
TDL Specification and Report

Josef Templ

Department of Computer Science
University of Salzburg
Austria

Technical Report T001
November 2003

http://cs.uni-salzburg.at/pubs/reports/T001.pdf

Abstract

This report defines the syntax and semantics of the software description languageTDL (timing definition
language), which has been developed as part of project MoDECS at the Paris Lodron University of Salzburg
(Austria). TDL allows to specify the timing behavior of a hard real time control application in a descriptive way
and separates the timing aspect of such applications from the functionality, which must be provided separately
using an imperative programming language such as Java, C or C++.TDL is conceptually based onGiotto, but
provides more convenient syntax for many applications and an improved set of programming tools.

1 Introduction

This document defines the syntax and semantics of the software description languageTDL, which was developed
as part of project MoDECS at the Paris Lodron University of Salzburg (Austria). This report is not an introduction
into the emerging field of time triggered control systems and model based development.

We deliberately avoid the term programming language forTDL, but use the more general notion ofsoftware
description language, which was suggested by Prof. N. Wirth at EmSys Summer School 2003 at Salzburg.TDL
allows todescribethe timing properties of a hard real time control application and thereby separates the timing
aspect of such applications from the functionality.TDL programs are purely declarative, all imperative parts of
a control application must be provided separately using an imperative programming language such as Java, C or
C++. This separation allows to write platform independentTDL timing models, which may be implemented on an
open set of target platforms.

The following sections describe the lexical structure, the syntactical structure and the semantics ofTDL step
by step. A complete definition of all lexical and syntactical rules as well as a complete example is presented in the
Appendix.

1.1 Relation to Giotto

TDL is conceptually based on the time triggered modelling languageGiotto[2], but provides more convenient
syntax and an improved set of programming tools. TheTDL compiler and E-machine resulted from a cleanroom
implementation without access to the Giotto compiler or E-machine sources. We tried to preserve the spirit of
Giotto as far as possible and made only changes and extensions which we believe are absolutely necessary for
applying this technology in an industrial environment as opposed to the research lab usage of Giotto. Please see
Section 5 for a list of differences.

1.2 Acknowledgement

I would like to thank Christoph M. Kirsch, the author of the original Giotto compiler, for many hints regarding
subtle points of the Giotto specification and his willingness to discuss possible modifications of Giotto finally
leading toTDL. I also want to thank Wolfgang Pree and the members of the MoDECS team for their contributions.
Finally I want to thank Hanspeter M̈ossenb̈ock for providing the excellent compiler generator Coco/J free of charge
and for the changes he made in response to my needs.

2 Lexical Structure

An TDL module is represented as an ASCII text. Sequences of characters form words, also called tokens, and
the sequence of tokens forms the text. White space between tokens is ignored, as well as comments are ignored.
Tokens may be keywords, operators, identifiers and literals. Keywords are reserved and must not be used as
identifiers.

2.1 White Space and Line Separators

Blank, line feed (LF), carriage return (CR) and tabulator (TAB) characters are ignored and commonly referred to
aswhite space. They serve to separate tokens but have no further meaning except that line feed and carriage return
characters are used to count line numbers in order to emit precise error messages.TDL supports three common
forms of line separators: CR, LF and CR+LF.

1

2.2 Comments

TDL allows comments as in the programming language Java, i.e. line comments start with// and end with the
end of line, and block comments are enclosed within/* and*/ . Block comments may not be nested, however,
block comments may contain line comments.

2.3 Identifiers

An identifier starts with an ASCII-letter (A-Z,a-z) followed by an arbitrary sequence of letters and digits (0-9).
Identifiers must not contain white space and must be different from keywords.

2.4 Keywords and Operators

The following set of keywords is defined inTDL:

actuator const false if input mode module output package schedule sensor
start state task then true type uses

The following set of operators and special symbols is used inTDL:

{ } [] () ; = . := ,

2.5 Literals

TDL supports numeric and string literals. A numeric literal is a sequence of digits, a string is a sequence of arbitrary
characters enclosed in single or double quotes. The enclosing character must not occur inside the string.

