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ABSTRACT
Several recent papers argue for approximate lookups in
hierarchical data and propose index structures that sup-
port approximate searches in large sets of hierarchical data.
These index structures must be updated if the underlying
data changes. Since the performance of a full index re-
construction is prohibitive, the index must be updated in-
crementally.

We propose a persistent and incrementally maintainable
index for approximate lookups in hierarchical data. The in-
dex is based on small tree patterns, called pq-grams. It sup-
ports efficient updates in response to structure and value
changes in hierarchical data and is based on the log of tree
edit operations. We prove the correctness of the incremen-
tal maintenance for sequences of edit operations. Our algo-
rithms identify a small set of pq-grams that must be updated
to maintain the index. The experimental results with syn-
thetic and real data confirm the scalability of our approach.

1. INTRODUCTION
Index structures are widely deployed and are being used to

index vast amounts of documents with a hierarchical struc-
ture on the web. An important property of index structures
is how to incrementally update them in response to struc-
ture and value changes in the source documents. We propose
a persistent and incrementally maintainable index that sup-
ports approximate lookups in hierarchical data. The approx-
imate lookup of a search document in a document collection
returns all documents of the collection that are similar to
the search document.

As an application scenario consider Figure 1. T0 is a doc-
ument with a hierarchical structure (e.g., the DBLP file,
211MB). I0 is the index for T0. T0 is modified by a se-
quence of edit operations resulting in Tn. Our goal is to
update the index structure based on: (1) the old index I0,
(2) the resulting document Tn, and (3) the log of inverse
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edit operations that describes how Tn can be transformed
to T0. Note that we do not require that the original docu-
ment be still available, and we assume that it is not feasible
to recompute the index from scratch.

T0 T1 · · · Tn

I0

e1 e2 en

ēnē2ē1̄e1

Figure 1: Application Scenario.

Our key contribution is the proof that we do not need
to reconstruct intermediate versions of the document. All
inverse edit operations can be applied to the resulting doc-
ument Tn to compute the changes to the old index. Note
that it is not obvious that this is possible, since the edit op-
erations may depend on each other and have been defined
on intermediate trees that can be very different from the
resulting tree.

The paper makes the following contributions:

• We define the pq-gram index, which supports approx-
imate lookups in data with a hierarchical structure.
The pq-gram index is based on pq-grams [2], which
generalize q-grams [17]. Intuitively, the pq-grams of a
tree are all its subtrees of a specific shape.

• We prove that the pq-gram index can be updated incre-
mentally given the old index, the log of edit operations,
and the resulting document. The index update does
not require the reconstruction of intermediate versions
of the document.

• We show experimentally that our method efficiently
handles logs of several thousand edit operations.

The paper proceeds as follows: Section 2 discusses related
work, Section 3 defines the pq-gram index, and Section 4
gives an outline on our approach. Section 5 develops the in-
cremental maintenance for a single edit operation, Section 6
generalizes to a sequences of edit operations and proves the
correctness. In Section 7 we discuss the computation of the
index maintenance functions. Section 8 discusses the imple-
mentation. Section 9 gives experimental results. Section 10
summarizes and points to future research directions.
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Figure 2: Sequence of Edit Operations that Transforms Tree T0 into T3.

2. RELATED WORK
Guha et al. [7] propose a framework for indexing approx-

imate XML joins. Each XML document is represented by
an XML Document Distance vector (XDD) that stores the
distances between the document and all documents in a ref-
erence set. The use of XDDs reduces the number of distances
computations in a join. Guha et al. [8] investigate the use of
R-trees to efficiently access the XDDs that are relevant for
pruning. The update of XDDs is not addressed. Building
the XDD from scratch means recomputing the distance of
the tree to all trees in the reference set. This step is expen-
sive and depends on the size of the trees. We update our
index locally and are nearly independent of the tree size.

The comparison of hierarchical documents has been ad-
dressed in the context of duplicate and change detection.
Weis and Naumann [18] propose a framework for detecting
duplicates. In change detection scenarios two versions of the
same document are given and the difference is computed [4,
12]. Index use and maintenance is not addressed.

Structural joins [1, 9] compute structural relationships
(e.g., ancestor-descendant) between XML element sets.
Structural joins are part of the XML query evaluation and
are not used to approximately match XML documents.

XML queries typically specify path expressions or twig
patterns that combine content and structural information.
Some papers investigate exact answers [3, 5, 11, 13], while
others allow approximate answers [14, 15]. Schenkel et. al.
[16] introduce a ranking of documents that satisfy the XML
query. Typically the twig patterns are much smaller than
the document and the goal is to find parts of the document
that match the pattern. The indexes proposed for XML
queries have been specialized for this setup and do not sup-
port the matching of pairs of large documents.

A number of works propose index-like structures to com-
pute an approximate distance between hierarchical data [2,
6, 19]. None of these works addresses index maintenance.

Our index is based on the pq-gram distance [2], an approx-
imation of the tree edit distance. Augsten et al. [2] give an
algorithm to compute the pq-gram distance in O(n log n)
in the number of nodes. For the distance computation
they represented the tree as a set of pq-grams. Updates of
pq-grams are not addressed: If the data changes, the entire
set of pg-grams has to be re-computed. We show that the
computation of the pq-grams is by far the most expensive
part of the distance computation. We propose the pq-gram
index, a persistent and incrementally maintainable index for
computing the pq-gram distance. We prove that the pq-gram
index can be updated given the old index, the log of edit op-
erations, and the resulting document. It is not necessary to
reconstruct intermediate document versions. Our experi-

ments compare the incremental index update with the ap-
proach of Augsten et al. and show major performance gains.

3. THE pq-GRAM INDEX

3.1 Preliminaries
A tree T is a directed, acyclic, connected, non-empty

graph with nodes N(T) and edges E(T). A node, n ∈ N(T),
is an (identifier, label)-pair. The identifier, id(n), is unique
within the tree. The label, λ(n), is a symbol σ ∈ Σ, where
Σ is a finite alphabet. A node • with the special label
λ(•) = * is a null node. We represent nodes by their id or
the (id, label)-pair. An edge is an ordered pair (v, c), where
v, c ∈ N(T) are nodes, and v is the parent of c. Nodes with
the same parent are siblings. Siblings are ordered. Contigu-
ous siblings s1 < s2 have no sibling x such that s1 < x < s2.
Node ci is the i-th child of v if v is the parent of ci and
i = |{x ∈ N(T) : (v, x) ∈ E(T), x ≤ ci}|. The number of v’s
children is its fanout fv. The node with no parent is the root
node, r = root(T), and a node without children is a leaf. A
subtree S ⊆ T is a tree with N(S) ⊆ N(T) and E(S) ⊆ E(T)
that retains the node order. A forest, F, is a set of trees.

An ancestor of n is a node a in the path from the root
node to n, a 6= n. If there is a path of length k > 0 from a

to n, then a is the ancestor of n at distance k, and we write
dist(a, n) = k. We define dist(n, n) = 0. The parent of a
node is its ancestor at distance 1. d is a descendant of n if n

is an ancestor of d.
An edit operation ej transforms a tree Ti into a tree Tj ,

denoted as Tj = ej(Ti). The inverse edit operation, ēj ,
undoes ej , i.e., Ti = ēj(Tj). If a tree T0 is transformed by
a sequence of edit operations (e1, . . . , en) into Tn, the log
L = (ē1, . . . , ēn) is the sequence of inverse edit operations
that (if applied in inverse order) transform Tn back to T0.
We use the following standard tree edit operations [20] that
transform Ti into Tj :

• ins(n, v, k, m): Insert a new node n as a child of
node v at position k by substituting the children
ck, ck+1, . . . , cm of v with n, and inserting them as chil-
dren of n (preserving the order). The inverse edit op-
eration is ēj = del(n).

• del(n): Delete node n by substituting n with its chil-
dren, i.e., remove n and connect n’s children directly
to n’s parent node (preserving the order). The inverse
operation is ēj = ins(n, v, k, (k + fn − 1)), where n is
the k-th child of v in Ti, and fn is the fanout of n.

• ren(n, l′): Rename a node n by changing its label l to
l′ ∈ Σ, l 6= l′. Inverse operation: ēj = ren(n, l).
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Figure 3: Part of T′
0 and Two 3, 3-Grams of Tree T0.

