Aufgabe 8:

$$\bigwedge_{\epsilon>0}\bigvee_{\delta>0}\delta<\epsilon$$

ist eine Abkürzung für

$$\forall \epsilon (\epsilon > 0 \Rightarrow \exists \delta (\delta > 0 \land \delta < \epsilon)).$$

Dies ist falsch in \mathbb{Z} , weil für $\epsilon := 1$ kein solches δ existiert, und wahr in \mathbb{R} , weil für jedes $\epsilon > 0$ die Zahl $\delta := \epsilon/2$ die Bedingungen erfüllt.

6.5.2021

Summe einer Folge $g(s, x) := s + a_{x'}$

Produkt zweier Zahlen

 $h(y) = x \cdot y$ soll definiert werden.

a = 0

g(p,y) := p + x

Multiplikation mit primitiver Rekursion:

$$x \cdot 0 = f(x)$$
 mit $f(x) = 0$.

$$x \cdot y' = g(x \cdot y, x, y)$$
 mit $g(p, x, y) = p + x$.

$$O = K_0^0$$

12.5.2021

Blatt 3 Aufgabe 13

Sei $D := \mathbb{N}$ und sei $P(x, y) :\Leftrightarrow x < y$.

Dann ist P irreflexiv und transitiv. Außerdem gibt es zu jedem $x \in \mathbb{N}$ ein $y \in \mathbb{N}$ (z.B. die Zahl x+1) mit x < y. Also ist die Aussage in der Aufgabe für $D := \mathbb{N}$ und für $P(x,y) :\Leftrightarrow x < y$ wahr. Durch dieses D und P ist also ein Modell dieser Aussage gegeben.

Mit einem endlichen Individuenbereich D geht es nicht. Denn da nach Voraussetzung alle Individuenbereiche nichtleer sind, gibt es ein $a_0 \in D$. Wir konstruieren uns eine Folge (a_0, a_1, a_2, \dots) von Elementen von D folgendermaßen. Für jedes $x \in D$ gibt es nach Voraussetzung ein $y \in D$ mit P(x, y). Daher ist die Menge $\{y \in D \mid P(x, y)\}$ nicht leer. Nach dem Auswahlaxiom gibt es für die Menge aller dieser nichtleeren Mengen eine Auswahlfunktion f, d.h. es gilt $f(x) \in \{y \in D \mid P(x, y)\}$. Es gilt also P(x, f(x)) für alle $x \in D$. Wir definieren a_n durch vollständige Induktion nach n folgendermaßen.

- a_0 ist bereits gegeben.
- $\bullet \ a_{n+1} := f(a_n).$

Also gilt $P(a_n, a_{n+1})$ für alle $n \in \mathbb{N}$. Es gilt daher $P(a_n, a_{n+k})$ für alle $n, k \in \mathbb{N}$ mit k > 0. Beweis durch vollständige Induktion nach k. Also ist D unendlich.

- Induktionsanfang k = 1. Bereits bewiesen.
- Induktionsvoraussetzung (IV): Sei $P(a_n, a_{n+k})$.
- Induktionsbehauptung (IB): $P(a_n, a_{n+k+1})$.
- Beweis der IB. Nach oben bewiesenem gilt $P(a_{n+k}, a_{n+k+1})$. Wegen der Transitivität von P folgt die IB aus der IV und aus dieser Aussage.

Wegen der Irreflexivität von P ist also $a_n \neq a_{n+k}$ für alle $n, k \in \mathbb{N}$ mit k > 0. Folglich sind alle a_n voneinander verschieden. Daher ist D unendlich.

20.5.2021

Äquivalenzrelation:

 $F \sim F$ (Reflexivität)

 $F \sim G \Rightarrow G \sim F$ (Symmetrie)

 $F \sim G \wedge G \sim H \Rightarrow F \sim H$ (Transitivität)

Konjunktive Normalform:

Beispiele $\neg P \land (P \lor Q) \land (R \lor \neg Q), P \lor Q, P \land Q, \neg P$

27.5.2021

 $\frac{u}{(u+v)}$

9.6.2021

Definition: $\langle Definiendum \rangle := \langle Definiens \rangle$

Bei der induktiven Definition oder Rekursion kommt das Definiendum im Definiens vor.

16.6.2021

$$p(1,0) = p(0,1) = 1 + 1 = 2$$

$$p(1,1) = p(0,p(1,0)) = p(0,2) = 1 + 2 = 3$$

$$p(1,2) = p(0,p(1,1)) = p(0,3) = 1 + 3 = 4$$

$$\dots$$

$$p(1,y) = 2 + y$$

$$p(2,0) = p(1,1) = 2 + 1 = 3$$

$$p(2,1) = p(1,p(2,0)) = p(1,3) = 2 + 3 = 5$$

$$p(2,2) = p(1,p(2,1)) = p(1,5) = 2 + 5 = 7$$

$$\dots$$

$$p(2,y) = 3 + 2y$$

$$p(3,0) = p(2,1) = 3 + 2 \cdot 1 = 5$$

$$p(3,1) = p(2,p(3,0)) = p(2,5) = 3 + 2 \cdot 5 = 13$$

$$\dots$$

$$p(3,y) = -3 + 2^{3+y}$$

23.6.2021