Examples: 0, 123, ’abc’, "xyz", "a man’s world"

3 Syntactical Structure

The syntax ofTDL is defined usingExtended Backus-Naur Form(EBNF) rules. Keywords, operators and special
symbols are enclosed in double quotes. The following EBNF meta symbols are used to define the grammar.

= separates the non terminal symbol (left hand side) of a production from the right hand side.
. terminates a production.
| separates alternatives.

[] encloses optional parts (zero or one).
{ } encloses iterated parts (zero or more).
() overides binding rules.

The overall goal of the chosen syntax is thatTDL programs should be easily readable by humans. Since many of
the readers are expected to be used to work with Java or C programs, some aspects are similar to those languages.
In addition some constructs have been borrowed from Pascal style languages and of course from Giotto.

In the following subsections, we proceed in a top-down fashion and start with the definition of a compilation
unit, which inTDL is called amodule.

3.1 Module

Note: In the final version, theTDL tools will support modular decomposition of a control application. Therefore,
an TDL compilation unit is called amodule. The current version supports only single module programs. The
semantics of imports has to be defined.

A module may be associated with a package, which acts as a namespace for modules. Packages serve to
distinguish TDL components provided by independent vendors very much like in the Java programming language.

A module has a name (after keyword ”module”) and provides a namespace for definition of constants, types,
sensors, actuators, tasks and modes. The namespace is enclosed within curly brackets. Names declared within the
module are visible from the point of declaration up to the end of the module. There may only be a single module
per input text, which means that EOF (end of file) must follow the module.

Please refere to the appendix for an example of a complete module.

2

emcoreModule = [packageSpec] "module" ident "{"
{"const" {constDecl ";"}}
{"type" {typeDecl ";"}}
{"sensor" {sensorDecl ";"}}
{"actuator" {actuatorDecl ";"}}
{"task" taskDecl}
{modeDecl}
"}"
EOF.

packageSpec = "package" extIdent ";".

3.2 Constant Declaration

A constant declaration associates a name with a constant value. The constant value may be denoted as a literal or
as the name of another constant. Currently there are no operators allowed within constant expressions. This may
be added in a later version. Constants may be used for initialization of state and output variables.

constDecl = ident "=" constExpr.
constExpr = ["-"] number | constExprBoolean | string | constDesignator.
constExprBoolean = "true" | "false".

3.3 Type Declaration

A type declaration introduces a new type or provides an alias for an existing type. A new type consists only of the
type’s name and is opaque forTDL. In order to execute a control application, the type must be provided in a form
accepted by the E-machine being used. For a Java-based E-machine, for example, a class with the name of the type
must be provided. This is, however, outside the scope of theTDL language definition.

TDL provides a set of basic types, which matches those found in the programming language Java. The basic
types are predeclared in a universal scope outside the module and namedbyte , short , int , long , float ,
double , char , boolean , andstring .

typeDecl = ident ["=" typeDesignator].

3.4 Sensor Declaration

A sensor declaration defines a sensor, which is the input mechanism of anTDL program. Sensors are typed
variables which may be connected with the environment using a so-calledgetterfunction. The getter is an external
parameterless function which returns a value compatible with the sensor’s type. It must be implemented according
to the E-machine and environment the program is executed in.

sensorDecl = typeDesignator ident ["uses" extIdent].
extIdent = ident {"." ident}.

3.5 Actuator Declaration

An actuator declaration defines an actuator, which is the output mechanism of anTDL program. Actuators are
typed variables which may be connected with the environment using a so-calledsetterfunction. The setter is an
external function with a single parameter compatible with the actuator’s type. It must be implemented according
to the E-machine and environment the program is executed in.

actuatorDecl = typeDesignator ident ["uses" extIdent].

3.6 Task Declaration

A task declaration defines a task, which encapsulates a computation to be carried out by a control application. Tasks
provide a namespace for declaration of input, output and state ports. In addition, a task has an associated external
procedure (including arguments), which performs the computation. The arguments of the external procedure call

3

are taken exclusively from the task’s ports and must be treated by the external procedure as value or reference
parameters accordingly.