Throughout the paper we assume that the root node is not
changed. Two nodes of different trees, Ti and Tj , are equal
iff identifier and label match.

Figure 2 shows an example tree T0 that is transformed to
T3 by a sequence of 3 edit operations.

Below we list standard set algebra rules that we use in our
proofs. For sets A, B, and C the following holds:

(A ∩B) ∪ (A \B) = A (1)

A \ (A \B) = A ∩B (2)

(A ∪ B) \ C = (A \ C) ∪ (B \ C) (3)

(A \B) ∪B = A ∪B (4)

If we operate on bags, we use the symbols ∩, \ and ] to
denote bag intersection, difference, and union, respectively.

3.2 The pq-Gram Index
The pq-gram index is used to efficiently compute approxi-

mate matches in hierarchical data. Intuitively, the pq-grams
of a tree are all subtrees of a specific shape. Trees that share
a high percentage of pq-grams are considered more similar
than trees that share a low percentage.

Definition 1. pq-Gram. Let T be a tree, a be a node in
N(T), p > 0, q > 0, and let T′ be T extended with null nodes
as follows: p − 1 ancestors to the root node, q −1 children
before the first and after the last child of each non-leaf node,
and q children to each leaf.

A pq-gram, g, of T with anchor node a is a subtree
of T′ that is composed of the following nodes: p nodes
ap−1, . . . , a1, a, denoted as p-part of g, where ai is the an-
cestor of a at distance i; q contiguous children ci, . . . , ci+q−1

of a, denoted as q-part of g.

We use a linear encoding and represent a pq-gram g with
anchor node a as a tuple (ap−1, . . . , a1, a, ci, . . . , ci+q−1).

Example 1. Consider tree T0 in Figure 2. Figure 3
shows part of the extended tree T′

0 (p= q =3) together with
two pq-grams of T0, namely g1 = (•, •, n1, n4, •, •) with an-
chor node n1 and g2 = (n1, n3, n5, •, •, •) with anchor node
n5. The total number of pq-grams of T0 is 13.

Definition 2. pq-Gram Profile. Let T be a tree, p > 0,
q > 0. The pq-gram profile, P, of tree T is defined as the
set of all pq-grams of T.

l h(l)
* 0

a 1

b 3

c 2

d 6

l h(l)
e 8

f 4

g 7

h 5

s 9

(a)

treeId pqg cnt

T0 001002 1
T0 001023 1
T0 001232 1
T0 001320 1
T0 001200 1
T0 012000 2
. . . . . . . . .

(b)

Figure 4: (a) Hash Function, (b) pq-Gram Index.

Example 2. The pq-gram profiles of T0 and T2 in Fig-
ure 2 are given as follows:

P0 = {(•, •, n1, •, •, n2), (•, •, n1, •, n2, n3), (•, •, n1, n2, n3, n4),
(•, •, n1, n3, n4, •), (•, •, n1, n4, •, •), (•, n1, n2, •, •, •),
(•, n1, n3, •, •, n5), (•, n1, n3, •, n5, n6), (•, n1, n3, n5, n6, •),
(•, n1, n3, n6, •, •), (n1 , n3, n5, •, •, •), (n1 , n3, n6, •, •, •),
(•, n1, n4, •, •, •)}

P2 = {(•, •, n1, •, •, n2), (•, •, n1, •, n2, n5), (•, •, n1, n2, n5, n6),
(•, •, n1, n5, n6, n4), (•, •, n1, n6, n4, •), (•, •, n1, n4, •, •),
(•, n1, n2, •, •, •), (•, n1, n5, •, •, •), (•, n1, n6, •, •, n7),
(•, n1, n6, •, n7, •), (•, n1, n6, n7, •, •), (n1 , n6, n7, •, •, •),
(•, n1, n4, •, •, •)}

With λ(g) = (λ(n1), . . . , λ(np+q)) we denote the tuple of
the pq-gram’s node labels, called its label-tuple. While a
pq-gram is unique within a tree, different pq-grams may yield
identical label-tuples.

Definition 3. pq-Gram Index. Let T be a tree with pro-
file PT, p > 0, q > 0. The pq-gram index, I, of tree T is the
bag of all label-tuples of T,

I(T) =
]

g∈PT

λ(g). (5)

We store the pq-gram index of a forest F = {T1, . . . , TN}
in a relation with tuples (k, x, n), where k is the ID of Tk,
x is a label-tuple, and n is the number of occurrences of x.
To deal with node labels of different length, such as labels
in XML documents, we use a fingerprint hash function (e.g.,
the Karp-Rabin fingerprint function [10]) that maps a label
l to a hash value h(l) of fixed length that is unique with
a high probability. Instead of storing the label-tuples of
pq-grams, we store the concatenation of the hashed labels
(see Figure 4). Note that the only operation we need to
perform on labels is to check equality.

Example 3. Figure 4 shows part of the pq-gram index
for tree T0, p = q = 3. The label-tuple with the hash values
012000 occurs twice in T0, in the pq-grams (•, n1, n2, •, •, •)
and (•, n1, n4, •, •, •). All other label-tuples are unique.

An approximate lookup of a search tree X in a forest F

returns all trees of the forest that are similar to the search
tree, i.e., the set {T ∈ F | TDist(X, T) < τ}, where TDist
is a distance measure between trees and τ is a threshold
value. We use the pq-gram distance [2] as a measure for the
similarity of two trees. The pq-gram distance is based on
the number of pq-grams that the indexes of the compared
trees have in common. For two trees, T and T′, the pq-gram

distance is defined as distp,q(T, T′) = 1 − 2 |I(T)∩I(T′)|
|I(T)]I(T′)|

.
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Figure 5: Application Scenario and Solution.

4. OUTLINE
In the following we give an outline of our approach to

incrementally update the index. Figure 5 shows the appli-
cation scenario and summarizes the solution:

Input: The old index, I0, the log of inverse edit operations,
(ē1, . . . , ēn), and the resulting tree, Tn (shaded in Figure 5).

Output: The new index, In, for tree Tn.

Solution: The solution consists of three steps:

∆+
n = δ(Tn, ē1) ∪ · · · ∪ δ(Tn, ēn)

∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1)

In = I0 \ λ(∆−
n ) ] λ(∆+

n )

First, we compute ∆+
n , the new pq-grams in the profile of

Tn that were not present in the profile of T0. Second, we
compute the set ∆−

n , the old pq-grams in the profile of T0

that are not present in the profile of Tn. δ(Tn, ēj) oper-
ates on tree Tn and uses the reverse edit operation ēj to
compute the new pq-grams. U(δ(Tn, ēj), ēj) operates on the
new pq-grams and transforms them into the old pq-grams.
Finally, we map the pq-grams in ∆+

n and ∆−
n to label-tuples

and update the index I0.

Note the difference between the profile and the index of
a tree. The profile, P, is a set of pq-grams, the index, I =
λ(P), the respective bag of label-tuples. While the index
can be computed from the profile, the reverse is not possible.
As we need to distinguish between different nodes with the
same label, we compute the deltas on the profiles.

5. SINGLE EDIT STEP
In this section we discuss the effect of a single edit opera-

tion on the profile of a tree. Figure 6 graphically illustrates
this for two trees Ti and Tj with profiles Pi and Pj , respec-
tively, and an edit operation, ej , such that Tj = ej(Ti). An
edit operation changes a small part of the profile by substi-
tuting some old pq-grams (A) by new pq-grams (B). A sub-
stantial part of the profiles overlaps (C). The old pq-grams
exist only in Pi, the new pq-grams only in Pj .

We give declarative definitions for functions that return
the old and the new pq-grams. Algorithms for these func-
tions will be given in Section 7 and 8.

←
ēj

C

Pi

U(δ(Tj, ēj), ēj) δ(Tj, ēj)

A B

Pj

Ti
ej
→ Tj

Figure 6: Profile Update for an Edit Operation ēj .

5.1 The Delta Function
Assume Ti, Tj , ej such that Tj = ej(Ti). The delta

function, δ(Tj , ēj), operates on Tj and computes the new
pq-grams that have been added by the edit operation ej .

