Automated Deduction in Frege-Hilbert Calculi

Elmar Eder

University of Salzburg Department of Computer Sciences

8th WSEAS International Conference on Applied Computer and Applied Computational Science (ACACOS '09) Hangzhou, May 20–22, 2009

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

イロト イポト イヨト イヨト

æ

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

★ E → ★ E →

< 🗇

Proof by Composition of Rules

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

ヘロト ヘワト ヘビト ヘビト

Motivation

Main Objectives

- Automated deduction in classical first order logic
- Find short proofs
- Find them quickly
- Use a calculus which can express powerful proof principles

→ Ξ → < Ξ →</p>

< 🗇 🕨

Frege-Hilbert Calculi

Gottlob Frege 1879: Begriffsschrift (concept language)

Axioms

$$egin{aligned} A &
ightarrow B
ightarrow A \ (A &
ightarrow B
ightarrow C) &
ightarrow (A &
ightarrow B)
ightarrow A
ightarrow C \ (
egar{A} &
ightarrow
egar{B})
ightarrow B
ightarrow A \ orall x F
ightarrow F^x_t \end{aligned}$$

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

ヘロア 人間 アメヨア 人口 ア

э

Frege-Hilbert Calculi

Rules

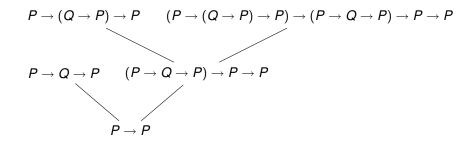
$\frac{A}{E}$	$A \rightarrow B$ modus ponens
$\frac{A \to F_{\rho}^{x}}{A \to \forall xF}$	

Constraint:

The parameter *p* must not occur in the conclusion $A \rightarrow \forall xF$.

イロト 不得 とくほ とくほとう

Frege-Hilbert Calculi A Proof Tree



・ 同 ト ・ ヨ ト ・ ヨ ト …

Frege-Hilbert Calculi

difficult to use for automated deduction

- Very inefficient to construct a proof by forward reasoning
- Better: backward reasoning
- But backward application of modus ponens not unique

$$\frac{A \qquad A \rightarrow B}{B}$$

- have to guess the cut formula A
- cut rule

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Sequent Calculus

Gerhard Gentzen 1935

- Sequents of formulas instead of formulas
- Cut elimination theorem

Sequent calculus without cut rule allows

- analytic backward reasoning
- efficient proof search

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

ヘロト ヘ戸ト ヘヨト ヘヨト

Conventional Automated Deduction

Proof procedure

Construct the formulas of a proof one by one.

Calculi used

- J.A. Robinson 1965 Resolution
- Calculi based on backward reasoning in the cut-free sequent calculus
 - Gerhard Gentzen 1935
 Sequent calculus without cut-rule
 - Wolfgang Bibel 1982
 Connection method
 - Evert W. Beth, Raymond M. Smullyan 1955–1971 Tableau calculus

Cost of Cut Elimination

Theorem (R. Statman 1979, V.P. Orevkov 1982)

There is a sequence (F_n) of formulas and a polynomial p such that each F_n has a proof of length $\leq p(n)$ in the full sequent calculus, but the shortest proof of F_n in the cut-free sequent calculus has length $\geq 2^{2^{\dots^{2^2}}}$.

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

Case Distinction

in a proof

- Case 1: Assume A. <Proof of B>
- Case 2: Assume ¬*A*. <Proof of *B*>

is a cut rule and equivalent to the general cut rule.

Cut and case distinction

are essential parts of human reasoning.

・ 同 ト ・ ヨ ト ・ ヨ ト

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

★ E → ★ E →

2

< 🗇 ▶

Our Proof Procedure

Calculus

with cut rule (Frege-Hilbert calculus)

Construction of the proof

- Construct formula schemes and compositions of rules
- Later instantiate them to obtain the final proof.

Inference rule

Composition of rules of the Frege-Hilbert calculus

イロト イポト イヨト イヨト

Our Proof Procedure

Calculus

with cut rule (Frege-Hilbert calculus)

Construction of the proof

- Construct formula schemes and compositions of rules
- Later instantiate them to obtain the final proof.

Inference rule

Composition of rules of the Frege-Hilbert calculus

ヘロト ヘ戸ト ヘヨト ヘヨト

Our Proof Procedure

Calculus

with cut rule (Frege-Hilbert calculus)

Construction of the proof

- Construct formula schemes and compositions of rules
- Later instantiate them to obtain the final proof.