Tasks may be connected via their input and output ports to other program entities. State ports, however, are
always private to the task and serve only to preserve state between repeated invocations. The details of connecting
tasks will be defined in mode declarations further below.

Output and state ports must be initialized either with a constant value or with an external function, called an
initializer. Initializers are, like getters, parameterless functions, which must return a value compatible with the
port type.

taskDecl = ident "{"
{"input" {inPortDecl}}
{"output" {portDecl}}
{"state" {portDecl}}
[taskWcetAnnotation]
"schedule" call ";"
"}".

inPortDecl = typeDesignator ident ";".
portDecl = typeDesignator ident ("uses" extIdent | ":=" constExpr) ";".
call = extIdent "(" [portDesignator {"," portDesignator }] ")".

A task may have a worst case execution time (wcet) annotation, which specifies the maximum time the com-
putation needs. The property name isWCET, the duration is defined in units, which may bems (milliseconds) or
us (microseconds). An example wcet annotation looks like[WCET=42ms].

taskWcetAnnotation = "[" ident "=" number unit "]".

3.7 Mode Declaration

A mode declaration defines a mode, which is a particular state of operation of a control application. In general,
control applications may consist of multiple modes1, one of them will be thestart mode. Starting anTDL program
means to switch the E-machine into the distinguished start mode.

An TDL mode consists of a set of activities executed periodically. The period of a mode is defined in units,
which may bems (milliseconds) orus (microseconds). Activities carried out in a mode include task invocations,
actuator updates and mode switches.

modeDecl = ["start"] "mode" ident "[" period unit "]" "{"
{"task" {taskInvocation}}
{"actuator" {actuatorUpdate}}
{"mode" {modeSwitch}}
"}" .

Every activity is performed with a particular frequency per period. The mode period must be divisible by this
frequency without remainder.

Every activity may be guarded by an external function, called aguard. A guard takes sensors or task output
ports as arguments and returns a boolean result. The activity will only be carried out if the guard evaluates totrue.

taskInvocation = frequency guard taskDesignator assignList.
frequency = "[" number "]" .
guard = ["if" call "then"] .
assignList = "{" {ident ":=" portDesignator ";"} "}"

| ["(" [portDesignator {"," portDesignator}] ")"] ";" .

A task invocationmeans that the task’s input ports are updated according to the assignment list and the task’s com-
putation is scheduled for execution. The assignment list may be specified either by a set of assignment statements
or by providing an argument list, where each port is assigned to an input port in declaration order. The source ports
must either be sensors or task output ports.

1A Helicopter control system, for example, may consist of a hover mode and a cruise mode. In hover mode the system tries to maintain a
fixed position, in cruise mode it will try to reach a previously defined position. The control tasks will be different for both modes, although
there may also be common functionality.

4

Execution of the computation may be done in parallel with other activities and constitutes an asynchronous
operation. The output values, however, will only be available after the fixed logical execution time of the task (flet)
has elapsed. Theflet is defined as (mode period / actuator frequency). In case of using the output ports of a task by
other activities before the task’s flet has elapsed, the previous values of the output ports are used. The intermediate
values of output ports are never visible to other program entities.

Note that the sum of the worst case execution time (wcet) of all task invocations must not exceed the mode
period.

actuatorUpdate = frequency guard ident ":=" portDesignator ";" .

An actuator updatemeans that the value of an actuator is set according to the specified assignment. In addition,
the setter of the actuator will be called. An actuator update is a synchronous operation taking place in logical zero
time with anupdate perioddefined as (mode period / actuator update frequency). Actuator updates start after the
update period has elapsed, i.e. they are not carried out at time zero or at the time of a mode switch, but with a delay
of one update period.

modeSwitch = frequency guard modeDesignator assignList.

A mode switchmeans that the control application switches to the specified target mode after the specified assign-
ments have been executed. A mode switch is a synchronous operation taking place in logical zero time with a
switch perioddefined as (mode period / mode switch frequency). Mode switches in the target mode are never
executed at the time of the mode switch but with a delay of one switch period. This prevents mode switch cycles
without any time passing.