Definition 4. Delta Function. Let Tj be a tree with pro-
file Pj . Let ej be an edit operation and ēj its reverse oper-
ation. The delta function is defined as

δ(Tj , ēj) =

(

Pj \Pi iff ∃Ti : Ti = ēj(Tj)

∅ otherwise
(6)

Pi is the profile of Ti.

This definition allows us to compute the delta function
even if the edit operation is not defined for the tree (e.g.,
deletion of a node that is not in the tree). This is crucial in
our application, where only the resulting tree, Tn, is given.
We will compute the delta function on Tn for all reverse edit
operations in the log. The reverse edit operations in the log
are defined on intermediate trees that are different from the
resulting tree. They are not guaranteed to be defined on
Tn. We further discuss this issue in Section 6.

For the rename (delete) operation the delta function re-
turns all pq-grams that contain the renamed (deleted) node,
for the insert operation the pq-grams that contain the parent
and at least one of the children of the inserted node.

Lemma 1. Let Ti, Tj be trees such that Ti = ēj(Tj),
and let g ∈ Pj be a pq-gram with the nodes N(g). If
ēj = ins(n, v, k, m), C = {ck, . . . , cm}, where ci is the i-th
child of v, then

g ∈ δ(Tj , ēj)⇔ v ∈ N(g) ∧ ∃c ∈ C : c ∈ N(g). (7)

If ēj = del(n) or ēj = ren(n, l), then

g ∈ δ(Tj , ēj)⇔ n ∈ N(g). (8)

Proof. Each pq-gram g ∈ Pj is a subtree of Tj . If and
only if this subtree is affected by the edit operation ēj , the
pq-gram is new, i.e., g ∈ δ(Tj , ēj).

Insert. g ∈ δ(Tj , ēj) ⇒ v ∈ N(g) ∧ ∃c ∈ C : c ∈ N(g) is
equivalent to v /∈ N(g) ∨ ∀c ∈ C : c /∈ N(g)⇒ g /∈ δ(Tj , ēj):
If v /∈ N(g), either (a) no or (b) all nodes of g are in the
subtree rooted in v. If (a), g is outside the affected subtree.
If (b), a descendant of v is the root of g , and the inserted
node is above its reach. g ∈ δ(Tj , ēj) ⇐ v ∈ N(g) ∧ ∃c ∈
C : c ∈ N(g): As n is inserted between v and c, all pq-grams
that contain both of them are affected.
Delete. g ∈ δ(Tj , ēj) ⇒ n ∈ N(g) is equivalent to n /∈
N(g) ⇒ g /∈ δ(Tj , ēj): If n is not in g , no node of g is
affected. g ∈ δ(Tj , ēj) ⇐ n ∈ N(g): n does not exist in Ti.
If n is in g , g is only in Pj .



Rename. n /∈ N(g) ⇒ g /∈ δ(Tj , ēj): If n is not in g , no
node of g is affected. g ∈ δ(Tj , ēj)⇐ n ∈ N(g): λ(n) = l in
Ti, but λ(n) 6= l in Tj . As g ∈ Pj , λ(n) 6= l in g . Thus, if n

is in g , g is only in Pj .

5.2 The Profile Update Function
There is a symmetry between an edit operation and its

reverse: The new pq-grams of the edit operation correspond
to the old pq-grams of the reverse edit operations and vice
versa. If Tj = ej(Ti), then δ(Tj , ēj) denotes the pq-grams
that are added by ej , and δ(Ti, ej) denotes the pq-grams
that are deleted by ej (Figure 6). Since Ti is not available
after the update we define the profile update function, which
transforms the new pq-grams into the old pq-grams. As an
input we allow a superset of the new pq-grams. This will be
relevant for the extension to a sequence of edit operations.
In the output the new pq-grams are replaced by the old
pq-grams, all other pq-grams are not affected.

Definition 5. Profile Update Function. Let Ti, Tj be
trees with profiles Pi,Pj , respectively, let ej be an edit op-
eration and ēj its reverse operation such that Ti = ēj(Tj),
and let δ(Tj , ēj) ⊆ pj ⊆ Pj . The profile update function,
U : 2Pj → 2Pi , is defined as follows:

U(pj , ēj) = pj \ δ(Tj , ēj) ∪ δ(Ti, ej) (9)

If pj = δ(Tj , ēj), the profile update function computes
the old pq-grams from the new pq-grams, i.e., δ(Ti, ej) =
U(δ(Tj , ēj), ēj). If pj = Pj , the original profile Pi is com-
puted from Pj . Due to the symmetry of the scenario also
the opposite direction holds:

Pi = U(Pj , ēj) Pj = U(Pi, ej) (10)

6. EDIT SEQUENCE
In this section we extend the results of the previous sec-

tion to a sequence of edit operations. We begin with basic
definitions and an intuitive illustration of the overall update
process, followed by formal proofs.

6.1 Incremental Index Update
Consider a sequence of edit operations as shown in Fig-

ure 5. ∆+
n denotes the new pq-grams in Pn that were not

present in P0 and have been introduced by one of the edit
operations. ∆−

n denotes the old pq-grams in P0 that have
been removed by one of the edit operations and, hence, are
not present in Pn.

Definition 6. Let T0, . . . , Tn be trees with profiles
P0, . . . ,Pn, respectively, where T0 has been transformed
into Tn by a sequence of edit operations (e1, . . . , en), i.e.,
Tk = ek(Tk−1) for 1 ≤ k ≤ n. We define the following sets
of pq-grams:

Invariant pq-grams: Cn = P0 ∩ · · · ∩Pn (11)

Old pq-grams: ∆−
n = P0 \Cn

New pq-grams: ∆+
n = Pn \Cn (12)

Figure 7 illustrates these sets for a scenario with n = 2.
The two shaded regions in Figure 7(a) together form the set
∆+

2 , i.e., the new pq-grams in P2 that were not present in P0.
Note that there might exist new pq-grams that have been
added by an edit operation but are not contained in the final

profile P2, since they have been removed by a subsequent
edit operation. Hence, ∆+

n is in general a subset of all new
pq-grams that have been introduced by edit operations. C2

is the set of pq-grams that are shared by all trees.
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P0

P1

C2

P2

(a) ∆+
2

P0

P1

C2

P2

(b) U(∆+
2 , ē2)

P0

P1

C2

P2

(c) U(U(∆+
2 , ē2), ē1) = ∆−2

Figure 7: Profiles for Two Edit Operations.

Having determined the set ∆+
n , we recursively apply the

profile update function for each reverse edit operation in the
log-file: first for ēn, then for ēn−1, etc. This process trans-
forms ∆+

n into the set ∆−
n of old pq-grams that have been

dropped from P0 by one of the edit operations. Figure 7(b-
c) show this transformation of ∆+

2 into ∆−
2 . The first call

of the update function considers the edit operation ē2 and
substitutes the new pq-grams in ∆+

2 that have been intro-
duced by e2. The resulting set of pq-grams is illustrated
in Figure 7(b) and is passed to the next call of the profile
update function. Figure 7(c) shows the final set ∆−

2 of old
pq-grams that have been removed from P0.

The last step is to map the old and new pq-grams to the
corresponding label-tuples and update the index.

Lemma 2. Let T0 be a tree with index Io = λ(P0) that is
transformed to Tn with index In = λ(Pn) by a sequence of
n edit operations. The new index, In, can be computed from
the old index, I0, as follows:

In = I0 \ λ(∆−
n ) ] λ(∆+

n ). (13)

Proof. First we show that replacing the old by the new

pq-grams in P0 results in Pn: P0 \∆
−
n

(12)
= P0 \ [P0 \Cn]

(2)
=

P0∩Cn
(11)
= Cn, thus P0\∆

−
n ∪∆+

n = Cn∪∆+
n

(12)
= Cn∪[Pn\

Cn]
(4)(11)

= Pn. As In = λ(Pn) it follows that In = λ(P0 \
∆−

n ∪∆+
n ). Next we show λ(P0\∆

−
n ∪∆+

n ) = λ(P0)\λ(∆−
n )]

λ(∆+
n ) : As λ() maps equal pq-grams in different pq-gram

sets to equal label-tuples, for each pq-gram g ∈ ∆−
n that is

subtracted from P0 the respective label-tuple λ(g) ∈ λ(∆−
n )

is subtracted from λ(P0). As ∆−
n ⊆ P0 (12), also λ(∆−

n ) ⊆
λ(P0). Thus for each subtracted label-tuple λ(g) ∈ λ(∆−

n )
there is a pq-gram, g ∈ ∆−

n , that is subtracted from P0. This
shows that λ(P0 \ ∆−

n ) = λ(P0) \ λ(∆−
n ). The set union,

λ([P0 \∆−
n ]∪∆+

n ) and the bag union, λ(P0 \∆
−
n )]λ(∆+

n ),
are equivalent if [P0 \ ∆−

n ] is disjoint from ∆+
n . Then no

pq-grams get lost with the set union. This is the case, as

P0 \∆−
n = Cn (see above) and ∆+

n
(12)
= Pn \Cn.

