Formale Systeme Proseminar

Tasks for Week 4, 29.10.2020

Task 1 Check in each of the following cases whether the given rule is correct. If it is, give arguments to show this. If it is not, give a counter example.

(a) There are K's which are also M's All K's are L's

There are L's which are M's

(b) No one K is an M All K's are L's

No one L is an M

- Task 2 For each of the following concrete propositions, write an abstract proposition which corresponds to it:
 - (a) I love you and will always be true to you.
 - (b) If it is raining, then I will stay home and watch a movie.
 - (c) $x^2 > 4$ if, and only if, x > 2 or x < -2.
 - (d) I will go climbing if you bring a rope.
- **Task 3** Give the following propositions in words again, with 'it is raining' for a, 'it is windy' for b, and 'I am wet' for c.
 - (a) $a \wedge \neg b$
 - (b) $\neg(a \lor b)$
 - (c) $(a \Rightarrow c) \lor (b \Rightarrow \neg a)$.
 - (d) $\neg \neg a$.
- Task 4 Draw the trees of the following abstract propositions and give the main symbol for each of them.
 - (a) $(a \Rightarrow (b \Rightarrow a))$
 - (b) $((\neg(a \Rightarrow b)) \Leftrightarrow (a \land (\neg b)))$
 - (c) $((\neg(\neg a)) \Rightarrow ((\neg a) \land b))$

(d) $(a \Rightarrow ((b \land a) \lor c)).$

- Task 5 Drop as many parentheses as possible from the abstract propositions of Task 4.
- Task 6 Give the truth tables of the abstract propositions of Task 4.
- Task 7 For which values of a, b, and c one gets 0 in the truth-table of

$$(a \land (b \Rightarrow c)) \Rightarrow ((b \Rightarrow a) \land c)$$
?

- Task 8 Check whether the following two propositions are equivalent:
 - (a) $\neg (b \lor \neg c)$ and $\neg b \land c$
 - (b) $a \Rightarrow b$ and $\neg a \Rightarrow \neg b$
 - (c) $(a \lor b) \land a$ and a
 - (d) $(a \lor b) \land b$ and $(b \land c) \lor (b \land \neg c)$.
- **Task 9** Give an example of a tautology (i.e., an abstract proposition that is always true independent of the truth-values of its variables) with only one proposition variable a and with only parentheses and
 - (a) connective \Rightarrow
 - (b) connectives \lor and \neg
 - (c) connectives \land and \neg
 - (d) connective \Leftrightarrow .