4 Language Bindings

Functionality required by anTDL program is provided as static (global) functions in a particular programming
language. In principle, there is an open set of languages, which may be used by an E-machine. The following
subsections define the recommended conventiones for three popular programming languages.

4.1 Java

For every external function (sensor getter, actuator setter, port initializer, task implementation, guard) there must
be a corresponding public static Java function with appropriate parameters and return types. The external function
may be qualified in theTDL program by a dot-separated list of identifiers in front of the function’s name or it my
be unqualified. The following naming conventions apply.

4.1.1 Naming conventions

The Java name for an unqualified functionf is packageName.ModuleName.f . Thus, it must be defined in
a class named after the module. The value ofpackageName is taken from the module’s package specification.
The anonymous Java package is used if no package specification exists.

Qualified external functions must be provided in a class and package as specified by the qualification.

4.1.2 Type mapping

The basicTDL types are mapped 1:1 to primitive Java types. For opaqueTDL types, a public class named after the
type must be provided. In addition this class must have a public no-arg constructor and it must implement interface
emcore.tools.emachine.types.Opaque in order to provide the ability to copy itself.

TODO qualification of type names??
For output and state ports of a primitive type, an auxiliaryreferenceclass has to be used2. These classes are

contained in packageemcore.tools.emachine.types for all primitive types. The naming convention is
that for a primitive typeT there exists a corresponding reference class namedref T.

For output and state ports of an opaque type, there is no need to provide auxiliary reference classes since objects
are passed by reference in Java anyway. Opaque types are treated likestruct in C orRECORDin Pascal and are
copied by the E-machine when assigned to a port.

2Note that Java does not provide reference parameters. Therefore we have to emulate them by using auxiliary classes.

5

4.2 C

TODO

4.3 C++

TODO

5 Differences to Giotto

The most visible syntactical differences betweenTDL and Giotto are:

• the introduction of a top level language construct (module) and the reorganization of mode declarations,
where ’start’ is a modifier of a mode declaration inTDL.

• the elimination of global output ports, which are replaced by task output ports inTDL,

• the elimination of explicit task and mode drivers, which are merged into mode declarations inTDL,

• the addition of constants, which may also be used to initialize ports inTDL,

• the introduction of units for timing values inTDL.

The following list explains differences to the Giotto semantics.

program start anTDL program is started by switching to the start mode. This means that at time zero, there are
neither actuator updates nor mode switches. In Giotto, the actuator updates and mode switches of the start
mode take place at time zero. There are, however, no further actuator updates or mode switches of the target
mode at time zero.

mode switch Giotto allows to switch a mode even if there are running tasks as long as those tasks exist with the
same task period in the target mode. However, there may be delays involved when switching to the target
mode. Furthermore, the task will deliver output values to the target mode, which do not correspond to inputs
specified there.TDL does not allow this kind of mode switch and probably never will. We are thinking about
alternative ways of performing even faster mode switches without the need to continue running tasks in the
target mode, with simpler semantics and, last but not least, without any delays.

actuator update A guarded actuator update in Giotto means that the actuator setter is called independently of the
guard’s result. InTDL, actuator updateandactuator setter are both guarded and performed only if the guard
returns true.

The following list describes tool related differences betweenTDL and Giotto.

E-code TDL defines a binary, platform independent E-code file format and uses statically typed APIs for connect-
ing programs with external functionality code. The structure and semantics of E-code instructions has not
been changed beTDL.

Time Resolution TDLuses microseconds internally for all timing values, whereas Giotto is based on milliseconds.
This means, thatTDL programs may use mode periods below 1 millisecond, given that the underlying E-
machine supports fast enough scheduling.

Java based E-machineis designed as a JavaBean, which means that it is possible to register any number of listen-
ers. This may be used to visualize execution ofTDL programs, for example, without including visualization
in the basic E-machine directly.