6.2 Deltas of Intermediate Tree Versions
For the computation of ∆−

n and ∆+
n we have to analyze

how the pq-grams have evolved in the individual edit steps.
With the functions defined in the previous section we can
compute the old and new pq-grams for the last edit oper-
ation. This step cannot be repeated for earlier edit opera-
tions, as we have no access to the intermediate tree versions.



... ...
ex

Tx

ēx(Tj)

Ti

ēx(Ti)

ex ex

Tj

ej

ējēx

Figure 8: Setting in Lemma 3.

The delta functions evaluated on the intermediate tree
versions give us the pq-grams that have been introduced
during the edit process. We consider the tree Ti that is
transformed to Tj by the edit operation ej , and an edit
operation of the log, ēx. ēx reverses an earlier operation
in the process that produced Tx (see Figure 8). The delta
function for ēx is defined on Tj as well as on Tx, but the
results on Tx and Tj are different, as the trees differ in
structure and labels. δ(Tj , ēx) computes the new pq-grams
for the edit operation ex that transforms ēx(Tj) into Tj .
ēx(Tj) is not a tree in our scenario.

We compute the delta function for the earlier edit oper-
ation on both, Ti and Tj . We analyze, how ej affects the
results of the delta function. The following lemma shows
that the result is the same, except for the pq-grams that are
replaced by ej . This has an important implication on our
application: The delta computed on Tn for an earlier edit
operation, ēx, contains all pq-grams of the delta on Tx that
where not affected by a later edit operation.

Lemma 3. Let ej be an edit operation that transforms Ti

into Tj (see Figure 8). For an edit operation ēx that trans-
forms Ti to ēx(Ti) and Tj to ēx(Tj),

δ(Ti, ēx) \ δ(Ti, ej) = δ(Tj , ēx) \ δ(Tj , ēj). (14)

Note that δ(Ti, ej) = U(δ(Tj , ēj), ēj) are the old, δ(Tj , ēj)
the new pq-grams of ej .

Proof. (14) is equivalent to

g ∈ δ(Ti, ēx) ∧ g /∈ δ(Ti, ej)⇔

g ∈ δ(Tj , ēx) ∧ g /∈ δ(Tj , ēj). (15)

We first show (15) from left to right and denote the left side
with L. From L follows g ∈ Pi ∩ Pj , i.e., the pq-grams in
δ(Ti, ēx) that are not replaced by ej are also in Pj : g ∈
δ(Ti, ēx) ⇒ g ∈ Pi as δ(Ti, ēx) ⊆ Pi (6); g /∈ δ(Ti, ej) ⇒
g /∈ Pi \ Pj , as δ(Ti, ej) = Pi \ Pj (6); from g ∈ Pi and
g /∈ Pi \Pj follows g ∈ Pi ∩Pj . We distinguish for ēx:

Rename. We first show L ⇒ g /∈ δ(Tj , ēj): g ∈ Pi ∩ Pj

implies g /∈ δ(Tj , ēj), as δ(Tj , ēj) = Pj \ Pi (6). Now we
show L ⇒ g ∈ δ(Tj , ēx): L implies that the renamed node
n is a node of g (g ∈ δ(Ti, ēx) ⇒ n ∈ N(g) (8)). As g is in
Pj (L ⇒ g ∈ Pi ∩ Pj) and it contains the node renamed
by ēx, it is an new pq-gram of Pj with respect to ex: n ∈
N(g) ∧ g ∈ Pj ⇒ g ∈ δ(Tj , ēx) (8).

Delete. Same rationale as for rename.

Insert. Similar rationale as for rename. Let v be the parent
of the inserted node n, then its children C = {ck, . . . , cm}
move under n. We show L ⇒ g /∈ δ(Tj , ēj): L ⇒ g ∈ Pi ∩
Pj ⇒ g /∈ δ(Tj , ēj). We show L⇒ g ∈ δ(Tj , ēx): L implies
that (a) the parent of the inserted node and at least on of
its children are in g (g ∈ δ(Ti, ēx)⇒ v ∈ N(g)∧∃c ∈ C : c ∈
N(g) (7)), and (b) that g ∈ Pj (L⇒ g ∈ Pi∩Pj ). With (a),
(b): v ∈ N(g)∧∃c ∈ C : c ∈ N(g)∧ g ∈ Pj ⇒ g ∈ δ(Tj , ēx).

(15) from right to left follows from the symmetry of ej and
ēj , by substituting ej with ēj and vice versa.

6.3 Computing ∆+
n

In this section we show that the new pq-grams, ∆+
n , can be

computed on the tree Tn, by evaluating the delta function
for each edit operation in the log on the tree Tn and by
taking the union of the results, i.e., ∆+

n =
Sn

k=1 δ(Tn, ēk).
∆+

n does not necessarily contain all new pq-grams that have
been introduced by an edit operation. Some new pq-grams
of one edit operation may be removed by a later operation.
∆+

n is the set of new pq-grams that are present in Pn. It
is equal to or a subset of all new pq-grams, as illustrated in
Figure 7 and formalized in the following theorem. We break
the proof down into three parts and formulate each part in
an individual lemma. The proof of the theorem references
the lemmas and connects the parts.

Lemma 4. Let L = (e1, . . . , en) be a sequence of edit oper-
ations that transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n.

Pi = P0 \
i

[

k=1

δ(Tk−1, ek) ∪
i

[

k=1

δ(Ti, ēk) (16)

Ai Bi

Proof. (i) True for P1. (ii) With Ai =
Si

k=1 δ(Tk−1, ek)

and Bi =
Si

k=1 δ(Ti, ēk) the induction hypothesis is

Pi = P0 \Ai ∪Bi ⇒ Pi+1 = P0 \Ai+1 ∪Bi+1.

Pi+1
(10)
= U(Pi, ei+1)

(9)
= [P0 \Ai ∪Bi] \ δ(Ti, ei+1) ∪ δ(Ti+1, ēi+1)

(3)
= P0 \ [Ai ∪ δ(Ti, ei+1)] ∪

[Bi \ δ(Ti, ei+1)] ∪ δ(Ti+1, ēi+1)

Ai ∪ δ(Ti, ei+1) =
i+1
[

k=1

δ(Tk−1, ek) = Ai+1

Bi \ δ(Ti, ei+1) ∪ δ(Ti+1, ēi+1)

(14)
=

i
[

k=1

δ(Ti+1, ēk) \ δ(Ti+1, ēi+1) ∪ δ(Ti+1, ēi+1)

(4)
=

i
[

k=1

δ(Ti+1, ēk) ∪ δ(Ti+1, ēi+1) = Bi+1

(17)

Thus, Pi+1 = P0 \Ai+1 ∪Bi+1.