Inference rule

Composition of rules of the Frege-Hilbert calculus

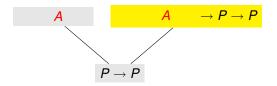
・ロト ・聞 ト ・ ヨト ・ ヨトー

Our Proof Procedure

Elmar Eder Automated Deduction in Frege-Hilbert Calculi

ヘロト 人間 とくほとくほとう

Our Proof Procedure

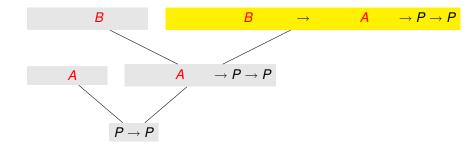


Elmar Eder Automated Deduction in Frege-Hilbert Calculi

ヘロト 人間 とくほとくほとう

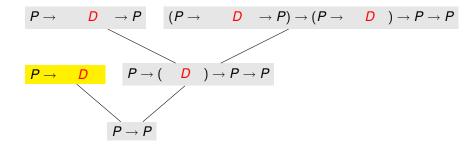
æ –

Our Proof Procedure



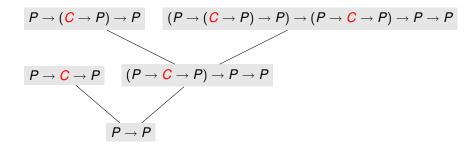
イロト イポト イヨト イヨト

Our Proof Procedure



◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Our Proof Procedure



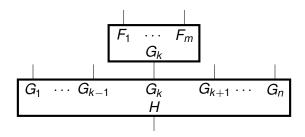
イロト 不得 トイヨト イヨト 二日 二

Our Proof Procedure

- A, B, C are meta-symbols standing for formulas
- formula schemes
- composition of rules
- reasoning in arbitrary directions

→ Ξ → < Ξ →</p>

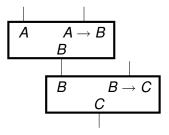
Composition of Rules



Elmar Eder Automated Deduction in Frege-Hilbert Calculi

ヘロト 人間 とくほとくほとう

Composition of Rules



results in the rule

코어 세 코어

æ

Composition of Rules

A proof using the rules

$$\forall xF \to F_t^x$$

and

$$\frac{A \to F_p^x}{A \to \forall xF}$$

$$\forall x P(x) \rightarrow P(p)$$

 $\forall x P(x) \rightarrow \forall y P(y).$

・ロト ・ 理 ト ・ ヨ ト ・

Composition of Rules

$$\forall xF \to F_t^x$$

$$\downarrow$$

$$A \to F_p^x$$

$$A \to \forall xF$$

with the constraint $p \notin AF$

< < >> < </>

★ Ξ → ★ Ξ → ...

Composition of Rules

$$\forall xF \to F_t^x$$

$$|$$

$$A \to G_p^y$$

$$A \to \forall yG$$

with the constraint $p \notin AG$

ヘロア 人間 アメヨア 人口 ア

Composition of Rules

$$\forall xF \to F_t^x$$

$$\forall xF \to G_p^y$$

$$\forall xF \to \forall yG$$

with the constraints $F_t^x = G_p^y$ and $p \notin FG$

★ Ξ → ★ Ξ → ...

< 🗇 ▶

э

Composition of Rules

$$\forall xF \rightarrow \forall yG$$

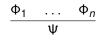
with the constraints
$$F_t^x = G_p^y$$
 and $p \notin FG$

Also yields a proof of

 $\forall x P(x) \rightarrow \forall y P(f(y))$

・ 同 ト ・ ヨ ト ・ ヨ ト

The Most General Form of a Rule



with a sequence \mathcal{C} of constraints

< 🗇 🕨

э

Frege-Hilbert Calculus

$$A
ightarrow B
ightarrow A$$

 $(A
ightarrow B
ightarrow C)
ightarrow (A
ightarrow B)
ightarrow A
ightarrow C$
 $(\neg A
ightarrow \neg B)
ightarrow B
ightarrow A$
 $orall xF
ightarrow E$ with

constraint

$$E = F_t^x$$
.

ヘロン 人間 とくほ とくほ とう

₹ 990

Frege-Hilbert Calculus Rules

$$\frac{A \quad A \to B}{B}$$
$$\frac{A \to E}{A \to \forall xF} \quad \text{with}$$

constraints

 $E = F_p^x$, $p \notin AF$.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

- Premises and conclusion are terms of a free term algebra.
- Composition by standardizing apart and unification
- Merge constraints

→ Ξ → < Ξ →</p>

< 🗇 🕨

- Automated deduction feasible in calculi with cut
- Short proofs
- Expressiveness
- A student at our department is implementing a system.
- Future: sequent calculus

→ Ξ → < Ξ →</p>