6

A Appendix

A.1 TDL EBNF Grammar

The lexical and syntactical structure ofTDL is defined using the compiler generatorCoco. The complete grammar
without attributes and semantic actions is shown in the following. CHARACTERS defines the character sets for
the lexical tokens, IGNORE defines the characters being ignored in addition to blank characters, TOKENS defines
the lexical token classes, COMMENTS defines the structure of comments and PRODUCTIONS defines the syntax
of TDL.

COMPILER emcorec;

CHARACTERS
letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz_".
digit = "0123456789".
tab = "\t".
lf = "\n".
cr = "\r".
noQuote1 = ANY - "’" - cr - lf.
noQuote2 = ANY - ’"’ - cr - lf.

IGNORE cr + lf + tab

TOKENS
ident = letter {letter | digit}.
string = "’" {noQuote1} "’" | ’"’ {noQuote2} ’"’.
number = digit {digit}.

COMMENTS FROM "/*" TO "*/"
COMMENTS FROM "//" TO cr
COMMENTS FROM "//" TO lf

PRODUCTIONS

emcorec = emcoreModule EOF.

emcoreModule = [packageSpec] "module" ident "{"
[hardwareAnnotation]
{"const" {constDecl ";"}}
{"type" {typeDecl ";"}}
{"sensor" {sensorDecl ";"}}
{"actuator" {actuatorDecl ";"}}
{"task" taskDecl}
{modeDecl}
"}".

packageSpec = "package" extIdent<ˆSem.pkgName> ";".

constDecl = ident "=" constExpr.

constExpr = ["-"] number | constExprBoolean | string | constDesignator.

constExprBoolean = "true" | "false".

typeDecl = ident ["=" typeDesignator].

sensorDecl = typeDesignator ident ["uses" extIdent] [portAnnotation].

7

extIdent = ident {"." ident}.

actuatorDecl = typeDesignator ident ["uses" extIdent] [portAnnotation].

taskDecl = ident "{"
{"input" {inPortDecl}}
{"output" {portDecl}}
{"state" {portDecl}}
[taskWcetAnnotation]
"schedule" call ";"
[taskTimingAnnotation]
"}".

inPortDecl = typeDesignator ident ";".

portDecl = typeDesignator ident ("uses" extIdent | ":=" constExpr) ";".

call = extIdent "(" [portDesignator {"," portDesignator }] ")".

modeDecl = ["start"] "mode" ident "[" period unit "]" "{"
{"task" {taskInvocation}}
{"actuator" {actuatorUpdate}}
{"mode" {modeSwitch}}
"}" .

taskInvocation = frequency guard taskDesignator assignList.

frequency = "[" number "]" .

guard = ["if" call "then"].

assignList = "{" {ident ":=" portDesignator ";"} "}"
| ["(" [portDesignator {"," portDesignator}] ")"] ";" .

actuatorUpdate = frequency guard ident ":=" portDesignator ";" .

modeSwitch = frequency guard modeDesignator assignList.

designator = ident {"." ident}.

/* renamed productions */
unit = ident.
period = number.
constDesignator = designator.
typeDesignator = designator.
taskDesignator = designator.
portDesignator = designator.
modeDesignator = designator.

/* annotation currently used */
taskWcetAnnotation = "[" ident "=" number unit "]".

/* annotations currently ignored */
annotation = "[" {ANY} "]".
hardwareAnnotation = annotation.
portAnnotation = annotation.

8

taskTimingAnnotation = annotation.
modeAnnotation = annotation.
modeConnectionAnnotation = annotation.
modeSwitchAnnotation = annotation.
taskAnnotation = annotation.

END emcorec.

A.2 Format of .ecode files

The following attributed EBNF grammar describes the format of ecode files generated by theTDL compiler. Note
that there is no white space between any symbols. Integers (int4) are written in big endian byte order, strings are
written as zero terminated character sequences and booleans are encoded as 1 (true) and 0 (false). byte1 is stored
as a single byte. Terminal and non-terminal symbols may contain an optional name attribute written asname:
followed by the structure or value of the symbol. Byte values are denoted as in Java or C by using0x as prefix of
the hexadecimal value. Character values are written under single quotes (’). All time values (e.g. mode period,
task wcet, ecode future delay) are given in microseconds. This means that the maximum time value is about 35
minutes, if signed 4 byte integers are used by an E-machine. Unused operands of E-code instructions have value
-1, unused comments in E-code instructions are empty strings.