Lemma 5. Let L = (e1, . . . , en) be a sequence of edit oper-
ations that transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n.
Let An =

Sn
k=1 δ(Tk−1, ek). Then

Cn = P0 \An. (18)

Proof. (a) P0 \ An ⊇ Cn: Cn
(11)
= P0 ∩

Tn
k=1 Pk

(10)
=

P0 ∩
Tn

k=1[Pk−1 \ δ(Tk−1, ek)∪ δ(Tk, ēk)]. As δ(Tk−1, ek)∩
δ(Tk, ēk) = ∅, Cn = P0 ∩

Tn
k=1[Pk−1 ∪ δ(Tk, ēk) \

δ(Tk−1, ek)]⇒ Cn ∩An = ∅.
(b) P0\An ⊆ Cn: The opposite, g ∈ P0\An and g /∈ Cn,

leads to a contradiction: g /∈ Cn
(11)
⇒ ∃Pi

g /∈ Pi, 0 ≤ i ≤ n.
However, by induction we show that ∀Pi

g ∈ Pi: g ∈ P0

is true. g ∈ Pi ⇒ g ∈ Pi+1, 0 ≤ i ≤ n − 1: Pi+1
(10)
=

Pi \ δ(Ti, ei+1) ∪ δ(Ti+1, ēi+1); g ∈ P0 \An ⇒ g /∈ An ⇒
∀i=0..n−1g /∈ δ(Ti, ei+1)⇒ g ∈ Pi+1.



Lemma 6. Let L = (e1, . . . , en) be a sequence of edit oper-
ations that transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤ i ≤ n.

Let Bi =
Si

k=1 δ(Ti, ēk). Then

Bn ∩Cn = ∅. (19)

Proof. Proof by induction. (i) True for i = 1: B1 =

δ(T1, ē1)⇒ B1 ∩ P0 = ∅
(11)
⇒ B1 ∩Cn = ∅.

(ii) Induction hypothesis:

Bi ∩Cn = ∅ ⇒ Bi+1 ∩Cn = ∅. (20)

We show Bi+1 ∩ Cn ⊆ δ(Ti+1, ēi+1) ∩ Cn: Bi+1 ∩ Cn
(17)
=

[Bi \δ(Ti, ei+1)∪δ(Ti+1, ēi+1)]∩Cn ⊆ [Bi∪δ(Ti+1, ēi+1)]∩

Cn = [Bi ∩Cn] ∪ [δ(Ti+1, ēi+1) ∩Cn]
(20)
= [δ(Ti+1, ēi+1) ∩

Cn]. Then it follows with δ(Ti+1, ēi+1) ∩ Pi = ∅
(11)
⇒

δ(Ti+1, ēi+1) ∩Cn = ∅ that Bi+1 ∩Cn = ∅.

Theorem 1. Let L = (e1, . . . , en) be a sequence of edit
operations that transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤
i ≤ n. The set of new pq-grams, ∆+

n , can be computed as

∆+
n =

n
[

k=1

δ(Tn, ēk). (21)

Proof. With Lemma 4, Pn can be expressed as

Pn = P0 \An ∪Bn, (22)

where An are the old pq-grams of each individual edit step,
and Bn are the new pq-grams for the edit operations in
the log computed on Tn: An =

Sn
k=1 δ(Tk−1, ek) and

Bn =
Sn

k=1 δ(Tn, ēk). We show that Bn is equivalent to

∆+
n : Pn

(22)
= P0 \ An ∪ Bn

(18)
= Cn ∪ Bn. As Bn and Cn

are disjoint (Lemma 6), we can rewrite Pn = Cn ∪ Bn as

Bn = Pn \Cn
(12)
= ∆+

n .

6.4 Computing ∆−
n

If we look at the scenario in the reverse direction (Tn

is transformed to T0 by a sequence of edit operations,
(ēn, . . . , ē1)), then ∆+

n in the reverse scenario corresponds
to ∆−

n in the original scenario. Thus in the original scenario
∆−

n =
Sn

k=1 δ(T0, ek). As T0 is not given, we can not use
this approach to compute ∆−

n .
For two trees, Tj = ej(Ti), the profile update function

computes Pi from Pj , Pi = U(Pj , ēj) (10). Thus, we can
compute P0 from Pn by applying the profile update function
recursively, P0 = U(. . .U(U(Pn, ēn), ēn−1) . . . , ē1). Recall
that ∆−

n = P0 \Cn is a subset of P0 and ∆+
n = Pn \Cn is

a subset of Pn (12). In this section we show that, similar to
P0 and Pn, we can compute ∆−

n from ∆+
n by applying the

update function recursively to ∆+
n ,

∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1).

We will use the following Lemma 7 to rewrite the recursive
updates in an un-nested form.

Lemma 7. Let ∆∗
i be the result of iteratively applying the

profile update function to ∆+
n i times, 1 ≤ i ≤ n,

∆∗
i = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ēn−i+1). (23)

Then ∆∗
i can be written in un-nested form as

∆∗
i =

n−i
[

k=1

δ(Tn−i, ēk) ∪
n

[

k=n−i+1

δ(Tn−i, ek). (24)

A∗
i B∗

i

Proof. We define A∗
i =

Sn−i
k=1 δ(Tn−i, ēk) and B∗

i =
Sn

k=n−i+1 δ(Tn−i, ek), and show (24) by induction:

(i) ∆∗
1 computed with (23) and (24) matches: ∆∗

1
(24)
=

Sn−1
k=1 δ(Tn−1, ēk) ∪ δ(Tn−1, en). ∆∗

1
(23)
= U(∆+

n , ēn)
(21)
=

U(
Sn

k=1 δ(Tn, ēk), ēn)
(9)
=

Sn
k=1 δ(Tn, ēk) \ δ(Tn, ēn) ∪

δ(Tn−1, en) =
Sn−1

k=1 δ(Tn, ēk)\δ(Tn, ēn)∪δ(Tn−1, en)
(3)(14)

=
Sn−1

k=1 δ(Tn−1, ēk) \ δ(Tn−1, en) ∪ δ(Tn−1, en)
(4)
=

Sn−1
k=1 δ(Tn−1, ēk) ∪ δ(Tn−1, en).

(ii) Induction hypothesis:

∆∗
i = A∗

i ∪B∗
i ⇒ ∆∗

i+1 = A∗
i+1 ∪B∗

i+1

∆∗
i+1

(23)
= U(∆∗

i , ēn−i) = U(A∗
i ∪B∗

i , ēn−i)

(9)
= [A∗

i ∪B∗
i ] \ δ(Tn−i, ēn−i) ∪ δ(Tn−i−1, en−i)

(3)
= [A∗

i \ δ(Tn−i, ēn−i)] ∪ [B∗
i \ δ(Tn−i, ēn−i)]∪

δ(Tn−i−1, en−i)

(25)

A∗
i \ δ(Tn−i, ēn−i)

(3)
=

n−i−1
[

k=1

δ(Tn−i, ēk) \ δ(Tn−i, ēn−i)

(14)
=

n−i−1
[

k=1

δ(Tn−i−1, ēk) \ δ(Tn−i−1, en−i)

= A∗
i+1 \ δ(Tn−i−1, en−i)

(26)

B∗
i \ δ(Tn−i, ēn−i)

(14)
=

n
[

k=n−i+1

δ(Tn−i−1, ek) \ δ(Tn−i−1, en−i) (27)

B∗
i \ δ(Tn−i, ēn−i) ∪ δ(Tn−i−1, en−i)

(27)(4)
=

n
[

k=n−i+1

δ(Tn−i−1, ek) ∪ δ(Tn−i−1, en−i)

=

n
[

k=n−i

δ(Tn−i−1, ek) = B∗
i+1

(28)

With (25), (26) and (28) we get P∗
i+1 = A∗

i+1 ∪B∗
i+1.

Theorem 2. Let L = (e1, . . . , en) be a sequence of edit
operations that transforms T0 into Tn, Ti = ei(Ti−1), 1 ≤
i ≤ n. The set of old pq-grams, ∆−

n , can be computed as

∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1). (29)

Proof. As ∆−
n = U(. . .U(U(∆+

n , ēn), ēn−1) . . . , ē1)
(23)
=

∆∗
n, with (24) we can rewrite (29) in un-nested form as

∆−
n =

n
[

k=1

δ(T0, ek). (30)

For the proof of (30) consider the inverse scenario, i.e., Tn

is transformed to T0 by (ēn, . . . ē1). With the substitutions
P′

i = Pn−i, T′
i = Tn−i, and e′i = ēn−i+1, the invariant

pq-grams of the inverse scenario are C′
n =

Tn
i=0 P′

i, and the
new pq-grams can be expressed as

∆′+
n

(12)
= P′

n \C
′
n or ∆′+

n
(21)
=

n
[

k=1

δ(T0, ek).



C′
n = Cn as both of them are the intersection of the same

profiles. With P′
n = P0 we get ∆′+

n = P0 \Cn
(12)
= ∆−

n .

