
Automated Deduction in Frege-Hilbert Calculi

ELMAR EDER
University of Salzburg

Department of Computer Sciences
Jakob-Haringer-Str. 2

AUSTRIA
eder@cosy.sbg.ac.at

Abstract: In this paper the appropriateness of Frege-Hilbert calculi and other cut calculi for automated deduction is
discussed. Unification of formula schemes and composition of rules of Frege-Hilbert calculi lead to proof systems
which may be suited for automation.

Key–Words: Automated deduction, Frege-Hilbert calculi, Composition of rules, Cut rule

1 Introduction

In this paper we give a brief account of some results
on automated deduction in Frege-Hilbert calculi us-
ing the operation of composition of rules. We restrict
ourselves to classical first order predicate logic with
or without function symbols. Whereas there are many
successful systems for automated deduction in resolu-
tion and in systems related to backward reasoning in
cut-free sequent calculi (connection method, tableau
calculus), automated reasoning in Frege-Hilbert cal-
culi or generally in proof systems with the cut rule
is much more difficult. For a long time it seemed
to be entirely impossible because in each proof step
rules can be applied in an infinite number of possi-
ble ways making automatic proof search a nightmare.
On the other hand, resolution and cut-free calculi are
hopelessly inefficient even in terms of shortest possi-
ble proofs (not even regarding the problem of finding
the proof) for some classes formulas. Also, cut is a
natural tool used by humans when reasoning and so
should be used in automated reasoning too.

In conventional automated deduction, a proof is
constructed by constructing the formulas of a proof
tree one by one. This cannot be done efficiently in cal-
culi with cut. However, it is possible to construct for-
mula schemes and compositions of rules of the calcu-
lus and later instantiate them to obtain the final proof.
So the proof procedure proposed in this paper has as
its inference rule the operation of composition of rules
of the Frege-Hilbert calculus. In this way it is possible
to obtain a proof, for example in a Frege-Hilbert cal-
culus, without having to choose from an infinite num-
ber of possibilities in a single proof step.

2 Calculi With Cut and Calculi
Without Cut

The first formulation of a language of full first order
predicate logic given in the history of logic was Gott-
lob Frege’s Begriffsschrift [5] (concept language) in
1879. In his Begriffsschrift, Frege also provided a
proof calculus which was later proved to be sound and
complete when restricted to what we now call first or-
der predicate logic. Frege’s idea was to provide a set
of axioms which are formulas known to be valid, and a
set of rules to derive new valid formulas from formu-
las which have already been derived. Similar calculi
were introduced and investigated to a great extent by
David Hilbert and others.

Here is a typical Frege-Hilbert calculus with four
axiom schemes

A→ B → A (1)

(A→ B → C)→ (A→ B)→ A→ C (2)

(¬A→ ¬B)→ B → A (3)

∀xF → F xt (4)

and two rules

A A→ B

B
(5)

A→ F xp
A→ ∀xF

(6)

where “F xt ” denotes the result of replacing every free
occurrence of the variable x in the formula F with the
ground term t. The symbol p in the last rule is called
a parameter. It is subject to the constraint that p must



not occur in the conclusion A → ∀xF . Rule (6) is
called modus ponens.

Even nowadays most proof calculi used by logi-
cians for classical as well as non-classical logic are
of the Frege-Hilbert type. The reason for this is that
Frege-Hilbert calculi have a simpler syntactic struc-
ture than some of the calculi introduced later and yet
are very powerfull for expressing proofs of logical for-
mulas. Actually, an axiom scheme can be considered
as a rule with no premise.

On the other hand, Frege-Hilbert calculi are dif-
ficult to use for automated deduction. If you want to
prove some given formula, it would be very inefficient
to construct the proof in a forward way, randomly pro-
ducing axioms and trying to use the rules to derive
conclusions from them until you get the formula you
wanted to prove. Rather, the more obvious way would
be to use backward reasoning. You start from the for-
mula you want to prove and apply the rules backward
until all your premises are axioms. The problem with
this idea is that a backward application of modus po-
nens is not unique. If you want to prove a formula B
with modus ponens, you have to guess the formula A,
and there are an infinite number of possibilities what
A could be. An automated system would be com-
pletely lost. This problem appears in a Frege-Hilbert
calculus whenever there is a rule with a formula A
occurring in at least one of the premises but not oc-
curring in the conclusion. Such a rule is called a cut
rule and the formula A is called a cut formula. Unfor-
tunately, there is no sound and complete Frege-Hilbert
calculus which does not have a cut rule.

