Formale Systeme Proseminar

Tasks for Week 11, 17.12.2020

Task 1 Let $A = \{1, 2, 3, 4\}$ and consider the relation

$$R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,1), (3,4), (4,3)\}.$$

Show that R is an equivalence relation.

Task 2 Consider the relation $R \subseteq \mathbb{Z} \times \mathbb{Z}$ given as

$$R = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} \mid (xy > 0) \text{ or } x = y = 0\}.$$

Prove that R is an equivalence and write down its equivalence classes.

- **Task 3** Describe the equivalence classes of the equivalence \equiv_5 on \mathbb{Z} defined in the lectures. In general, for a fixed natural number n, describe the classes of \equiv_n . How many classes are there?
- **Task 4** Let $A = \{a, b, c, d\}$. For each of the following partitions of A write down the corresponding equivalence:
 - (a) $\{\{a,b\},\{c,d\}\},\$
 - (b) $\{\{a\}, \{b, c, d\}\},\$
 - (c) $\{\{a\},\{b\},\{c\},\{d\}\}.$
- **Task 5** Let $A = \{a, b, c\}$. How many equivalence relations are there on A? List them all.
- Task 6 Give an example of an equivalence on \mathbb{N} with
 - (a) 3 equivalence classes,
 - (b) 10 equivalence classes,
 - (c) 100 equivalence classes.
- **Task 7** Consider the relation $R \subseteq \mathbb{N} \times \mathbb{N}$ defined by

$$R = \{(n, n+1) \mid n \in \mathbb{N}\}.$$

- (a) Find the relation R^2 ,
- (b) Find the relation R^3 ,
- (c) Can you think of a concise way to describe the reflexive and transitive closure relation R^* ?