7. COMPUTING PROFILE UPDATES
In this section we introduce a matrix representation of

pq-grams that better reflects our implementation, and we
describe the computation of the delta and the profile update
function in terms of matrix operations.

7.1 Matrix Representation of pq-Grams
For a non-leaf anchor node with f children, f + q − 1

pq-grams exist. They all have the same p-part, but different
q-parts. For a leaf only one pq-gram exists, where the q-part
consist of q null nodes.

Definition 7. p-Matrix and q-Matrix. Let T be a tree,
p > 0, q > 0, and let a ∈ N(T) be a node with children
c1, . . . , cf . The p-matrix, P (a), of node a is the 1×p-matrix
that represents the p-part of all pq-grams anchored in a:

P (a) = (ap−1, . . . , ai, . . . , a1, a)

If a is a non-leaf node, i.e., f > 0, the q-matrix, Q(a), is
defined as an (f+q−1)×q-matrix that represents the q-parts
of all pq-grams anchored in a:

Q(a) =

0

B

B

B

@

• • c1

• cf

c1 •

cf • •

1

C

C

C

A

If a is a leaf node, i.e., f = 0, the q-matrix is defined as a
1 × q-matrix that contains only null nodes.

The pq-grams of a node a can be computed by the con-
catenation of its p- and q-matrix, P (a) ◦ Q(a), which con-
catenates the p-part in P with each q-part in Q.

Example 4. We consider tree T0 in Figure 2, assume
p = q = 3, and compute all pq-grams with anchor node n1

using the p- and q-matrices.

P (n1) ◦Q(n1) = (•, •, n1) ◦

0

B

@

• • n2

• n2 n3

n2 n3 n4

n3 n4 •

n4 • •

1

C

A

= {(•, •, n1, •, •, n2), (•, •, n1, •, n2, n3),
(•, •, n1, n2, n3, n4), (•, •, n1, n3, n4, •),
(•, •, n1, n4, •, •)}

7.2 Effective Computation of δ and U
For each edit operation we express the new pq-grams,

δ(Tj , ē), in terms of p- and q-matrices, and show, how the old
pq-grams, U(δ(Tj , ē), ē), are computed from the new ones.

To facilitate the discussion about the computation of
the profile update function, we introduce the follow-
ing notation: descd(n) is the set of n and its descen-
dants within distance d ≥ 0, i.e., descd(n) = {x |
x is n or a descendant of n with dist(n, x) ≤ d}. For d < 0
we define descd(n) = ∅. We use descd(nk, . . . , nm) as an ab-
breviation for {x | x ∈ descd(n) ∧ n ∈ {nk, . . . , nm}}, i.e., all
descendants within distance d of a node set.

Given a p-matrix P (a), the operation P +n,i(a) inserts
node n at position i, P−ai (a) deletes node ai from P (a), and

ap−1 . . . ai+1 ai ai−1 . . . a

P (a)

ap−2 . . . ai n ai−1 . . . a

P+n,i(a)

ap ap−1 . . . ai+1 ai−1 . . . a

P−ai(a)

ap−1 . . . ai+1 m ai−1 . . . a

P ai/m(a)

Figure 9: Operators on the p-Matrix.

P ai/m replaces ai by m. The other nodes in P (a) are shifted
as shown in Figure 9, where ai is a’s ancestor at distance i.

The operations on q-matrices are illustrated in Figure 10.
Q(a) is the q-matrix for anchor node a. The (inverse) di-
agonals are formed by the children c1, . . . , cf of a, and the
corners are filled with null nodes. With Qk..m(a) we de-
note the sub-matrix of Q(a) that is formed by the rows k to
m + q − 1. It contains all q-parts of the children ck, . . . , cm.
We introduce the operator A//B that replaces all diagonals
of A with the diagonals of B. D(n) initializes a new q-matrix
of size q × q, with the only diagonal formed by node n.

Q(a) =

• • c1

• c1 :
c1 : ck

: ck :
ck : cm

: cm :
cm : cf

: cf •

cf • •

D(n) =
• • n

• n •

n • •

Qk..m(a) =

: : ck

: ck :
ck : cm

: cm :
cm : :

Qk..m(a)//D(n) =
: : n

: n :
n : :

D(•)//Qk..m(a) =

• • ck

• ck :
ck : cm

: cm •

ck • •

Figure 10: Operators on the q-Matrix.

For insertions and deletions of leaf nodes we define the
following special cases: For the q-matrix of a leaf node a

we define Qk..m(a) = (• . . . •) and (• . . . •)//A = A. If all
non-diagonal elements of a matrix A are null nodes, then
A//(• . . . •) = (• . . . •), else A//(• . . . •) deletes all diagonals
of A. If a leaf node is inserted under a node v, then m = k−1
(see e1 in Figure 2), and Qk..m(v) has no diagonals. We de-
fine Qk..k−1(v)//A to insert all diagonals of A as new diago-
nals in Qk..k−1(v), and we define A//Qk..k−1(v) = (• . . . •).

Table 1 shows for each edit operation the pq-gram set that
forms δ(Tj , ē) and how this set is modified by the profile
update function. We use the notation introduced above.
All information for the computation of the profile update
function is in the pq-grams of δ(Tj , ē) and the edit operation
ē. The tree Tj is not accessed.

7.3 Example
Example 5. Consider the first two edit operations in

Figure 1 that transform T0 into T2. The reverse edit op-
erations are ē1 = del(n7) and ē2 = ins((n3, b), n1, 2, 3). We
determine the new pq-grams, ∆+

2 , p = q = 3, by evaluating



Insert node n as the k-th child of node v: ins(n, v, k,m)

δ(Tj , ē) = P (v) ◦ Qk..m(v) ∪ P (x) ◦ Q(x) ∀x ∈ descp−2(ck , . . . , cm)

U(δ(Tj , ē), ē) = P (v) ◦ [Qk..m(v)//D(n)] ∪ P+n,0(v) ◦ [D(•)//Qk..m(v)] ∪ P+n,d(x) ◦ Q(x) ∀x ∈ descp−2(ck , . . . , cm), d = dist(ci, x) + 1

ci : i-th child of v

Delete node n, del(n):

δ(Tj , ē) = P (v) ◦ Qk..k(v) ∪ P (x) ◦ Q(x) ∀x ∈ descp−1(n)

U(δ(Tj , ē), ē) = P (v) ◦ [Qk..k(v)//Q(n)] ∪ P−n(x) ◦ Q(x) ∀x ∈ descp−1(n) \ {n}

v : n is the k-th child of v

Rename node n to l′: ren(n, l′)

δ(Tj , ē) = P (v) ◦ Qk..k(v) ∪ P (x) ◦ Q(x) ∀x ∈ descp−1(n)

U(δ(Tj , ē), ē) = P (v) ◦ [Qk..k(v)//D(m)] ∪ P n/m(x) ◦ Q(x) ∀x ∈ descp−1(n)

m = (id(n), l′) v : n is the k-th child of v

Table 1: Computation of the Delta Function and the Profile Update Function.

the delta functions in Table 1 for ē1 and ē2, i.e.,

∆+
2 = δ(T2 , ē1) ∪ δ(T2 , ē2) =

{(•, n1, n6, •, •, n7), (•, n1, n6, •, n7, •),

(•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •)} ∪

{(•, •, n1, •, n2, n5), (•, •, n1, n2, n5, n6), (•, •, n1, n5, n6, n4),

(•, •, n1, n6, n4, •), (•, n1, n5, •, •, •), (•, n1, n6, •, •, n7),

(•, n1, n6, •, n7, •), (•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •)}

= {(•, •, n1, •, n2, n5), (•, •, n1, n2, n5, n6), (•, •, n1, n5, n6, n4),

(•, •, n1, n6, n4, •), (•, n1, n5, •, •, •), (•, n1, n6, •, •, n7),

(•, n1, n6, •, n7, •), (•, n1, n6, n7, •, •), (n1, n6, n7, •, •, •)}.

Next, we compute the old pq-grams ∆−
2 from ∆+

2 , using
the profile update function, i.e., ∆−

2 = U(U(∆+
2 , ē2), ē1).

