Approximate Matching of Hierarchical Data Using
pg-Grams

Nikolaus Augsten

Michael Bohlen

Johann Gamper

Free University of Bozen-Bolzano
Dominikanerplatz 3, Bozen
Ttaly
{augsten,boehlen,gamper }@Qinf.unibz.it

Abstract

When integrating data from autonomous
sources, exact matches of data items that rep-
resent the same real world object often fail due
to a lack of common keys. Yet in many cases
structural information is available and can be
used to match such data. As a running ex-
ample we use residential address information.
Addresses are hierarchical structures and are
present in many databases. Often they are
the best, if not only, relationship between au-
tonomous data sources. Typically the match-
ing has to be approximate since the represen-
tations in the sources differ.

We propose pg-grams to approximately match
hierarchical information from autonomous
sources. We define the pg-gram distance be-
tween ordered labeled trees as an effective and
efficient approximation of the well-known tree
edit distance. We analyze the properties of the
pg-gram distance and compare it with the edit
distance and alternative approximations. Ex-
periments with synthetic and real world data
confirm the analytic results and the scalability
of our approach.

1 Introduction

When integrating data from autonomous sources, ex-
act matches of data items representing the same real
world object often fail due to missing global keys and
different data representations. Approximate matching

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the VLDB copyright notice and
the title of the publication and its date appear, and notice is
given that copying is by permission of the Very Large Data Base
Endowment. To copy otherwise, or to republish, requires a fee
and/or special permission from the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

techniques must be applied instead. We focus on hi-
erarchical data, where, in addition to data values, the
data structure must also be considered.

As a running example we use an application from
our local municipality. The GIS Office wants to relate
data about apartments stored in different databases
and display this information on a map. This requires
a join on the address attributes. An equality join
gives extremely poor results, mainly due to the differ-
ent street names in various databases. Street names
vary because different conventions are used to rep-
resent them. They may even be stored in different
languages, which prevents the use of standard string
comparison techniques. To overcome this problem we
exploit the hierarchical organization of addresses. In-
stead of comparing street names we look for similar-
ities in the hierarchical structure imposed by the ad-
dresses of a street.

Hierarchical data can be represented as ordered la-
beled trees. Data is then matched based on similarities
of the corresponding trees. A well-known measure for
comparing trees is the tree edit distance. It is compu-
tationally very expensive and leads to a prohibitively
high run time. We propose the pg-gram distance as an
effective and efficient approximation of the tree edit
distance. The pg-grams of a tree are all its subtrees
of a particular shape. Intuitively, two trees are close
to each other if they have many pg-grams in common.
For a pair of trees the pg-gram distance can be com-
puted in O(nlogn) time and O(n) space, where n is
the number of tree nodes.

In general, the pg-gram distance is a good approx-
imation of the tree edit distance. In contrast to the
tree edit distance, it places more emphasis on mod-
ifications to the structure of the tree. For example,
deletions of nodes with a rich structure (many descen-
dants) are more expensive than deletions of nodes with
a poor structure (e.g., leaf nodes). We show that this
property yields intuitive results.

At a technical level, our contribution is a new ap-
proximation for the tree edit distance with pg-grams.

We present an algorithm to compute the pg-gram
distance in O(nlogn) time and O(n) space, and we
show its scalability to large trees stored in a relational
database. A core feature of the pg-gram distance is
its sensitivity to structural changes. This sets it apart
from other approximations. Our analytical results are
confirmed by experiments on both, synthetic and real
data.

In the following section we describe the application
scenario at our local municipality and give a problem
definition. In Section 3 we discuss related work. We
define the pg-gram distance in Section 4. In Section 5
we give an algorithm for the computation of the pg-
grams, analyze the complexity of this algorithm, and
discuss its implementation in a relational database.
We analyze properties of the pg-gram distance in Sec-
tion 6. In Section 7 we evaluate the efficiency and ef-
fectiveness of our method on synthetic and real world
data and compare it to other approximations. We
draw conclusions in Section 8.

2 Problem Definition

As a running example we use an application and data
from the Municipality of Bozen. The GIS office in the
municipality maintains maps of the city area. It would
like to enrich the maps with information retrieved from
various databases of the municipality as well as exter-
nal institutions. Residential addresses turn out to play
a pivotal role in this process since they have to be used
to access and link relevant information.

Whenever we join on address attributes, we have
to know which streets correspond to each other in the
joined tables. As an example consider the streets in
the databases of the Registration Office (SR0) and the
Land Register (SLR) shown in Figure 1. The exact join
on the street names

SRO [SRO.street =SLR.street] SLR

yields poor results since street names are different in
different databases due to spelling mistakes, different
naming conventions, and renamed streets which are
not always updated in all databases. Moreover, in the
bilingual region of Bozen two names for each street
exist, and they are used interchangeably. A join on the
street identifiers is not possible, as they are different
in each system. In practice there is no central registry
for residential addresses which maintains common keys
for street names or addresses.

In order to improve the results we exploit the in-
formation about the streets that is stored in the ad-
dress tables RO and LR (see Figure 2) that reference
the streets in SRO and SLR, respectively. The ad-
dresses from a street are then organized into hierar-
chies and can be represented in a so-called address
tree [2]. Figure 3 shows the address trees for the
framed addresses in Figure 2. The root of the tree is
the street name, the children of the street name are the

SRO SLR

[id [street | [#d]street |
30 |Giuseppe-Cesare-Abba-Str. 91 [CESARE ABBA STRASSE
120 | Sebastian-Altmann-Str. 74 |S. ALTMANN STRASSE
5220| Bozner-Boden-Str. 33 | BOZNER BODENWEG
3000| Hermann-von-Gilm-Str. 109| GILMWEG
3030| Pater-Reginaldo-Giuliani-Str. 185|P. R. GIULIANI STR.
3540(Italienallee 115 ITALIENSTRASSE
4440| Musterplatzl 165 MUSTERPLATZ
7180(Raffaello-Sernesi-Galerie 207| SERNESIDURCHGANG
7590| Telsergalerie 259| TELSERDURCHGANG
7620|Friedensplatz 139| SIEGESPLATZ
7650| Turiner Str. 266| TURINER STRASSE
7740| Trienter Str. 262| TRIENTER STRASSE
7860| Triester Str. 263| TRIESTER STRASSE
8580|Walther-v.-d.-Vogelweide-P1. 285|WALTHERPLATZ
3930| Giannantonio-Manci-Str. 86 | MANCISTRASSE

Figure 1: Street names in different departments.

house numbers, the children of house numbers are the
entrance numbers, and the children of entrance num-
bers are the apartment numbers. A complete address
is the path from the root to any leaf node. For ex-
ample, the tuple (30,2, A, -) of table RO represents the
address ’Giuseppe-Cesare-Abba-Str. 2A’ and corre-
sponds to the shaded path in Figure 3. We omit un-
necessary empty values (“-”) in the address trees.

