Formale Systeme Proseminar

Tasks for Week 7, 19.11.2020

Task 1 Write the following statements as formulas with quantifiers. D is a subset of \mathbb{N}.
(a) All elements of D are larger than or equal to 0 .
(b) All elements of D are larger than 5 and less than 15.
(c) All elements of D are larger than 5 or all elements of D are smaller than 15.
(d) Every pair of different elements of D differ by at least 2 .

Task 2 Write the following statements as formulas with quantifiers.
(a) For every natural number, there is a natural number which is greater than it by 5 .
(b) There is no natural number which is greater than all natural numbers.
(c) There are two natural numbers the sum of whose squares is 40 .
(d) The sum of two natural numbers is greater than or equal to each of the two numbers.

Are the propositions true? Give an explanation.
Task 3 Is the following proposition true?

$$
\forall x[x \in \mathbb{Z}: \exists y[y \in \mathbb{Z}: x+y=0]] \Rightarrow \exists y[y \in \mathbb{Z}: \forall x[x \in \mathbb{Z}: x+y=0]]
$$

Explain your answer.
Task 4 Show with a counter example that the following properties hold.
(a) $\forall x[P: Q] \stackrel{v a l}{\neq} \forall x[Q: P]$
(b) $\exists x[P: Q] \wedge \exists x[P: R] \stackrel{v a l}{\neq} \exists x[P: Q \wedge R]$

Task 5 Is the following statement always true? Why?

$$
\forall x[A(x): B(x)] \Rightarrow \exists x[B(x)]
$$

Task 6 Find a domain (i.e., a model) where both of the formulas below are true. The formulas are $\forall x \forall y \forall z[x=y \vee y=z \vee x=z]$ and $\exists x \exists y[x \neq y]$.

Task 7 Show with a calculation that
(a) $\exists x[P: Q] \stackrel{v a l}{=} \neg \forall x[Q: \neg P]$,
(b) $\forall x[P: Q \vee R] \stackrel{v a l}{=} \forall x[P \wedge \neg Q: R]$.