Figure 11 shows some of the modified q-matrices that are
used in the evaluation of the update function for ē2 =
ins((n3, b), n1, 2, 3). The relevant p-parts in ∆+

2 are trans-
formed by inserting the new node n3, e.g.,

P (n1) = (•, •, n1) → P+n3,0(n1) = (•, n1, n3)

P (n5) = (•, n1, n5) → P+n3,1(n5) = (n1, n3, n5)

By concatenating the respective p- and q-parts we get

U(∆+
2 , ē2) =
{(•, •, n1, •, n2, n3), (•, •, n1, n2, n3, n4), (•, •, n1, n3, n4, •),
(•, n1, n3, •, •, n5), (•, n1, n3, •, n5, n6), (•, n1, n3, n5, n6, •),
(•, n1, n3, n6, •, •), (n1 , n3, n5, •, •, •), (n1 , n3, n6, •, •, n7),
(n1, n3, n6, •, n7, •), (n1 , n3, n6, n7, •, •), (n3 , n6, n7, •, •, •)}.

Now the profile update function for ē1 is applied to the result
of U(∆+

2 , ē2) which returns the final set of old pq-grams

∆−
2 =(•, •, n1, •, n2, n3), (•, •, n1, n2, n3, n4), (•, •, n1, n3, n4, •),

(•, n1, n3, •, •, n5), (•, n1, n3, •, n5, n6), (•, n1, n3, n5, n6, •),
(•, n1, n3, n6, •, •), (n1 , n3, n5, •, •, •), (n1, n3, n6, •, •, •)}.

The final step is to update I0 with λ(∆+
n ) and λ(∆−

n ).

λ(∆−
2 ) = {(*, *, a, *, c, b), (*, *, a, c, b, c), (*, *, a, b, c, *),

(*, a, b, *, *, e), (*, a, b, *, e, f), (*, a, b, e, f, *),
(*, a, b, f, *, *), (a, b, e, *, *, *), (a, b, f, *, *, *)}

λ(∆+
2 ) = {(*, *, a, *, c, e), (*, *, a, c, e, f), (*, *, a, e, f, c),

(*, *, a, f, c, *), (*, a, e, *, *, *), (*, a, f, *, *, g),
(*, a, f, *, g, *), (*, a, f, g, *, *), (a, f, g, *, *, *)}

Q(n1) =

• • n2

• n2 n5

n2 n5 n6

n5 n6 n4

n6 n4 •

n4 • •

Q2..3(n1) =

• n2 n5

n2 n5 n6

n5 n6 n4

n6 n4 •

Q2..3(n1)//D(n3) =
• n2 n3

n2 n3 n4

n3 n4 •

D(•)//Q2..3(n1) =

• • n5

• n5 n6

n5 n6 •

n6 • •

Figure 11: q-Matrices for Node Insertion (Example).

8. IMPLEMENTATION

8.1 Temporary Storage of the Deltas
We process logs with thousands of edit operations. Each

edit operation of the log adds pq-grams to ∆+
n (see Algo-

rithm 2). We store the p-parts and q-parts of these pq-grams
in a pair (P, Q) of temporary tables. Since p-parts that ap-
pear in many pq-grams are stored only once, we gain perfor-
mance when we have to update them. The update function
(see Algorithm 3) is applied to (P, Q) for each edit operation
in the log and, step by step, transforms it to ∆−

n . We pre-
vent duplicates from being inserted into P and Q, and we join
them to reconstruct the pq-grams. An index on the anchor
IDs proved to give a substantial performance advantage.

Let P (n) be the p-part of the pq-grams with anchor node
n, where n is the k-th child of its parent v. We store P (n)
as a tuple (n, k, v, h(P (n))) in P, where h() is the hash func-
tion introduced in Section 3. Let Q(n) be the q-matrix of
anchor node n. We store the i-th row of Q(n), ri, as a tuple
(n, i, h(ri)) in Q. For the pq-grams stored in the table pair
(P, Q), we compute the respective label-tuples as

λ(P, Q) = πppart◦qpart [P 1 Q]. (31)

Subsequently, given pairs of tables we use the notation



P
anchId sibPos parId ppart

n1 - - 001

n5 2 n1 018

n6 3 n1 014

n7 1 n6 147

Q
anchId row qpart

n1 2 028

n1 3 284

n1 4 842

n1 5 420

n5 1 000

n6 1 007

n6 2 070

n6 3 700

n7 1 000

Figure 12: ∆+
2 for T2, Stored in the Table Pair (P, Q).

(A, B) ← (A′, B′) ∪ (A′′, B′′) for A ← A′ ∪ A′′ and B ←
B′ ∪ B′′. We use relational algebra expressions in the de-
scription of the algorithms. The expression A = A \ B ∪ C
is implemented as an efficient UPDATE statement in SQL.

Example 6. Figure 12 shows ∆+
2 =

S2
i=1 δ(T2, ēi) for

our example tree in Figure 2. The first rows of P and Q show
the hashed p-part and q-part of the label-tuple (*, *, a, *, c, e).

8.2 Index Update
For the index maintenance we use the old index I0, the

resulting tree Tn, and the log L. The index is updated in
three major steps, the computation of ∆+

n , the computation
of ∆−

n from ∆+
n , and the update of I0 with λ(∆+

n ) and λ(∆−
n )

(see Algorithm 1). ∆+
n is computed by evaluating the delta

function for all edit operations in the log on Tn (line 2),
∆−

n is computed by applying the profile update function
recursively to ∆+

n (line 4).

Algorithm 1: updateIndex(I0 , Tn, L)

(P, Q)← (∅, ∅);1

foreach ēi ∈ L do (P, Q)← (P, Q) ∪ δ(Tn, ēi);2

I+ ← λ(P, Q);3

for i← n downto 1 do U(P, Q, ēi);4

I− ← λ(P, Q);5

In ← I0 \ I
− ∪ I+;6

return In;7

δ(T, ēi) computes all pq-grams of a subtree of T. The sub-
tree size is independent of the tree size |T |, and we consider
it a constant. Then the nodes of the subtree are accessed in
O(log |T|) time, and the delta function returns a constant
number of pq-grams. U(P, Q, ēi) operates on the result of
the |L| delta computations, where |L| is the log size. Each
pq-gram is accessed in O(log |L|) time and a constant time
transformation is applied to it. Both delta and update func-
tion are computed |L| times, resulting in an overall complex-
ity of O(|L|(log |T |+log |L|)). Our experiments confirm the
near constant complexity of the delta and the profile update
function, and the linear dependence of the overall algorithm
from the log size.

8.3 Delta Function
The delta function δ(T, ē) is computed by creating the

relevant p- and q-matrices from the tree T (see Algorithm 2).
The relevant matrices for each edit operation are shown in
Table 1. The p-part P (n) is computed by accessing the p−1
ancestors of n in the tree. Qk..m(n) is formed by accessing

the children k − q + 1 to m + q − 1 of n, Q(n) by accessing
all children of n. We use the functions PT(n), Qk..m

T (n) and
QT(n) that operate on T and return the respective matrices
as tuples for the temporary tables P and Q, as shown in
Section 8.1.

Algorithm 2: δ(T, ē)

if (ē = ren(n, l′)) ∨ (ē = del(n)) then1

v← parent of n;2

k ← sibling position of n (n is the k-th child of v);3

(P, Q)← (PT(v), Qk..k
T (v));4

foreach x ∈ descp−1(n) do5

(P, Q)← (P, Q) ∪ (PT(x), QT(x))6

end7

else if ē=ins(n,v,k,m) then8

(P, Q)← (PT(v), Qk..m
T (v));9

foreach child c ∈ {ck, . . . , cm} of v do10

foreach x ∈ descp−2(c) do11

(P, Q)← (P, Q) ∪ (PT(x), QT(x))12

end13

end14

end15

return (P, Q);16

8.4 Implementation of the Update Function
The profile update function for ē replaces δ(T, ē) in a set

of pq-grams by U(δ(T, ē), ē). The pq-grams are stored in
the temporary tables P and Q. The first step is to read the
p-parts and q-parts of δ(T, ē) from these tables. As shown
in Table 1, the q-parts of δ(T, ē) are expressed by Q(n) and
Qk..m(n). We implement these functions as follows:

Q(n) ← σanchId=n(Q)

Q
k..m(n) ← σanchId=n,k≤row≤m+q−1(Q)

Qk..m(n) and Q(n) return tuples (n, i, qpart), where qpart is
the i-th row of Q(n). Different from Qk..m

T (n) and QT(n) in
the previous section, they operate on profiles, not on trees.