RO LR

[id [num[entr[apt]resident] [id [num]entrlapt] owner |
30 1 - 1 || Pichler 91 1 - 1 Maier
30| 1 - 3 || Rieder 91 1 - 2 Rossi
30| 2 A = Maier 91 1 - 3 || Sparber
30| 2 B 1 Rossi 91| 2 A - Maier
30| 2 B 2 Woelk 91| 2 B 1 Totti
30| 2 B 3 Verdi 91| 2 B 2 || Bracco
30| 2 B 4 Verdi 91| 2 B 3 Mair
30| 2 C - || Burger 91| 2 B 4 Lun
30| 3 - - Hofer 91 2 D - | Tribus
30| 4 A 1 || Tribus 91| 3 - - |[Costanzi
30| 4 A 2 || Palermo 91 4 A - || Palermo
30| 4 A 3 || Palermo 91| 4 B - Abel
30| 4 B - Abel 91| 4 C - Rossi
30| 4 C - Rossi 91| 6 - - Spiro
30| 6 - - Spiro 74| 3 A 1 Spiro
120(3 A 1 Spiro 74| 3 A 2 |Barducci
120| 3 A 2 |Barducci 74| 3 A 3 |Costanzi
120(3 A 3 |Costanzi 74| 3 A 4 Spiro
120(3 A 4 |Pichler 74| 3 A 6 Spiro
120(3 A 5 Spiro 74| 3 A 7 Hofer
120(3 A 6 | Raifer 74| 4 - - | Mueller

Figure 2: Addresses stored in different departments.

Giuseppe-Cesare-Abba-Str. CESARE ABBA STRASSE

o

1 2 3 4 6 1 2 3 4 6
B NEVAN N

- A B C A BC - A B D ABC
AN N AN

13 1234 123 123 1234

Figure 3: Address trees of streets 30 from RO and 91
from LR.

With address trees in place, we are able to compare
entire address trees so as to match street names of dif-
ferent databases. Intuitively, two streets are identical
if they have (almost) the same address tree. We use

this to formulate the original join as an approximate
tree join

SRO w [dist(T(SRO.d), T(SLR.id)) < 7] SLR.

Here T(id) are the address trees of the streets,
dist(Ty, T2) is the distance between trees Ty and Ta,
and 7 is a distance threshold. The equality match
between street names has been replaced by an approx-
imate matching of the corresponding address trees.

Our goal is to find an effective approximation for
the tree edit distance that can be efficiently computed
and is scalable to large trees.

3 Related Work

A well known distance function for trees is the tree
edit distance, which is defined as the minimum cost
sequence of edit operations (node insertion, node
deletion, and label change) that transforms one tree
into another [19]. Zhang and Shasha [24] present
an algorithm to compute the tree edit distance in
O(n?min®(l,d)) time and O(n?) space for trees with
n nodes, [leaves, and depth d. Other algorithms were
presented in more recent works [7, 14]. All of them
have more than O(n?) runtime complexity and do not
scale to large trees.

By imposing restrictions on the edit operations that
can be applied to transform a tree, suboptimal solu-
tions with better runtime complexities can be found:
Alignment distance [13], isolated subtree distance [20],
and top-down distance [18, 22] have runtime at least
O(n?), bottom-up distance can be computed in O(n)
time. Bottom-up distance tries to find the largest pos-
sible common subtrees of two trees, starting with the
leaf nodes. It is very sensitive to differences between
the leaf nodes. If the leaves are different, the inner
nodes are never compared. This makes the bottom-up
distance applicable in only very specific domains.

Guha et al. [11] present a framework for approx-
imate XML joins based on tree edit distance, where
XML documents are represented as ordered labeled
trees. They give upper and lower bounds for the tree
edit distance that can be computed in O(n?) time and
use reference sets to take advantage of the fact that the
tree edit distance is a metric, thus reducing the actual
number of distances to compute in a join. The success
of this method depends heavily on a good choice of
the reference set. We do not try to limit the number
of distance calculations with the expensive tree edit
distance, rather we substitute it with an efficient ap-
proximation.

Chawathe et al. [6] use a variant of the tree edit
distance for change detection. Lee et al. [15] tune the
algorithm presented by Chawathe et al. to XML doc-
uments. Both algorithms first compute a match be-
tween the nodes of the trees, and based on this the
distance is computed in O(ne) time, where e is the
edit distance between the trees. Whereas in a change

detection scenario typically trees with small differences
are compared, for joins the distances between all pairs
of trees have to be computed. For trees that are very
different the edit distance e is O(n), which yields O(n?)
runtime for both algorithms.

A core operation in XML query processing is to
find all occurrences of a twig pattern [3, 12]. The goal
of our work is not to find occurrences of a pattern
to answer queries. We split the tree into subtrees in
order to calculate the distance between trees. Polyzo-
tis et al. [17] build synopsis of an XML tree optimized
for approximate query answering. They introduce the
Element Simulation Distance to capture the difference
between the original tree and the synopsis with respect
to twig queries. This distance is tailored to measure
the quality of a synopsis and is not suitable as an ap-
proximation for the tree edit distance.

Garofalakis and Kumar [9] investigate an algorithm
for embedding the tree edit distance (with subtree
move as an additional edit operation) into a numeric
vector space equipped with the standard L distance
norm. The algorithm computes an approximation of
the tree edit distance with subtree move (to within
a O(log?n x log*n) factor) in O(n x log*n) time and
O(n) space!. We implement this approximation and
empirically compare it to the pg-gram distance. The
tree embedding distance gives less weight to structural
changes than the tree edit distance. The sensitivity
of the pg-gram distance to structural changes is con-
trolled by the parameters p and q. The pg-gram dis-
tance typically weights them more than the edit dis-
tance.

Navarro [16] gives a good overview of the edit dis-
tance for strings and its variants. Ukkonen [21] in-
troduces the g-gram distance as a lower bound for the
string edit distance. The ¢g-gram distance between two
strings is based on the number of common substrings
of length ¢. Gravano et al. [10] present algorithms
for approximate string joins based on edit distance
and use ¢-grams as a filtering algorithm. Approxi-
mate string matching techniques are successful if the
distance between corresponding strings is smaller than
that of other strings in the join set. This is typically
the case for spelling mistakes, where only a few char-
acters change. The distance between corresponding
street names, however, is often larger than the length
of the shorter string. If streets are renamed, string
matching fails completely.

4 THE pg-GRAM DISTANCE

Hierarchical data can be represented as rooted, or-
dered, labeled trees, where the single data values are
represented as labels of the tree nodes. In this section
we first give a definition of trees and then define the
pg-gram distance of trees.

log* n denotes the number of log applications required to
reduce n to a quantity that is < 1, cf. [9].

4.1 Preliminaries

Let G = (V,E) be a graph with nodes V(G) = V
and edges E(G) = E. A tree T is a directed, acyclic,
connected, non-empty graph. An edge is an ordered
pair (p,c), where p,c € V(T) are nodes, and p is the
parent of c. Nodes with the same parent are siblings.
An order < is defined on the nodes, and this order is
total among siblings. The siblings s; < s (s1 # s2) are
contiguous if s; and sp have no sibling x (s; # x # s2)
with s; < x < s5. Node c is the i-th child of p with
i=|{x e V(T)|(p,x) € E(T),x < c}|. The number of
p’s children is its fanout f,. The node with no parent is
the root node r = root(T), and a node without children
is a leaf.

