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In this paper we introduce the concept of multirules for a language L of
classical first order predicate logic with function symbols and investigate the
algebraic properties of the set of multirules. Let S be the set of sentences, i.e.
closed formulas, of L. In Frege-Hilbert calculi as well as in related calculi a
proof of a sentence F of S may need to use formulas containing eigen constants
or parameters which do not occur in F . For example, a formula ∀xF [x] can
be inferred from F [p] only if the parameter p does not occur in ∀xF [x]. We
assume that there is an infinite number of parameters and that they do not
occur in L. Let Lpar be the language L augmented by the parameters as new
constants, and let Spar be the set of sentences of Lpar. Then an n-ary rule of a
Frege-Hilbert calculus defines a relation R ⊂ Sn

par × Spar. For a sentence F of
Spar, let ∀parF denote the universal closure of the result of consistently replacing
the parameters of F with pairwise distinct variables not occurring in F . For a
finite or infinite sequence F = (F1, F2, . . . ) of sentences of Spar, let ∀parF denote
the set {∀parF1,∀parF2, . . . }. Then a rule defining a relation R is valid if for
all (F, G) ∈ R it holds ∀parF |= ∀parG. Rules of Frege-Hilbert calculi can be
composed to form a new rule as has been shown in my earlier papers, and the
composition of valid rules is again a valid rule.

Composition of rules is not a single binary operation on the set of rules.
Rather, there are n ways to compose an m-ary rule with an n-ary rule. Each
premise of the second rule can be chosen to unify with the conclusion of the first
rule. Moreover, the composition of a rule with an axiom scheme (nullary rule)
is undefined. For algebraic investigations it would be desirable to have a single
operation which is defined for all rules. Therefore we introduce here the concept
of a multirule which is similar to a tuple of rules, and we define the concept of
a product of two multirules which has the desired properties. With the product
operation, arbitrary compositions of rules and multirules can be constructed.

A finite multirule is a subset of Sm
par × Sn

par where m and n are nonnegative
integers. A finite multirule represents an n-tuple (R1, . . . , Rn) of m-ary rules.
If F1, . . . , Fm are the premises and each Gi (i = 1, . . . , n) is the conclusion
of an instance of the i-th rule Ri then the pair ((F1, . . . , Fm), (G1, . . . , Gn)) is
an element of the set R. However, composing two such multirules R1 and R2

with different values of arities m1, n1,m2, n2 would involve ugly case distinctions
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depending on the sign of n1−m2 which make the investigation of algebraic prop-
erties complicated. Therefore we use a similar approach as the page description
programming language Postscript does which operates on a pushdown stack. In
our case this stack would be infinite. So we add an infinite number of premises
and of conclusions to the multirule and require that the (m + k)-th premise is
identical to the (n + k)-th conclusion of a rule instance for all k ≥ 1.

Let S denote the set of infinite sequences (F1, F2, . . . ) of sentences of Spar.
For F = (F1, . . . , Fn) ∈ Sn

par and H = (H1,H2, . . . ) ∈ S, let FH denote the
sequence (F1, . . . , Fn,H1,H2, . . . ) in S. If R is a finite multirule then let R̄
denote the set of pairs (FH,GH) such that (F,G) ∈ R and H ∈ S. An infinite
multirule is a set R̄ such that R is a finite multirule. If R and S are two infinite
multirules then the product RS of R and S is the set of pairs (F,H) ∈ S × S

such that there is a G ∈ S with (F,G) ∈ R and (G,H) ∈ S. Let E be the
identity function on S. Then the set of infinite multirules together with the
product operation is a monoid with neutral element E.

A finite or infinite multirule R is said to be valid if, for each pair (F,G) ∈ R,
every model of ∀parF is also a model of ∀parG. The product of two valid infinite
multirules is again valid. So the set of valid infinite multirules is a submonoid
of the monoid of all infinite multirules. The relation defined by a rule of a
Frege-Hilbert calculus is just a finite multirule with exactly one conclusion,
R ⊂ Sn

par × S1
par, and R̄ is therefore an infinite multirule.

If r1, . . . , rm, s1, . . . , sn ∈ {1, . . . , k} such that {s1, . . . , sn} ⊂ {r1, . . . , rm}
then the finite multirule R = {((Fr1 , . . . , Frm), (Fs1 , . . . , Fsn)) | F1, . . . , Fk ∈
Spar} is called a finite multiprojection. The corresponding infinite multirule R̄
is called an infinite multiprojection. The set of infinite multiprojections is a
submonoid of the monoid of valid infinite multirules. A generalized composi-
tion of two multirules R and S is a multirule P1RP2SP3 where P1, P2 and P3

are infinite multiprojections. The concept of generalized composition of multi-
rules generalizes the concept of composition of rules as well as the concept of
factorization of rules.

A finite or infinite multirule R is bivalid if, for all (F,G) ∈ R, every model
of ∀parF is also a model of ∀parG and vice versa. The set of bivalid infinite
multirules is a submonoid of the monoid of valid infinite multirules. A finite or
infinite multirule R is information preserving if the following two propositions
hold:

1. (F1,G) ∈ R and (F2,G) ∈ R implies F1 = F2.

2. (F,G1) ∈ R and (F,G2) ∈ R implies G1 = G2.

The set of information preserving infinite multirules is a submonoid of the set
of all infinite multirules. The set of information preserving infinite multirules
R with domain and range S is a submonoid thereof. Moreover, it is a group G.
The inverse of a multirule R of G is the multirule R−1 = {(G,F) | (F,G) ∈ R}.
The set of bivalid multirules in G is a subgroup of the group G.
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