In the history of logic, cut rules caused a headache
to logicians for similar reasons when they wanted to
prove the consistency of logical calculi long before
the advent of modern computers and thus long before
the birth of automated deduction. In 1935 Gerhard
Gentzen introduced his sequent calculus [6] in a ver-
sion with cut rule and a version without cut rule. The
sequent calculus is similar to Frege-Hilbert calculi but
uses the data structure of a sequent (of formulas) in-
stead of formulas. So you prove a sequent of formulas
rather than proving a formula. Gentzen showed that in
his calculus applications of the cut rule can be elimi-
nated. A proof with cut can be transformed to a proof
without cut. The cut-free version of Gentzen’s sequent
calculus can be used for analytic backward reasoning.
This means that the backward reasoning (backward
application of rules) amounts to decomposing (ana-
lyzing) the given formula rather than guessing a cut
formula.

There are a number of calculi and proof systems
derived from Gentzen’s sequent calculus. One of
them is Wolfgang Bibel’s connection method [3]. An-
other one is Beth’s and Smullyan’s tableau calculus

[1, 2, 9]. Both of them can be viewed as refinements
of the sequent calculus with the use of structure shar-
ing techniques. All these calculi are characterized by
a rather directed proof search.

The calculus most often used for automated de-
duction is the resolution calculus [8] introduced in
1965 by J. A. Robinson. It works by proving the un-
satisfiability of a formula in conjunctive normal form.
It is characterized by a particularly simple deduction
rule, the resolution rule, and works by deriving new
clauses from a given set of clauses until an empty
clause is derived, indicating a contradiction. In res-
olution it is more difficult to get a well directed proof
search than in calculi based on the sequent calculus.

Unfortunately, cut elimination may be extremely
expensive, as R. Statman [10] and V. P. Orevkov [7]
have shown. More precisely, there is a sequence (Fn)
of formulas and a polynomial p such that each Fn has
a proof of length ≤ p(n) in the full sequent calculus,
but the shortest proof of Fn in the cut-free sequent

calculus has length ≥ 22...2
2︸ ︷︷ ︸

n times

. Moreover, these formu-

las are not just some academic examples but formulas
from combinatory logic which may very well occur in
the everyday life of a logician or of a computer sci-
entist. As a consequence, for these formulas even a
stupid generation of all possible finite sequences of
formulas and testing whether they are proofs in the
full sequent calculus would be more efficient than
even the most clever proof search in the cut-free se-
quent calculus.

This result of Statman and Orevkov carries over
to all calculi based on the cut-free sequent calculus
including the connection method and the tableau cal-
culus, and also to some other calculi such as the res-
olution calculus. Some of these calculi can be ex-
tended to allow something similar to a cut rule. For
example, the tableau calculus can be extended by al-
lowing a case distinction between A and ¬A where A
is some arbitrary formula. This amounts to the same
thing as the cut rule in the sequent calculus. However,
again this destroys the analytic character of the calcu-
lus. An automated deduction system would have the
same problem guessing the formula A as in the full
sequent calculus. Even for a human mathematician it
is often hard to decide how to make a case distinction,
i.e., which formula A to choose. However, as every
mathematician knows, case distinction is a very pow-
erful tool in mathematical theorem proving. Therefore
we should try hard to find ways to also employ case
distinction or a cut rule in systems of automated de-
duction.



3 Construction of a Proof
Since Frege-Hilbert calculi are syntactically compar-
atively simple, it seems that for a theoretical investi-
gation of possible proof systems with cut the Frege-
Hilbert calculi would be a good start. Of course, for
a later practical system the full sequent calculus and
systems based on it seem to be more adequate, since
the sequence calculus is complete also without cut and
therefore a well dosed sparse application of cuts is
possible there.