Each node a in the path from the root node to a
node v is called an ancestor of v. If there is a path of
length k£ > 0 from a to v, then a is the ancestor of v
at distance k. The parent of a node is its ancestor at
distance 1. d is a descendant of v if v is an ancestor
of d. The level of a node level(v) is the length of the
path from the root to v, the depth of a tree depth(T)
is the length of the longest path from the root to any
one of the leaves.

A label is a symbol o € X, where X is a finite al-
phabet. Each node v € V(T) has assigned a label 1(v).
A node o with the special label 1(0) = * is a null node.

In our graphical representation of trees we represent
nodes as an (identifier, label)-pair, the edges are lines
between the nodes, and siblings are ordered from left
to right. Whenever possible we omit the identifiers of
the nodes to avoid clutter (e.g., in Figure 3).

Example 4.1 Figure / shows a tree T = (V,E)
with V' = {V17V25V35V47V57V6}7 E :{(V17V2)) (V15V5);
(Vl,VG); (VQ,Vg), (V2,V4)}, and the order Vo S Vs S V6,
vy < v4. vi has 8 children, where vo is the first,
vs the second, and vg the third child. The root node
root(T) = vi. vy is the ancestor of all other nodes.
V3, V4, V5 and vg are leaf nodes. The node labels of
our example tree are 1(v1) = a, 1(va) = a, 1(v3) = e,
1(V4) = b, 1(V5) = b, and 1(V6) = C.

vi,a W5,a
T1 /\ T2 /\
v2,a Vs,b vg,C wi,a w3z,b we,x
vV3,e V4,b wr7,e Wg,b

Figure 4: Graphical representation of trees.

A subtree S C T is a tree with V(S) C V(T) and
E(S) C E(T), retaining the node order. A preorder
traversal of a tree visits the root node first, and then
recursively traverses all the subtrees rooted in its chil-
dren in preorder, preserving the children’s order. We
call a node v the i-th node of T in preorder if v is
visited as the i-th node in a preorder traversal.

Two trees T and T’ are isomorphic if there is a bi-
jective mapping m between the nodes V(T) and V(T")
such that the following holds true: (v,w) is an edge of
T and w is the i-th child of v if and only if (m(v), m(w))
is an edge of T’ and m(w) is the i-th child of m(v).

Example 4.2 Consider Figure 4. The tree S; =
({V27V35V4}5 {(V25V3)5 (V27V4)})5V3 < vy is a subtree Of
T,. The preorder traversal of T wisits the nodes in
the following order: vi,va,V3,Vq,Vs5,Vg. Tree Ty is iso-
morphic to Ty with m = {(vi,ws), (v2,w1), (v3,wr),
(va, W), (v5,ws), (V6 We)}.

4.2 The pg-Gram Distance

In the following paragraphs we define the notion of
pg-grams and a distance measure based on pg-grams.
Intuitively, the pg-grams of a tree are all subtrees of
a specific shape. To ensure that each node of the tree
appears in at least one of the pg-grams, we extend the
tree with null nodes. The pg-grams are then defined
as subtrees of the extended tree.

Definition 4.1 (pg-Extended Tree) Let T be a
tree, and p > 0 and ¢ > 0 be two integers. The
pg-extended tree, TP, is constructed from T by adding
p—1 ancestors to the root node, inserting q—1 children
before the first and after the last child of each non-leaf
node, and adding q children to each leaf of T. All
newly inserted nodes are null nodes that do not occur
in T.

Example 4.3 Figure 5 shows the graphical represen-
tation of T§’3, the 2,3-extended tree of our example

tree T.

Definition 4.2 (pg-Gram Pattern) For p > 0 and
q > 0, the pg-gram pattern is a tree that consists of an
anchor node with p — 1 ancestors and q children.

Example 4.4 An example of a 2,3-gram pattern is
the tree ({pla P2, P3; P4, p5}a {(pla p2)a (an p3)a (an p4)7
(P2,P5)}): p3 < ps < ps. P2 is the anchor node, and it
has 1 ancestor (p1) and 3 children (ps, p4, and ps).

Definition 4.3 (pg-Gram) For p > 0 and ¢ > 0,
a pg-gram G of a tree T is defined as a subtree of
the extended tree TP? with the following properties: G
is isomorphic to the pq-gram pattern, and contiguous
siblings in G are contiguous siblings in TP4.

Definition 4.4 (Label-tuple) Let G be a pg-gram
with the nodes V(G) = {Vi,...,Vp,Vpt1,---,Vpiq},
where v; 1is the i-th node in preorder. The tuple
(G) = (Uv1), .- 1(vp), Wvps1), .-, W(vpq)) is called
the label-tuple of G.

Subsequently, if the distinction is clear from the
context, we use the term pq-gram for both, the pg-
gram itself and its representation as a label-tuple.

O1,*

Vi,a

TV

02,% 03, v2,a vs5,b v6,C 020,% 021,%
04,% 0O5,% v3,e va,b 012,% 013,* 014,% 015,% 016,* 017,% 018,* 019,%
O6,* 07,% 08,*% 09,* 010,% O11,*
. . . 2,3
Figure 5: Graphical representation of the extended tree T7™.
01,* vi,a v2,a We subsequently define the pg-gram distance as a
‘ ‘ ‘ ... measure for the similarity of two trees. The pg-gram
vi,a vz,a v3,e distance is based on the number of pg-grams that the

TN

02,* 03,*% v2,a

TN

O4,* 05,% Vv3,e

/TN

06,* O7,* 08,%
Figure 6: Some of the 2, 3-grams of T;.

Example 4.5 Figure 6 shows some of the 2,3-grams
of the example tree T1. They are constructed by mov-
ing the 2,3-gram pattern over the extended tree T%’3
(see Figure 5). We start at the top of the tree. For the
first pq-gram the anchor node of the pattern is mapped
to vi, and the children of the anchor are mapped to
two null nodes and vo. The corresponding label-tuple
ZS (*7 a7 *7 *’ a)'

Definition 4.5 (pg-Gram Profile) For p > 0 and
g > 0, the pg-gram profile, P?9(T), of a tree T is
defined as the bag of label-tuples 1(G;) of all pg-grams
Gi Of T.

The tables in Figure 7 show the 2,3-gram pro-
file of Ty and Ts, respectively. Note that pg-grams
might appear more than once in a pg-gram profile,
e.g., (a,b,*, *, *) appears twice in the profile of T;.