ECodeFile = ’E’ ’C’ ’0’ ’1’
pkgName:string moduleName:string moduleKey:int4
0x80 Modules
0x81 Constants
0x82 Types
0x83 Ports
0x84 Tasks
0x85 Drivers
0x86 Guards
0x87 Modes
0x88 Ecodes.

Modules = nofModules:int4 {name:string key:int4}.

Constants = nofConstants:int4 {name:string ConstVal}.

ConstVal =
0x0 val:int4

| 0x1 val:boolean
| 0x2 val:string.

Types = nofTypes:int4 {name:string Struct}.

Struct = form:byte1 opaqueTypeName:string.

Ports = nofPorts:int4
{name:string kind:byte1 Struct (0x0 ConstVal | 0x1 driver:string | 0x2).

Tasks = nofTasks:int4
{name:string wcet:int4 inputs:PortList outputs:PortList states:PortList.

PortList = nofPorts {portID:int4}.

Drivers = nofDrivers:int4
((setter:0x0 | getter:0x1) portID:int4 driver:string
| actUpdate:0x2 srcPortID:int4 actPortID:int4
| copy:0x3 srcPorts:PortList dstPorts:PortList

9

| commit:0x4 taskID:int4
| schedule:0x5 taskImpl:FunCall taskID:int4
).

Guards = nofGuards:int4 {FunCall}

FunCall = name:string args:PortList.

Modes = nofModes:int4
{name:string start:boolean pcBegin:int4 pcStart:int4}.

Ecodes = nofEcodes:int4
{opcode:byte1 arg1:int4 arg2:int4 arg3:int4 comment:string}.

A.3 ExampleTDL Module

module Test {

const c1 = 77;
const c2 = true; c3 = false;
const c4 = "x"; c5 = c4; c6 = -1;

type Struct1;

sensor
int s1 uses gets1;
Struct1 s2 uses gets2;

actuator
int a1 uses seta1;
Struct1 a2 uses seta2;

task t1 {
input

int i;
Struct1 i2;

output
int o := c1;
Struct1 o2 uses gets2;

state
int s uses myinit;
Struct1 s2 uses gets2;

[WCET=2500 ms]
schedule t1Impl(i, o, s);

}

task t2 [1000ms] {
input int j; int k;
output int o := 0;
schedule t2Impl();

}

start mode main [5000 ms] {
task

[2] t1(s1, s2)
[1] if t2guard(s1) then t2 (j := s1; k := t1.o;)

actuator

10

[1] a1 := t1.o;
[10] if actguard(s1, t1.o) then a2 := t1.o2;

mode
[1] if failure() then stop()

}

mode stop [1000ms] {
mode [1] if restarted() then main()

}

mode freeze [1000ms] {
}

}

A.4 Generated static class for Java Platform

The following text is the auxiliary Java class generated for module ’Test’. It consists of 3 sections: ports, drivers
and guards and provides the table of drivers and the table of guards to the E-machine interpreter. In addition it
implements the interfaceModuleBase .

In principle, the Java based E-machine would also work without this class by falling back to a reflection-based
mechanism, which is, however, slower and requires the reflection API to be available. On small embedded systems
this may not always be the case.

