hyper-G allows

to follow every link in both directions.
I Adobe’s PDF facilitates the publication of print-quality documents on the Web.
I Around 1995, the Web supports 3D graphics with the advent of VRML (Virtual

Reality Modeling Language).
I In 1997, HTML 4 was standardized.
I Around the year 2000, trends like CSS (Cascading Style Sheets) and animated

web pages (e.g., Flash, Shockwave) became popular on the client-side web
development. On the server side, techniques and languages like PHP and Java
servlets made web pages dynamic.

I Strong interaction of users with webpages like youtube, facebook, studivz,
delicous and the like, and technologies like wikis and application-like behaviour of
webpages led to the vague term of “Web 2.0” in recent years.

I In October 2014, the World Wide Web Consortium (W3C) provided the full
specification of HTML5.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 174

Web Communication: Viewing a Webpage

I From the user’s point of view:
I The user starts the browser.
I The user types in the URL (Uniform Resource Locator).
I The Web page is displayed.

I From the computer’s point of view:
I The client process (i.e., the web browser) makes a request.
I The web server responds.
I The transaction is done.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 175

Web Communication in Detail

I When the client sends a request, the first data item it specifies is an HTTP
command that tells the server the type of action it wants to perform.

I This first line of a request also specifies the address of a document (URL) and the
version of the HTTP protocol it is using. E.g., GET /intro.html HTTP/1.0.

I The server processes the request and sends a response. The first line is the
status line. E.g., HTTP/1.0 200 OK, which means that the request was
successful; 404 means page not found, 403 means access permission denied.

I When a client connects to a server and makes an HTTP request, the request can
be of several different types, called methods.

I The most frequently used methods are GET and POST.
I Basically, the GET method is designed for getting information (e.g., a document, a

chart, or the result from a database query).
I The POST method is designed for posting information (e.g., a credit card number,

some new chart data, or information that is to be stored in a database).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 176

HTTP Status Information and Error Codes

100: continue

101: switching protocols

200: OK

201: created

202: accepted

203: non-authoritative information

204: no content

205: reset content

206: partial content

300: multiple choices

301: moved permanently

302: moved temporarily

303: see other

304: not modified

305: use proxy

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 177

HTTP Status Information and Error Codes

400: bad request

401: unauthorized

402: payment required

403: forbidden

404: not found

405: method not allowed

406: not acceptable

407: proxy authentication required

408: request time-out

409: conflict

410: gone

411: length required

412: preconditions failed

413: request entity too large

414: request-URI too large

415: unsupported media type

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 178

HTTP Status Information and Error Codes

500: server error

501: not implemented

502: bad gateway

503: out of resources

504: gateway time-out

505: http version not supported

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 179

HTML (Hypertext Markup Language)

I Text processing in an Microsoft environment today (often) is WYSIWYG: “what
you see is what you get”.

I However, command-oriented text processing still is wide-spread in Unix
environments. (And, typically, it is strongly favored by more experienced Unix
users!)

I The roots of modern command-oriented text processing date back to 1970 when
Knuth invented TEX. In the early 80’s, Lamport expanded TEX to LATEX.

I Characteristic for both systems is the fact that the logical design (contents) and
the physical layout (formating) of a text are defined separately.

I In particular, the content is structured with logical markups like heading,
paragraph, table width, etc.

I In the mid 80’s, SGML (Standard Generalized Markup Language) and HTML
(Hypertext Markup Language) were invented. Both languages are
command-oriented and use logical markups for structuring text.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 180

Basic HTML Document

<HTML>
<HEAD>

<META CONTENT="text/html">
<TITLE>window title to be displayed by the browser</TITLE>

</HEAD>
<BODY>

here comes the actual hypertext...
</BODY>
</HTML>

I Note that you can learn programming in HTML by poking around the Web: most
browsers allow you to look at the HTML code of a page that interests you!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 181

Common HTML Markup Commands (“Tags”)

I <H1> Text </H1>
creates Level-1 headings;

I <H2> Text </H2>
creates Level-2 (sub)headings;

I CoWi
creates a link to the URL specified;

I <CENTER> Text </CENTER>
centers the text;

I Text
highlights a text by (typically) setting it in bold-face.

I Text
sets the text in emphasized mode (typically in italics).

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 182

Recap and Self-Assessment

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 183

Recap

I In the following we give some examples of what you should be able to do after
this course.

I Make sure that you know how to do each of the listed items after the training
sessions.

I While in order to pass the course it is required for you to know all of the following
items, the enumeration is not exhaustive (in particular, it focuses on the practical
side of your skills, not the theoretical side). I.e., knowing all of these items is
necessary to pass, but not sufficient!

I Again: The items on this list are only meant as examples. This is not a list of
questions for the exam!

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 184

File System

I Create and rename directories.
I Use relative and absolute paths to change into a directory.
I List the contents of a directory (in different formats, and understand the output).
I Use wildcards.
I Find files matching a specific pattern.
I Create files.
I Display files on screen.
I Find lines with a specific pattern in a file.
I Move, rename, copy and delete files.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 185

File System

I Create symbolic links to files.
I View/change the permissions of a file/directory.
I View/change user/group ownership of a file/directory.
I Create an archive from a set of files or a directory.
I Compress files.
I Compare two files.
I Sort files.
I Filter files.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 186

Bash

I Get help on any command.
I Show the history of commands you entered.
I Create/view/delete an alias.
I Redirect the output of a command to another command.
I Redirect the output of a command to a file (either overwriting or appending to the

file).
I Change your password.
I Using a file as input on standard in for a command.
I Know the difference between environment and local shell variables.
I Know the names and functions of the most important environment variables.
I Know how to change the settings for an environment variable.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 187

Job and Process Control

I Know the difference between a job number and a process-id.
I Display all processes.
I Display all jobs.
I Suspend a running process.
I Put a suspended process to the background.
I Start a process in the background.
I Put a background process to the foreground.
I Kill a process.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 188

Communication and Data Transfer

I Know the client/server concept.
I Know how to resolve a given hostname to an IP address (and vice versa).
I Remotely access a workstation in a secure way.
I Transfer files from and to a remote workstation.
I Know what is meant by anonymous FTP.
I Write an E-Mail.
I Know about security issues concerning mail and web.
I Run an X application remotely.
I Know the most common services available on the Internet.
I Know the basic structure of an HTML-document.

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 189

The End!

I hope that you enjoyed this course, and I wish you all the best for your future studies.

Computational Geometry and Applications Lab

UNIVERSITÄT SALZBURG

c© M. Held (Univ. Salzburg) Einführung UNIX (WS 2016/17) 190