P2,3(T1> P2’3(T2)
| labels | | labels |
(*, a7*7*7a) (*7a’ *7*7a)
(aa aa*7*7e) (a7 aa*7*7e>
(aa ea*7*7*) (a7ea*7*7*>
(a, a7*7e7b) (a7 a’ *7 e7b)
(aaba*7*7*) (a7ba*7*7*>
(aa aae7b7 *) (a7 a, e7b7 *)
(a, a7 b7 *7 *) (a7 a’ b’*7*)
(*aaa*7a7b) (*7aa*7a7b>
(aaba*7*7*) (a7ba*7*7*>
(*, a7 a7b7 C) (*7a’ a7 b7 X)
(a, C7*7*7 *) (a7x’ *7*7*)
(*,a,b7c,*) (*,a,b,x, *)
(*, a7 C7 *7 *) (*7a’ X’*7*)

Figure 7: 2, 3-Gram profiles of Ty and Ts.

profiles of the compared trees have in common.

Definition 4.6 (pg-Gram Distance) For p > 0
and g > 0, the pg-gram distance, AP9(Ty,Ts), be-
tween two trees T1 and Ts is defined as follows:

[PP9(T,) 0 PP (Ty)
[PP7(T,) U PP (Ty)

Ap’q(Tl,TQ) =1-2 (1)

Example 4.6 Consider the 2,3-gram distance be-
tween Ty and Ty. The corresponding 2,3-gram pro-
files are shown in Figure 7. The bag-intersection of the
two proﬁles is {<*? a, *, *, a)a (a7 a, *, *, e)7 (av €, ¥, *, *)7
(a, a’*7e7b)’ (a7b7 *7 *7 *)’ (a7 a7 e’b’ *)7 (a7 a7b7 *7 *)7
(*a a,*,a, b)’ (a7b7 *, %, *)}) which yZEZdS ‘ P273(T1) N
P2’3(T2§| = 9. For the cardinality of the bag-union we
get | PPA(T,) UP?3(Ty)| = | P2(T)|+ | P23(T2)| =
26. Thus, the pq-gram distance is

AP (T, Ty) =1 — 22% =0.31.

The pg-gram distance is 1 if two trees share no pg-
grams. Trees at distance 0 have the same pg-gram
profile. Note that distance 0 does not imply equality of
trees. An example of two different trees with the same
pg-gram profile is shown in Figure 8. The pg-grams
responsible for detecting the swapped children of the
root nodes of 7" and T" are those anchored in the root
nodes. However, as all children of the root nodes have
the same label, the pg-grams remain unchanged.

a a
™ . T
b b b b
| |
c c

Figure 8: Different trees with the same pg-gram profile.

The pg-gram distance can be computed in
O(nlogn) time by computing the bag intersection of

the pg-gram profiles of size O(n). Theorem 4.1 shows,
how the size of the profile is related to the number of
leaf and non-leaf nodes.

Theorem 4.1 Letp > 0, ¢ > 0, and T be a tree with
l leaf nodes and i non-leaf nodes. The size of the pq-
gram profile is

| PP(T)| = 21 + qi — 1.

Proof 4.1 By structural induction:

|[V(T)| = 1: The tree consists of the root node only,
and according to Definition 4.3 the pg-gram profile
contains exactly one pg-gram. The number of leaves
is 1, while the number of non-leaf nodes is 0, thus
|PPYT)| =2l+qi—1=1.

|[V(T)| > 1: In this case i > 1 (at least the root node)
and | > 1. First we delete all non-leaf nodes (ex-
cept the root r) and get T'. |PPY(T)| — |PPI(T")| =
(i — 1) x q. (Deleting a non-leaf node decreases the
cardinality of the pq-gram profile by q). The number
of leaves does not change with this operation, and the
tree mow consists of only the leaves and the root node.
Now we delete all leaf nodes and get T, |PP9(T)| —
|PP9(T")| = 2(I — 1) + q. (Deleting a leaf node de-
creases the cardinality of the pq-gram profile by q if
the leaf has no siblings, otherwise by 2). T consists
only of the root node and | PP4(T")| = 1. This means,
|PPUT) =1+ [2(l-1)+q]+[(t—1)*q]=20+qi—1.

5 Algorithms
5.1 An Algorithm for the pg-Gram-Profile

The basic idea of the pg-GRAM-PROFILE algorithm in
Figure 9 is to move the pg-gram pattern vertically and
horizontally over the tree (see Figure 10a). After each
move the nodes covered by the pattern form a pg-gram.

We use two shift registers, anc of size p and sib
of size q, to represent the labels of the ancestor and
the leaf nodes that are covered by the pg-gram pat-
tern, respectively. A shift register reg supports a sin-
gle operation shift(reg, el), which returns reg with the
oldest element dequeued and el enqueued. For ex-
ample, shift((a, b, c), x) returns (b, c,x). The concate-
nation of the two registers, anc o sib, is a tuple in

the pg-gram profile, i.e., for anc = (I1,...,1p) and
sitb = (Ip+1,..-,lp+q) the label-tuple of the pg-gram
is (ll, .. -alpalp-‘rl; .. '7lp+q .

pg-GRAM-PROFILE takes as input a tree T and the
two values p and ¢ and returns a relation that con-
tains the pg-gram profile of T. After the initializa-
tion, PROFILE calculates the pg-grams starting from
the root node of T. First PROFILE shifts the label of
anchor node r into the register anc, which corresponds
to moving the pg-gram pattern one step down. Now
anc contains the labels of r and its p — 1 ancestors.
The loop at line 13 moves the register sib from left
to right over the children of r in order to produce all

pq-GRAM-PROFILE(T, p, q)
P : empty relation with schema (labels)
anc: shift register of size p (filled with *)
P = PROFILE(T,p, q, P, I‘OOt(T), anc)
return P

Uk W N =

6 PROFILE(T,p,q, P,r, anc)
7 anc := shift(anc,1(r))
8 stb: shift register of size q (filled with *)

9

10 if r is a leaf then

11 P := P U (anc o sib)

12 else

13 for each child c (from left to right) of r do
14 sib := shift(sib,1(c))

15 P := P U (anc o sib)

16 P :=prOFILE(T, p, q, P, c, anc)
17 for k:=1toqg—1

18 sib := shift(sib, *)

19 P := P U (anc o sib)

20

21 return P

Figure 9: Calculating the pg-gram profile of a tree.

the pg-grams with anchor point r and calls PROFILE
recursively for each child of r. Overall, PROFILE adds
fr+q—1 label-tuples to P for each non-leaf node r, and
1 label-tuple for each leaf node. The pg-extended tree
is calculated on the fly by an adequate initialization of
the shift registers (lines 3, 8, 17-19).

Example 5.1 Assume p =2, ¢ = 3, and the tree T
from Figure 4. The main data structures of the PRO-
FILE algorithm are visualized in Figure 10. After the
ingtialization, PROFILE(T1,2,3,{},v1, (*,*)) is called.

anc

I - i
B T

o/ \NEEIEEEL (ranra)
bc CEIELEE (a,,% %)
l

/\ (3,0,%,%,%)

b LR | ey
~ERIRR | @)

anc «// (a a,e,b, *)

/ pRjnen (a,2,b, %, %)

(*,a,%,a,b)

g b c (a b:*?*v*)

A (*,a,a,b,c)

y ; (a c, * *7*)
0 (*,a,b,c,*)
(* a’C’*7*)

(a) (b) (c)

Figure 10: (a) Moving the pg-gram pattern in the tree,
(b) Shift registers anc and sib, (c) Relation P pro-
duced by PROFILE.