In the second step we modify δ(T, ē) to get U(δ(T, ē), ē).
We implement the operator A//B so it operates on q-
matrices represented as (anchId , row , qpart) tuples and re-
turns the result in this form. The anchor node and the first
row number of the result are both determined by the first
argument, A. The matrix operation itself is straightforward.
Da(n) initializes a new q-matrix with anchor node a and a
single diagonal formed by n.

For the update of the p-parts we use the function
changePParts(P, n, s, d) (see Algorithm 4). It implements

the operators on P (a) (P +n,i, P−ai , P ai/m) as concatenations
of strings. For each edit operation we construct a string s.
The last p − i characters of s correspond to the changing
part of P (a) (shaded in Figure 9). We concatenate it to the
invariant part of length i (line 5). The p-parts are retrieved
level by level (line 6). Pold returns all p-parts of P whose
anchor node is n or a descendant of n within distance d. Pnew
is the same set of tuples with the updated values for ppart .

If rows are deleted from/inserted into the q-matrix, the
row numbers, row , of the subsequent rows need to be up-
dated. If p-parts are deleted or inserted, the sibling num-
bers, sibPos , in the p-parts of the subsequent siblings have
to be updated. In both cases the scope of the update query



Algorithm 3: U(P, Q, ē)

switch ē do1

case ren(n,l′)2

t← σanchId=n(P); v← t[parId ]; k← t[sibPos];3

Q← Q \ Qk..k(v) ∪ [Qk..k(v)//Dv((id(n), l′))];4

s← subStr(t[ppart ], 1, p− 1) ◦ l′;5

(Pold, Pnew)← changePParts(P, n, s, p− 1);6

P← P \ Pold ∪ Pnew;7

case del(n)8

t← σanchId=n(P); v← t[parId ]; k← t[sibPos];9

Q← Q \ [Qk..k(v) ∪ Q(n)] ∪ [Qk..k(v)//Q(n)];10

s← λ(•) ◦ subStr(t[ppart ], 1, p− 1);11

(Pold, Pnew)← changePParts(P, n, s, p− 1);12

P← P \ Pold ∪ σanchId 6=n(Pnew);13

case ins(n,v,k,m)14

Q← Q \ Qk..m(v) ∪ [Qk..m(v)//Dv(n)]15

∪ [Dn(•)//Q
k..m(v)];

s← subStr(πppartσanchId=v(P), 2, p) ◦ λ(n);16

Pold ← ∅; Pnew ← ∅;17

foreach c ∈ πanchIdσparId=v,k≤sibPos≤m(P) do18

s′ ← subStr(s, 2, p) ◦ λ(c);19

(Pold, Pnew)← (Pold, Pnew) ∪20

changePParts(P, c, s′, p− 2);
end21

P← P \ Pold ∪ Pnew ∪ {(n, k, v, s)};22

end23

Algorithm 4: changePParts(P, n, s, d)

Pold ← ∅; Pnew ← ∅;1

Z← σanchId=n(P);2

for i← 0 to d do3

Pold ← Pold ∪ Z;4

Pnew ← Pnew ∪ π[anchId , sibPos , parId ,5

subStr(s, i + 1, |s|) ◦
subStr(ppart , p−i+1, p)→ ppart ](Z);

if i < d then Z← P 1 πanchId→parIdZ;6

end7

return (Pold, Pnew);8

is limited by the fanout of the anchor node. As typically not
all rows of a q-part and not all p-parts of a node’s children
are in (P, Q), the effect on structure change is even smaller.

9. EXPERIMENTS
We use XML trees for our experiments. The synthetic

trees are generated with xmlgen, provided by the XML
benchmark project XMark1. The real world experiments
are done on the DBLP dataset2. Unless otherwise noted,
we use 3, 3-grams for the indexes.

9.1 Lookup Efficiency
If we look up a tree T in a forest F, we have to compute

the pq-gram distance between T and each of the trees in F.
We compare approximate lookups with and without the use
of a precomputed index.

1http://monetdb.cwi.nl/xml/
2http://www.informatik.uni-trier.de/~ley/db/

We do a lookup in three different collections of XML docu-
ments. They have a similar overall number of nodes (approx.
50×106). The number of documents in the collections varies
from 31 to 1999. The trees within a collection are of similar
size. We measure the wall clock time for the approximate
lookup of an XML document.

Figure 13 (left) shows the results for the different data
sets. The lookup time with precomputed index is indepen-
dent of the number of trees in the forest. If the index has to
be created on the fly, the lookup time grows for larger tree
numbers. Without precomputed index, the index creation is
clearly the most expensive operation in the lookup process.
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Figure 13: Lookup and Update Time.

9.2 Updating the Index
Each edit operation affects a subset of the pq-grams in the

index. We expect that updating only the affected pq-grams
is more efficient than building the whole index from scratch.
The computation time for index rebuilding is expected to
grow with the tree size, while the one for updates depends
mainly on the number of edit operations.

Figure 13 (right) compares the computation times for
building the pq-gram index from scratch with updating it
based on a log of edit operations. While the index creation
time is linear in the tree size (note the log scale of the y
axis), the index update time is nearly independent of the
tree size. The figure shows the results for trees with up to
27 × 106 nodes.

9.3 Index Size
The index does not store the labels, but only their hash

values. Further a pq-gram that appears many times in the
index is stored only once. In Figure 14 (left) we compare
the size of the index with the tree size. The index for both,
1, 2- and 3, 3-grams, is significantly smaller than the tree.

The tree size is linear in the number of nodes, while the
index size is less than linear. We explain this with the higher
probability of having duplicate pq-grams with larger trees.
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9.4 Experiments with Real World Data
We compute the index and perform updates on the DBLP

dataset (211MB file size, 11M nodes). From Figure 14
(right) we see that the update time is linear in the num-
ber of edit operations. Table 2 shows, for selected numbers
of edit operations, the share of the various index update
steps in the overall computation time. The conversion of
the profile to the index (λ()) is negligible. The computation
times for ∆+

n and ∆−
n are approximately linear. The update

of I0 with λ(∆−
n ) and λ(∆+

n ) is sublinear in the number of
edit operations.

Action Number of edit operations
1 10 100 1000

∆+
n 0.642s 3.903s 37.533s 391.513s

I+ = λ(∆+
n ) 0.184s 0.199s 0.287s 0.443s

∆−
n 0.196s 2.836s 27.967s 295.104s

I− = λ(∆−
n ) 0.177s 0.191s 0.185s 0.383s

I0 \ I
− ∪ I+ 2.206s 2.770s 6.475s 19.780s

total 3.405s 9.900s 72.448s 707.224s

Table 2: Breakdown of the Index Update Time.

10. CONCLUSION
We propose an incrementally maintainable index for data

with a hierarchical structure. The index uses pq-grams and
we prove that the index can be updated based on the result-
ing document and the log of edit operations. The experi-
mental results validate the approach for the DBLP dataset
and logs with several thousand edit operations.

We process the log sequentially. Later edit operations in
the log might undo earlier ones. In future we will investi-
gate how the log can be preprocessed in order to eliminate
redundant edit operations. Further the deltas that we com-
pute span several nodes and can overlap. A preprocessing
step could merge overlapping regions to optimize the com-
putation of the deltas.

We have addressed the node edit operations rename,
delete, and insert. Operations on subtrees, e.g., subtree
move, insertion or deletion, are simulated by a sequence of
node edit operations. Future work will investigate index
updates for subtree operations.
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[2] N. Augsten, M. Böhlen, and J. Gamper. Approximate
matching of hierarchical data using pq-grams. In Proc.
of VLDB, pages 301–312. Morgan Kaufmann
Publishers Inc., 2005.

[3] N. Bruno, N. Koudas, and D. Srivastava. Holistic twig
joins: Optimal XML pattern matching. In Proc. of
SIGMOD, pages 310–321. ACM Press, 2002.
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