So let us consider the Frege-Hilbert calculus
given at the beginning of section 2 again. One idea
how to deal with a cut rule such as modus ponens is
not to guess the cut formula A but to leave the symbol
“A” there instead and to continue applying rules back-
wards. Assume, for example, that we want to prove
the formula P (a). If we try to do this with the modus
ponens, we get the premisesA andA→ P (a). At this
point we do not know yet which formula the symbol
“A” is going to stand for. The decision which formula
“A” is to stand for is postponed until later. The same
technique is used by automated deduction calculi on
the level of terms rather than formulas. There a term
is determined by unification (or equation solving). For
our purpose we need unification of formulas in addi-
tion to unification of terms.

The symbol “A” can be viewed as a meta-symbol
standing for a formula. Similarly we have meta-
symbols for terms, variables, and parameters. Since
we have meta-symbols such as “A” during our de-
duction process, we do not only deal with formu-
las. Rather we deal with formula schemes. A for-
mula scheme is the result of replacing within a for-
mula some subformulas or terms with adequate meta-
symbols.

Now, backward reasoning in a Frege-Hilbert sys-
tem (with cut) can be done as follows. We start with
the formula to be proved. Then we apply rules of
the calculus in a backward direction, in each step re-
placing the conclusion of the rule application with the
premises. In each step, a formula scheme (the con-
clusion of the rule application) is replaced with zero
or more new formula schemes (the premises of the
rule application). Since axiom schemes are rules with
zero premises, our proof is finished when no formula
schemes are left.

Actually, the premises and the conclusion of
a rule of a Frege-Hilbert calculus are formula
schemes. It turned out [4] that two rules R1

and R2 of a Frege-Hilbert calculus can be com-
posed to give a new rule R such that H is
the conclusion of an instance of R with premises
G1, . . . , Gk−1, F1, . . . , Fm, Gk+1, . . . , Gn if and only
if there is a formula Gk such that Gk is the conclusion

of an instance ofR1 with premises F1, . . . , Fm andH
is the conclusion of an instance of R2 with premises
G1, . . . , Gn. The idea is to use a kind of unification
with meta-symbols. However, formula schemes and
unification alone do not suffice. Rather, some con-
straints have to be added.

So we can go a step further and use the operation
of composition of rules in order to construct a proof
tree. The proof tree can then not only be constructed
from its root. Rather we can start constructing parts of
the tree in various places somewhere in the middle of
the tree and later join them, again using the operation
of composition of rules.

4 Composition of Rules
As a simple example to see how the composition of
rules works let us look at a proof of the formula
∀xP (x)→ ∀yP (y) in our Frege-Hilbert calculus:

∀xP (x)→ P (p)

∀xP (x)→ P (y).

In the first step we obtain ∀xP (x) → P (p) as an in-
stance of the axiom scheme (4). From this we derive
∀xP (x) → P (y) by rule (6). Now let us compute
the composition of rules (4) and (6). First we observe
that (4) and (6) share the meta-symbols “F ” and “x”.
Therefore we standardize the two rules apart by re-
naming in (6) the meta-symbol “F ” to “G” and the
meta-symbol “x” to “y” and we get

A→ Gyp
A→ ∀yG

Now, if an application of rule (4) is to be followed by
an application of this rule then A = ∀xF and F xt =
Gyp must hold. Also, the parameter p must not occur
in A → ∀yG and thus it must not occur in F and
not in G. We write p /∈ FG for short. In summary,
the composition of the rules (4) and (6) is the axiom
scheme (i.e. nullary rule)

∀xF → ∀yG

with the constraints F xt = Gyp and p /∈ FG.
If we set F = P (x) and G = P (f(y)) and t =

f(p) then we see that this composition of rules also
yields a proof of the formula

∀xP (x)→ ∀yP (f(y)).

The proof is

∀xP (x)→ P (f(p))

∀xP (x)→ ∀yP (f(y)).



The most general form of a rule obtained by re-
peated compositions of rules of Frege-Hilbert calculi
is

Φ1 . . . Φn

Ψ
together with a sequence C of constraints where
Φ1, . . . ,Φn and Ψ are formula schemes. Symbols
such as F xt and F xp denoting the result of replacing
a variable with a term can be pushed into the con-
straints. For example, our Frege-Hilbert calculus can
then be presented as follows.