Line 7 shifts the label of vy into the register anc, yield-
ing anc = (*,a), and line 8 initializes sib = (*,*, *).
Since v is not a leaf we enter the loop at line 13 and
process all children of vi. The label of the first child,
Vva, is shifted into sib, yielding sib = (*,*,a), and the
first label-tuple (*,a,*,* a) is added to the result set
P. Figure 10b shows the values of anc and sib each
time a label-tuple is added to P. The indentation il-
lustrates the recursion. The table in Figure 10c shows
the result relation P with the label-tuples in the order
in which they are produced by the algorithm.

pg-GRAM-PROFILE has runtime complexity O(n)
for a tree T, where n = |V(T)|: Each recursive call
of PROFILE processes one node, and each node is pro-
cessed exactly once.

5.2 Relational Implementation

The algorithm described above requires no particular
encoding of trees. This section gives a scalable imple-
mentation for trees stored in a relational database. We
use an interval representation of trees, where each node
of a tree is represented by a pair of numbers (interval).
The interval encoding is a technique for storing hier-
archical data in relations [4, 5] and has been used to
store and query XML data [1, 8, 23].

We associate a unique index number to each tree in
the set. Each node of a tree is then represented as a
quadruple of tree index, node label, and left and right
endpoint of the node’s interval.

Definition 5.1 (Interval Encoding) An interval
encoding of a tree T is a relation R that for each node
v € T contains a tuple (3d(T),1(v), ift, rgt); id(T) is a
unique identifier of the tree T, 1(v) is the label of v, Ift
and rgt are the endpoints of the interval representing
the node. Ilft and rgt are constrained as follows:

o Ift < rgt for all (id, bl lft, rgt) € R,

o Ift, < lfty and rgt, > rgty if node a is an an-
cestor of d, and (:d(T),1(a), Ift,, rgt,) € R, and
(Zd(T)7 l(d)7 lftda rgtd) € R7

o rgt, < Ift, if node v is a left sibling of
node w, and (id(T),1(v),lft,,rgt,) € R, and
(id(T),U(w), Ifty, rgt,,) € R,

e rgt = Ift + 1 if node v is a leaf node, and
(id(T), 1(v), Ift, rgt) € .

We get an interval encoding for a tree by traversing
the tree in preorder, using an incremental counter that
assigns the left interval value Ift to each node when
it is visited first, and the right value rgt when it is
visited last. Figure 11 shows an address tree of our
application, where each node is annotated with the
endpoints of the interval.

Giuseppe-Cesare-Abba-Str.
0

N e R

1 2 3 4 6
18 /9’24\ 2526 2740 4142
- A B C A B C

QA 1011 /1221\ 2223 28 35 36 37 38 39
13

1 2 3 4 1 2 3
3456 13141516 1718 1920 2930 3132 3334

Figure 11: Address tree in interval encoding.

The interval encoding of a tree allows a scalable
implementation of the algorithm pg-GRAM-PROFILE
for a set of trees F stored in a relation F with schema
(treelD, label, Ift, rgt). We define the following cursor:

cur = SELECT * FROM F ORDER BY treeID,lft

Then with a single scan all trees can be processed, and
each tree is processed node-by-node in preorder. Our
experiments in Section 7.1 confirm the scalability of
this approach to large trees.

Figure 12 shows the algorithm adapted for interval
encoding with the changes highlighted. Instead of a
tree pg-GRAM-PROFILE gets a cursor as an argument.
PROFILE processes all nodes of the tree in preorder,
and when it terminates the cursor points to the root
node of the next tree in the set.

1 pg-GRAM-PROFILE(cur, p, q)

2 P : empty relation with schema (labels)
anc: shift register of size p (filled with *)
P = PROFILE(cur, p, q, P,FETCH(cur), anc)
return P

Ot W

6 PROFILE(cur, p,q, P, r,anc)
7 anc := shift(anc, 1(r))
8 sib: shift register of size q (filled with *)

9

9 cur :=NEXT(cur)

10 if ISLEAF(r) then

11 P := P U (anco sib)

12 else

12a ¢ :=FETCH(cur)

13 while ISDESCENDANT(c, r) do
14 sib := shift(sib, 1(c))

15 P := P U (anco sib)

16 P :=PROFILE(cur, p, q, P, ¢, anc)
16a ¢ :=FETCH(cur)

17 for k:=1toqg—1

18 sib := shift(sib, *)

19 P := P U (anc o sib)

20

21 return P

Figure 12: Implementation of PROFILE using a cursor.

PROFILE calls the following two functions:

e ISLEAF(v): Returns true iff v is a leaf node, i.e.,
Ift(v) + 1 = rgt(v).

e ISDESCENDANT(d,a): Returns true iff d is a de-
scendant of a, i.e., lft(a) < lft(d) and rgt(a) >
rgt(d) and treeld(a) = treeld(d) and d # null.

With the interval encoding it is easier to check
whether a node is a descendant than whether it is
a child. In our algorithm this amounts to the same
thing: When the loop in line 13 is entered the first
time, c is the next node after r in preorder (or null).
Thus, if ¢ is a descendant of r, it must be a child. The
recursive call in line 16 will process ¢ and all its de-
scendants, and set the cursor on the next node after
the processed nodes. Again, if this is a descendant of
r, then it is a child. Thus the while-loop in Figure 12
is equivalent to the for-loop in Figure 9.

6 Sensitivity to Structural Changes

In this section we discuss the main properties of the
pg-gram distance and compare it with the tree edit dis-
tance. We investigate two cases where the pg-gram dis-
tance behaves differently from the tree edit distance:
structural and local changes. We consider the follow-
ing standard edit operations [24]:

Update(T,v,0): Updating a node v € V(T) means
changing its label to ¢ € X.

Delete(T,v): Deleting a node v € V(T) \ {root(T)}
means substituting v with its children (preserving
the order), i.e., remove v and connect v’s children
directly with v’s parent node.

Insert(T,v,p,i,k): Inserting a new node v ¢ V(T)
as a child of a node p € V(T) at posi-
tion ¢ means substituting k£ consecutive children
Vi, Vitl,-- -, Vitk—1 Of p with v, and inserting them
as children of v (preserving the order). If k =0, a
leaf node is inserted, and the number of p’s chil-
dren increases by one.

The tree edit distance assigns a fixed cost to each
operation. This disregards the fact that operations
which change the structure (insert and delete) might
have side effects on other nodes. For example, if a node
is deleted, all children of this node are moved with their
descendants to the parent node. This behavior leads
to non-intuitive results, as shown in Figure 13: Tree
T’ is the result of deleting the leaves with labels g and
k from T, T” is obtained from T by deleting the nodes
labeled ¢ and e. Intuitively, T/ and T are much more
similar (in structure) than T” and T, but the tree edit
distance is 2 in both cases for a unit cost model.

