Formale Systeme Proseminar

Tasks for Week 9, 3.12.2020

Task 1 Give a proof of the following proposition with the help of case distinction.

$$
(x \geq 2 \vee x=-1) \Rightarrow x^{3}-3 x-2 \geq 0
$$

for $x \in \mathbb{R}$.
Say precisely how you use the tautology

$$
((P \vee Q) \wedge(P \Rightarrow R) \wedge(Q \Rightarrow R)) \Rightarrow R
$$

Task 2 Give logical derivation of the following tautology

$$
(\neg P \Rightarrow P) \Rightarrow P
$$

Task 3 Give logical derivation of the following tautology.

$$
((P \Rightarrow Q) \Rightarrow \neg P) \Rightarrow(P \Rightarrow \neg Q)
$$

Task 4 Show with derivations that the following formula is a tautology

$$
\exists_{x} \forall_{y}[P(x) \Rightarrow Q(y)] \Rightarrow\left(\forall_{u}[P(u)] \Rightarrow \exists_{v}[Q(v)]\right)
$$

Task 5 Prove with a derivation that the following formula is a tautology.

$$
\exists_{y}\left[\forall_{x}[P(x) \wedge Q(x, y)]\right] \Rightarrow \forall_{z}[P(z)]
$$

Task 6 Prove with a derivation that the following formula is a tautology.

$$
\forall_{y}\left[Q(y) \Rightarrow\left(P(y) \Rightarrow \exists_{x}[P(x) \wedge Q(x)]\right)\right]
$$

Task 7 Prove with a derivation that the following formula is a tautology.

$$
\forall_{x}[P(x): Q(x)] \Rightarrow\left(\exists_{x}[P(x)] \Rightarrow \exists_{x}[Q(x)]\right)
$$

Task 8 Prove with a derivation that the following formula is a tautology.

$$
\exists_{x}\left[\forall_{y}[P(x, y)]\right] \Rightarrow \forall_{v}\left[\exists_{u}[P(u, v)]\right]
$$