The only complication for a Java-based E-Machine arises from the fact that Java does not support reference
parameters, which are required for output and state ports. Therefore, auxiliaryref classes are used in order to
emulate reference parameters as close as possible.

import emcore.tools.emachine.types.*;

/**
* This class has been generated automatically by emcorec -java on
* Mon Oct 06 13:21:47 CEST 2003 from module ’Test’.
* Compile this file with a Java compiler and make the generated .class
* files available to the Java based E-machine in order to speed up execution.
* Do not modify this file.
*/

public class Test$ implements emcore.tools.emachine.ModuleBase {

//Ports
static int port$0; //sensor s1
static Struct1 port$1; //sensor s2
static int port$2; //actuator a1
static Struct1 port$3 = new Struct1(); //actuator a2
static int port$4; //input i
static Struct1 port$5 = new Struct1(); //input i2
static int port$6; //output o
static ref_int port6out = new ref_int(); //actual output o
static {

port$6 = 77;
port6out.val = 77;

}
static Struct1 port$7 = new Struct1(); //output o2
static Struct1 port7out = new Struct1(); //actual output o2
static ref_int port$8 = new ref_int(); //state s
static Struct1 port$9 = new Struct1(); //state s2
static int port$10; //input j
static int port$11; //input k
static int port$12; //output o

11

static ref_int port12out = new ref_int(); //actual output o
static {

port$12 = 0;
port12out.val = 0;

}

//Drivers
static emcore.tools.emachine.Driver[] drivers$ = new Driver$[] {

new Driver$(0),
new Driver$(1),
new Driver$(2),
new Driver$(3),
new Driver$(4),
new Driver$(5),
new Driver$(6),
new Driver$(7),
new Driver$(8),
new Driver$(9),
new Driver$(10),
new Driver$(11),
new Driver$(12),
new Driver$(13),
new Driver$(14),
new Driver$(15),
new Driver$(16),

};

static class Driver$ implements emcore.tools.emachine.Driver {
private int n;
Driver$(int n) {

this.n = n;
}
public void call() throws Exception {

switch (n) {
case 0: //init o2

port$7.copyFrom(Test.gets2());
port7out.copyFrom(port$7);
break;

case 1: //init s
port$8.val = Test.myinit();
break;

case 2: //init s2
port$9.copyFrom(Test.gets2());
break;

case 3: //mode switch main
break;

case 4: //commit output t1
port$6 = port$6$out.val;
port$7.copyFrom(port$7$out);
break;

case 5: //commit output t2
port$12 = port$12$out.val;
break;

case 6: //actuator update a1
port$2 = port$6;
break;

case 7: //set a1

12

Test.seta1(port$2);
break;

case 8: //get s1
port$0 = Test.gets1();
break;

case 9: //actuator update a2
port$3.copyFrom(port$7);
break;

case 10: //set a2
Test.seta2(port$3);
break;

case 11: //mode switch stop
break;

case 12: //get s2
port$1 = Test.gets2();
break;

case 13: //task input t1
port$4 = port$0;
port$5.copyFrom(port$1);
break;

case 14: //schedule task t1
Test.t1Impl(port$4, port$6$out, port$8);
break;

case 15: //task input t2
port$10 = port$0;
port$11 = port$6;
break;

case 16: //schedule task t2
Test.t2Impl();
break;

default: throw new Exception("invalid driver number");
}

}
}

//Guards
static emcore.tools.emachine.Guard[] guards$ = new Guard$[] {

new Guard$(0),
new Guard$(1),
new Guard$(2),
new Guard$(3),

};

static class Guard$ implements emcore.tools.emachine.Guard {
private int n;
Guard$(int n) {

this.n = n;
}
public boolean eval() throws Exception {

switch (n) {
case 0: return Test.restarted();
case 1: return Test.actguard(port$0, port$6);
case 2: return Test.failure();
case 3: return Test.t2guard(port$0);
default: throw new Exception("invalid guard number");

}
}

13

}

//implement ModuleBase
public int getKey() {return 0;}
public emcore.tools.emachine.Driver[] getDrivers() {return drivers$;}
public emcore.tools.emachine.Guard[] getGuards() {return guards$;}

} //end Test$

References

[1] Mössenb̈ock, H.: Coco/R for Java. http://www.ssw.uni-linz.ac.at/Research/Projects/Coco/Java/

[2] Henzinger, T., Horowitz, B., Kirsch, Ch.: Giotto: A Time-Triggered Language for Embedded Programming.
Proceedings of the IEEE, Vol. 91, No. 1, January 2003.

14