The pg-gram distance depends directly on the num-
ber of affected pg-grams, which depends on the number

«— disteg =2 — — disteg =2 —

T A237 (30 A% =0.89 T

a a a
el /7ﬂ§§\
b c b c bdhikfg
AN PIAN

d e £ d e fg

\ /N

hi hik

Figure 13: Tree edit distance and pg-gram distance for
structural changes.

of descendants of v within distance p. Thus, changes to
non-leaf nodes cost more than changes to leaves. The
following theorem gives the number of pg-grams that
contain a node v, which corresponds to the number of
affected pg-grams if v is modified.

Theorem 6.1 For a tree T with all leaf nodes at level
d = depth(T) and a fizxed fanout f > 1 for the non-
leaf nodes, the number of pq-grams (p > 0,q > 0) that
contain a node v of level | = level(v) is:

cntpg (T, v) = gsgn(l)+
ffzg}l (f+qg-1)
B +a-1)+

Proof 6.1 Consider how the pg-gram pattern with q
leaves and p mon-leaves is shifted over the tree. The
leaves of the pattern are shifted over all nodes of the
tree but the root node, which gives q pq-grams for each
non-root node (sgn(l) is 0 for the root, 1 for non-root
nodes). If v is a non-leaf node, it appears in f+q—1
pq-grams as the anchor node, otherwise in a single pq-
gram. While v is in the pq-gram we recursively move
the pattern down the tree. We exit the recursion earlier
if the anchor node of the pq-gram pattern is a leaf. For
the case p < d—1, we get (f+q—1) f;ol ft, and for
the case p > d—1, (f+q—1) Zf:_é_l f? additional pq-
grams that contain v. For the latter case we add the
term f9=! that accounts for the pq-grams that have one
of the f4= leaf descendants of v as an anchor node.
We evaluate the partial sum of the geometric series to
get the formula in Theorem 6.1.

ifp<d-—I
ifp>d—1.

Theorem 6.1 assumes a tree with all leaves at the
same depth and a fixed fanout. If f is the mazimum
fanout of v and its descendants within distance p, then
cntye (T, v) is an upper bound for the number of pg-
grams that contain v.

According to Theorem 6.1 the cost for changing a
leaf node (d =1) is ¢ + 1, i.e., depends only on ¢. For
non-leaf nodes the impact of p is prevalent, and we
can control the sensitivity of the pg-gram distance to
structural changes by choosing the value for p.

The difference between non-leaf and leaf nodes is
relevant for hierarchical data, where values higher up

in the hierarchy are more significant. For example, two
streets with different house numbers (with subnumbers
and apartment numbers) are considered more different
than streets in which only apartment numbers differ.

We further investigate the case when part of a tree
is missing, i.e., a subtree is deleted. The effect on the
structure is limited as the remaining part of the tree
is unchanged. An example of a subtree is a subnum-
ber with all its apartment numbers. If it is missing
in one address tree, a relatively high number of nodes
changes. These changes should be weighted less than
the same number of changes on different house num-
bers.

If a subtree is deleted, several modifications are ap-
plied within a small neighborhood. The affected sets of
pg-grams overlap each other, and hence, these changes
have less impact on the pg-gram distance than changes
that are uniformly distributed over the tree. The fol-
lowing theorem gives the number of pg-grams that
change with a subtree deletion.

Theorem 6.2 Let S be the subtree of T consisting of
v € V(T)\ {root(T)} and all its descendants, and let |
be the number of leaves of S, and let i be the number of
non-leaf nodes. If all nodes of S are deleted or updated,
then 21 +iq + ¢ — 1 pg-grams change.

Proof 6.2 All pg-grams of the subtree change. This
are 2l + iq — 1 pg-grams (Theorem 4.1). Further v
appears as a sibling in q pq-grams. The sum is 2] +
1g+q—1.

Example 6.1 We refer to Figure 13 and discuss the
deletion of the subtree of T that consists of the node
with label e (lets call the node v) and all its descen-
dants. An effect of this operation is that the follow-
ing nodes are deleted: v plus the nodes labeled h, i,
and k. The number of 2,3-grams that contain the
node v is cnte 3(T,v) = 11, and g + 1 = 4 for the
three other nodes. If these nodes did not share any pq-
grams, the total number of affected pq-grams would be
1143 x4 = 23. However, as the deleted nodes build a
subtree with | = 3 leaves and i = 1 non-leaf nodes, they
do share pq-grams, and the total number of changing
2,3-grams is only 2l +iq+q—1 = 11.

7 Experiments
7.1 Scalability

We compare the scalability of our algorithm with the
tree edit distance [24] and the tree embedding dis-
tance [9], and we investigate the influence of the pa-
rameters p and g on the scalability of the pg-gram dis-
tance.

As a test set we produce pairs of trees (T, T3) of
size |V(T1)| = |V(T2)| = n, where n ranges from 3 to
2 x 10% nodes. The depth of the trees is log(n) and the
labels for each tree are randomly chosen from a set of
n different labels.

Figure 14(a) shows the runtimes of tree edit dis-
tance and 2, 3-gram distance calculations for different
tree sizes. For the tree edit distance we use the im-
plementation of Zhang and Shasha?, whereas for the
pg-gram distance we use the relational implementation
described in Section 5.2. For very small trees edit dis-
tance is faster than pg-gram distance. The reason be-
ing that our algorithm writes all intermediate results
to the disk, while the edit distance algorithm runs in
the main memory. Therefore the overhead for disk ac-
cess in this range masks the actual computing time for
the distance. This effect can easily be prevented by
keeping all data in main memory. For large trees the
computation time for the tree edit distance grows very
fast. For trees of size 10,000 it is already more than
27 hours, therefore we could not run our experiment
for even larger trees. For the pg-gram distance the
computation time is almost linear in the tree size.

Figure 14(b) compares the pg-gram distance for
varying parameters with the tree embedding distance.
We use our own implementation for tree embedding
distance according to the algorithm of Garofalakis and
Kumar [9]. For the comparison both algorithms run in
main memory. The pg-gram distance is slightly faster,
and varying values for p and ¢ have little impact on
the scalability of the pg-gram distance calculation.

7.2 Sensitivity to Structural Changes

In Section 6 we point out that the pg-gram distance
weights deletions of non-leaf nodes more than deletions
of leaves, and the sensitivity to structural changes is
controlled by the parameters p and q. We show this
property in an experiment, where only non-leaf nodes
or only leaf nodes are deleted for varying parameters,
and calculate the pg-gram distance for both cases.

We create an artificial tree T with 144 nodes, 102
leaves, and depth 6. Each non-leaf has a fanout of
between 2 and 5. Figure 15 shows the pg-gram distance
for different numbers of leaf and non-leaf deletions.
Each value in Figure 15 is an average over 100 runs.

For leaf node deletions only ¢ has an influence (see
Figure 15(a)). For the deletion of non-leaf nodes ¢ has
a small impact compared to p (see Figure 15(b)). This
confirms our analytical results. Sensitivity to changes
in the leaves depends only on ¢, and we can emphasize
structural sensitivity with higher values of p. For dele-
tions of non-leaf nodes the pg-gram distance is longer
than for deletions of leaf nodes.