Axioms:

A→ B → A (7)

(A→ B → C)→ (A→ B)→ A→ C (8)

(¬A→ ¬B)→ B → A (9)

∀xF → E if C10 (10)

In axiom (10) there is a constraint

C10: E = F xt .

Rules:

A A→ B

B
(11)

A→ E

A→ ∀xF
if C12 (12)

In rule (12) there is a constraint

C12: E = F xp , p /∈ AF.

Now the formula schemes occurring in the rules
without their constraints can be regarded as terms of
a free term algebra with the logical connectives and
quantifiers as function symbols and the meta-symbols
as variables. Therefore the composition of two rules
can be computed with the usual technique of first stan-
dardizing apart and then unifying the conclusion of
the first rule with one of the premises of the second
rule. Finally, the sets of constraints have to be merged.

If we look at the constraints C10 and C12 we see
that they do not contain any propositional connectives
or quantifiers. The formula schemes occurring in con-
straints of rules have the form Γξ...ζµ...ν where Γ is a meta-
symbol for a formula, ξ, . . . , ζ are meta-symbols for
variables, and µ, . . . , ν are meta-symbols for terms or
parameters. We call such a formula scheme an atomic
formula scheme. Constraints have always the form
Φ = Ψ or α /∈ Φ where Φ and Ψ are atomic formula
schemes and α is a meta-symbol for a parameter.

Note that any set of such constraints has a solu-
tion. For example, replacing all meta-symbols with
one and the same proposition symbol P solves all pos-
sible constraints. Let us call a composition of rules
failed if it has no instance. Then it follows that a fail-
ure of a composition of rules is always accompanied
by a failure of the unification process, never by a fail-
ure of the constraints. It can therefore easily be recog-
nized.

5 Conclusion
Automated deduction in proof calculi with a cut rule
can be used to prove formulas which have extremely
long shortest proofs in cut-free calculi and in resolu-
tion if suitable search strategies for proof search can
be found. The results stated in this paper show at least
that the problem of infinitely branching search trees
can be overcome by using unification on the formula
level to compute compositions of rules. A student at
our department is currently implementing an interac-
tive and automatic deduction system based on compo-
sition of rules in Frege-Hilbert calculi as his master’s
thesis. This deduction system will be used for further
investigation of rules and the operation of composition
as well as for practical testing.

References:

[1] Evert W. Beth. Semantic entailment and for-
mal derivability. Mededlingen der Koninkli-
jke Nederlandse Akademie van Wetenschappen,
18(13):309–342, 1955.

[2] Evert W. Beth. The Foundations of Mathematics.
North-Holland, Amsterdam, 1959.

[3] Wolfgang Bibel. Automated Theorem Prov-
ing. Artificial Intelligence. Vieweg, Braun-
schweig/Wiesbaden, second edition, 1987.

[4] Elmar Eder. Backward reasoning in systems
with cut. In Jaques Calmet, John A. Camp-
bell, and Jochen Pfalzgraf, editors, Artificial In-
telligence and Symbolic Computation, Interna-
tional Conference, AISMC-3, volume 1138 of
Lecture Notes in Computer Science, pages 339–
353. Springer, September 1996.

[5] Gottlob Frege. Begriffsschrift, eine der arith-
metischen nachgebildete Formelsprache des
reinen Denkens. Halle, 1879.

[6] Gerhard Gentzen. Untersuchungen über das lo-
gische Schließen. Mathematische Zeitschrift,
39:176–210, 405–431, 1935.



[7] V. P. Orevkov. Lower Bounds for Increasing
Complexity of Derivations after Cut Elimina-
tion. Zapiski Nauchnykh Seminarov Leningrad-
skogo Otdeleniya Matematicheskogo Instituta
im V. A. Steklova AN SSSR, 88:137–161, 1979.
English translation in J. Soviet Mathematics,
2337–2350, 1982.

[8] J. A. Robinson. A machine-oriented logic based
on the resolution principle. Journal of the ACM,
12:23–41, 1965.

[9] Raymond M. Smullyan. First-Order Logic.
Ergebnisse der Mathematik und ihrer Grenzge-
biete. Springer-Verlag, Berlin, Heidelberg, New
York, 1971.

[10] R. Statman. Lower bounds on Herbrand’s theo-
rem. Proc. AMS, 75, 1979.