We further investigate the difference in the pg-gram
distance for deleting a subtree or the same number
of nodes randomly distributed all over the tree. For
the experiment we use the same tree T as above. We
randomly choose a node v € T\ {root(T)} and delete v
and all its descendants. The tree edit distance between
T and the resulting tree T’ is the number of nodes in

%http://www.cs.nyu.edu/cs/faculty/shasha/papers/
tree.html

100000

0.35

03

distributed changes .
local changes -

" edit dist —— 35 edit dist embéddlng —
[2,3-gram dist -~ 3,4-gram dist -
10000 30| 2,3-gram dist -~
1000 | 1,2-gram dist =
o 25
g 10 o = A
3 o $20r 7
i - P -
X L
E il Ei1s
ar,
01k 10 x
001 | 5 o
0.001 0
1 10 100 1000 10000 100000 1e+06 0 100000 200000 300000 400000 500000

2,3-gram dist

number of nodes (n)

(a) Tree edit distance.

number of nodes (n)

(b) Tree embedding distance.

edit dist

(c) Distributed vs. local changes.

Figure 14: Scalability results and subtree deletions.

02 0.9 T3 grams —— R 0.7
018 0.8 [2,3-grams -~ T X 0.6

8 I 0.16 8 07133 HoH 2

8 £ 014 S 06|43 £ os

< g0z £ 05 2 04

§ § 008 £ o1 § 03

=) (=) o U. (=

: 2 0.06 ; > 02

g g 004 g 02 g ‘,
0.02 0.1 01l

o L=
0 2 4 6 8 10 12 14 16 18 20
edit distance

(a) Deletion of leaf nodes.

edit distance

o [
0 2 4 6 8 10 12 14 16 18 20

0
0 2 4 6 8 10 12 14 16 18 20
edit distance

0
0 2 4 6 8 10 12 14 16 18 20
edit distance

(b) Deletion of non-leaf nodes.

Figure 15: Properties of the pg-gram distance.

the deleted subtree. In Figure 14(c) we compare the
results to distributed changes (average on 100 runs).
We can see that local changes (subtree deletions) are
cheaper than distributed changes.

7.3 Matchmaking with Real Data

To test the accuracy for real world data we use the
address tables RO and LR described in Section 2. We
build the address trees for all streets in both tables and
get the sets R and L. Each tree T in one of the tree
sets R and L represents a street with all the addresses
in that street. Set R from RO consists of 302 trees with
52,509 nodes in total, reflecting 43,187 addresses. Set
L from table LR consists of 300 trees with 53,464 nodes
and 44,447 addresses.

We say that two trees T € F and TV € F' match
if T has only one nearest neighbor in F’, namely T",
and vice versa. For each distance function dist, we
compute a mapping M, € F x F’ between all pairs of
matching trees. Furthermore, we create a mapping,
M., by hand with the correct pairs of trees, i.e., with
all pairs of trees that represent the same street in the
real world. We define the accuracy of M, with respect
to M. as a = % The false positives are com-
puted as M, \ M..

We compute a mapping for the tree edit distance
disteq, the pg-gram distance AP*?, the tree embedding
distance distemp, and the node intersection dist;. The
node intersection is a simple algorithm that completely
ignores the structure of the tree. It is computed in the
same way as the pg-gram distance, the only difference
being that the profile of a tree consists of the bag of

all its node labels.

The results for the address tables RO and LR are
shown in Table 1. There are two streets in RO that do
not exist in LR, thus |[M.| = 300 for the calculation
of the accuracy. The efficiency of the approximations
is clearly greater than that of the tree edit distance:
All of them can be computed within about five min-
utes, whereas the tree edit distance takes more than
52 hours.

| | accuracy correct false pos. runtime

disteq 82.7% 248 9 187,538s
A2 78.3% 235 5 181s
A%3 77.3% 232 4 204s
A3? 79.3% 238 2 180s
distems | 69.0% 207 8 313s
dist; 66.3% 199 12 82s

Table 1: Accuracy of the tree edit distance and its
approximations.

The pg-gram distance clearly outperforms the other
approximations with respect to both, number of cor-
rect matches and number of false positives for all tested
parameters. The number of false positives is even
smaller than with the tree edit distance. The tree em-
bedding distance does not perform much better than
the simple node intersection. We will now briefly dis-
cuss how the tree embedding distance works, and why
it performs poorly on typical address trees.

The tree embedding distance is computed by build-
ing a parsing hierarchy for a tree T. In each phase i

a tree T? is obtained by nodes of the tree T?~1. The
parsing procedure starts with the tree T = T, and
it stops if |T¢| = 1. Figure 16 shows the parse trees
T? T! and T? for an example tree T that is shaped
like a typical address tree. In our illustration we use
different types of brackets to label the newly created
nodes for the different situations in which nodes are
merged:

e Contiguous sequences of children are split into
blocks of length 2 and 3, and the blocks are con-
tracted. The nodes 1,3,5,10,11 of TV become
the two new nodes (1,3,5) and (10,11) of T!.

e A lone leaf child is merged with the parent node
if it is the leftmost lone leaf. The nodes SN and 3
in T become the new node {SN,3} in T,

e Chains (paths of degree-two nodes) are split into
blocks of length 2 and 3, and the blocks are con-
tracted. The nodes 2,4, (1,3,7) of T! become
the new node [2,4A, (1,3,7)] of T2.

0 ——
i 2 3 4
o | o

A A
AN N TN
123245137 1351011359 1520

w

, {sn,3}
T
i 3 2
T~ | _
i B A i B
| | \ T Y
(1,2,3) (2,4,5) (1,3,7) (1,3,5) (10,11) (3,5) (9,15,20)
) {sn,3}
T
i [2,4,(1,3,M]

4
/\ /\
[A,(1,2,3)] [B,(2,4,5)] A B
| |

((1,3,5),(10,11)) ((3,5),(9,15,20))

Figure 16: Parse trees for an example tree T.

Each node in the parsing hierarchy corresponds to a
set of nodes (“valid subtree”) in the original tree. The
bag P of all valid subtrees corresponding to all nodes of
the final hierarchical parsing structure (tagged with a
phase label to distinguish between subtrees in different
phases) is treated the same way we treat the pg-gram
profile in order to calculate the distance.

The resulting bag P contains nodes corresponding
to (1) single nodes, (2) node chains with parent-child
relationship, (3) contiguous leaf children, and (4) sub-
trees. Single nodes contain no structural information,
parent-child chains only vertical, leaf sequences con-
tain only horizontal structure information. Only sub-
trees reflect both, horizontal and vertical structure.
Table 2 gives an overview of how many nodes of each
type are obtained in each phase for the example tree.
We can see that 65% of all nodes are single nodes con-
taining no structural information. Only 19% of nodes
correspond to subtrees.

Trees with many leaves at the deepest level are
parsed bottom-up, and the structure of the inner nodes

has less impact on the distance. For this reason the
tree embedding distance performs only slightly better
than a simple node intersection on our real world data.

| phase [single node chain cont. leaf subtree |

0 29 - - -

1 8 1 7 -

2 4 1 2 3

3 2 - - 4

4 1 - - 3

5 - 2

6 - - - 1
total 44 2 9 13
65% 3% 13% 19%

Table 2: Types of valid subtrees in the different phases.

8 Conclusions

Our work is motivated by a data integration scenario
from the Municipality of Bozen, where data from dif-
ferent sources have to be integrated and no common
keys exist. Data have to be joined over residential ad-
dresses, which in practice have some undesirable prop-
erties, and exact joins completely fail. To overcome
these problems we introduced address trees as a rep-
resentation of residential addresses. This reduces the
integration to an approximate join on address trees.

We presented a new distance measure, the pg-gram
distance, for ordered labeled trees as an effective and
efficient approximation for the well known tree edit dis-
tance. We provided an algorithm for the computation
of pg-grams in O(n) time, where n is the number of
tree nodes. Based on the profile the pg-gram distance
can be computed in O(nlogn) time. We discussed a
scalable implementation using an interval representa-
tion of trees in a relational database.

The pg-gram distance behaves differently from the
tree edit distance for structural and local changes. It
gives more weight to edit operations that cause big
changes in the tree structure. This property turned
out to be relevant in our application domain.

Detailed experiments on real and synthetic data
confirmed that the pg-gram distance is orders of mag-
nitude faster than the tree edit distance for large trees.
The accuracy of the pg-gram distance for real world
data from the municipality domain turned out to be
clearly better than other approximations of the tree
edit distance.

In the future we will investigate additional appli-
cation areas and apply the pg-gram distance for data
cleaning and the comparison of XML data.

9 Acknowledgements

The work has been done in the framework of the
project eBZ — Digital City, which is funded by the Mu-
nicipality of Bolzano-Bozen. We wish to thank our
colleagues at the municipality, in particular Franco
Barducci, Walter Costanzi, and Roberto Loperfido.

References

[1]

S. Al-Khalifa, H. V. Jagadish, J. M. Patel, Y. Wu,
N. Koudas, and D. Srivastava. Structural joins: A
primitive for efficient XML query pattern match-
ing. In Proc. of the Int. Conf. on Data Engineer-
ing (ICDE), pages 141-152, San Jose, California,
2002. ACM Press.

N. Augsten, M. Bohlen, and J. Gamper. Reducing
the integration of public administration databases
to approximate tree matching. In R. Traunmiiller,
editor, FElectronic Government — Third Inter-
national Conference, EGOV 2004, LNCS 3183,
pages 102-107, Zaragoza, Spain, 2004.

N. Bruno, N. Koudas, and D. Srivastava. Holistic
twig joins: Optimal XML pattern matching. In
Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 310-321, Madison, Wis-
consin, June 2002. ACM Press.

J. Celko. Trees, databases and SQL. Database
Programming and Design, 7(10):48-57, 1994.

J. Celko. Trees and Hierarchies in SQL for Smar-
ties. Morgan Kaufmann Publishers Inc., 2004.

S. S. Chawathe, A. Rajaraman, H. Garcia-Molina,
and J. Widom. Change detection in hierarchically
structured information. In Proc. of the ACM SIG-
MOD Int. Conf. on Management of Data, pages
493-504, Montreal, Canada, June 1996. ACM
Press.

W. Chen. New algorithm for ordered tree-to-
tree correction problem. Journal of Algorithms,
40(2):135-158, Aug. 2001.

D. DeHaan, D. Toman, M. P. Consens, and M. T.

Ozsu. A comprehensive XQuery to SQL transla-
tion using dynamic interval encoding. In Proc. of
the ACM SIGMOD Int. Conf. on Management of
Data, pages 623-634, San Diego, California, June
2003. ACM Press.

M. Garofalakis and A. Kumar. XML stream pro-
cessing using tree-edit distance embeddings. ACM
Trans. on Database Systems, 30(1):279-332, 2005.

L. Gravano, P. G. Ipeirotis, H. V. Jagadish,
N. Koudas, S. Muthukrishnan, and D. Srivastava.
Approximate string joins in a database (almost)
for free. In Proc. of the Int. Conf. on Very Large
Databases (VLDB), pages 491-500, Roma, Italy,
Sept. 2001. Morgan Kaufmann Publishers Inc.

S. Guha, H. V. Jagadish, N. Koudas, D. Srivas-
tava, and T. Yu. Approximate XML joins. In
Proc. of the ACM SIGMOD Int. Conf. on Man-
agement of Data, pages 287-298, Madison, Wis-
consin, 2002. ACM Press.

[12]

[13]

[14]

[15]

[18]

[19]

[21]

[22]

23]

H. Jiang, W. Wang, H. Lu, and J. X. Yu. Holis-
tic twig joins on indexed XML documents. In
Proc. of the Int. Conf. on Very Large Databases
(VLDB), pages 273-284, Berlin,Germany, Sept.
2003. Morgan Kaufmann Publishers Inc.

T. Jiang, L. Wang, and K. Zhang. Alignment
of trees—an alternative to tree edit. Theoretical
Computer Science, 143(1):137-148, July 1995.

P. N. Klein. Computing the edit-distance between
unrooted ordered trees. In Proceedings of the 6th
European Symposium on Algorithms, volume 1461
of Lecture Notes in Computer Science, pages 91—
102, Venice, Italy, 1998. Springer.

K.-H. Lee, Y.-C. Choy, and S.-B. Cho. An efficient
algorithm to compute differences between struc-
tured documents. IEEE Transactions on Knowl-
edge and Data Engineering, 16(8):965-979, 2004.

G. Navarro. A guided tour to approximate string
matching. ACM Computing Surveys, 33(1):31-88,
2001.

N. Polyzotis, M. Garofalakis, and Y. Ioannidis.
Approximate XML query answers. In Proc. of
the ACM SIGMOD Int. Conf. on Management of
Data, pages 263-274, Paris, France, June 2004.
ACM Press.

S. M. Selkow. The tree-to-tree editing problem.
Information Processing Letters, 6(6):184-186,
Dec. 1977.

K.-C. Tai. The tree-to-tree correction problem.
Journal of the ACM (JACM), 26(3):422-433, July
1979.

E. Tanaka and K. Tanaka. The tree-to-tree edit-
ing problem. Int. Journal of Pattern Recognition
and Artificial Intelligence (IJPRAI), 2(2):221-
240, 1988.

E. Ukkonen. Approximate string-matching with
g-grams and maximal matches. Theoretical Com-
puter Science, 92(1):191-211, Jan. 1992.

W. Yang. Identifying syntactic differences be-
tween two programs. Software—Practice & Fx-
perience, 21(7):739-755, July 1991.

C. Zhang, J. F. Naughton, D. J. DeWitt, Q. Luo,
and G. M. Lohman. On supporting containment
queries in relational database management sys-
tems. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 425-436, Santa
Barabara, California, 2001.

K. Zhang and D. Shasha. Simple fast algorithms
for the editing distance between trees and re-
lated problems. SIAM Journal on Computing,
18(6):1245-1262, 1989.

