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M. Häfnera M. Liedlgruber A. Uhl

aDepartment for Internal Medicine, St. Elisabeth Hospital, Vienna

Technical Report 2013-04 September 2013

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series



1

Super-Resolution Techniques Evaluated in the
Context of HD Endoscopic Imaging

M. Häfner, M. Liedlgruber, and A. Uhl

Abstract

In this work we evaluate different reconstruction-based super-resolution algorithms in order to enhance the
spatial resolution of endoscopic images acquired with an HD endoscope. The main question we try to answer in
this work is whether it is feasible to employ super-resolution algorithms in order to increase the resolution of our
HD images to reveal new details which may have got lost due to the limited endoscope magnification inherent to
the HD endoscope used (e.g. mucosal structures).

For this purpose we first briefly explain the principles of super-resolution algorithms. We then describe the
evaluated algorithms in more detail, which is followed by experiments using different super-resolution algorithms.
We show that for artificially generated sequences and non-endoscopic real-world sequences the SR algorithms are
indeed able to deliver a higher quality as compared to a simple bicubic interpolation. In case of endoscopic sequences,
however, there is no real improvement observable. But we also show that the quality measures used very frequently
show a rather high disagreement upon an improvement.

I. INTRODUCTION

IN image processing applications usually images with a high resolution are required or desired. This applies for
example to surveillance applications where high-resolution (HR) images potentially allow to identify number

plates of cars or suspicious objects and people more reliably. Medical image analysis is also a branch which benefits
from high resolution images since these help medical experts to make a more reliable diagnosis (e.g. in case of
MRI). But also in remote sensing applications high resolution images are always welcome in order to improve the
classification of regions in such images.

The simplest approach to enhance the resolution would be to improve the sensor of the imaging device used (e.g.
the CCD or CMOS chip). While reducing the pixel size and hence increasing the pixel density on such imaging
chips could theoretically increase the resulting image resolution, there are practical limits. If the size of a pixel
gets too small the signal-to-noise ratio (SNR) also drops, making it more difficult to clearly separate a signal from
the sensor noise. The result are inevitably degraded images [1]. Hence, reducing the pixel size is no real option.

Another approach would be to increase the chip size and placing more pixels on the chip. Despite the fact that
this would also increase the cost for image sensors, this would also result in an increased capacitance, making it
difficult to speed up a charge transfer rate [2]. Hence, the capturing speed would suffer and therefore this approach
is also considered not being effective.

As a consequence, throughout the past decade the development of super-resolution (SR) algorithms has been
one of the most active research areas. Such algorithms aim at increasing the resolution of an image by employing
signal processing techniques.

While the first approach dates back to 1984 [3], numerous algorithms have been developed in the past to tackle
the problem of SR. These can be roughly divided into recognition-based and reconstruction-based algorithms. The
first type of SR approaches tries to detect certain patterns in low-resolution (LR) images and constructs an image
of higher resolution by synthesizing an image based on these patterns. Therefore such algorithms have only a
limited application area since specifying such patterns is usually a non-trivial task. Hence, the vast majority of SR
algorithms is reconstruction-based and exploits the information from a sequence of LR images to obtain a single
HR image. The experiments shown in this paper are solely based on reconstruction-based algorithms, hence, from
now on we always refer to reconstruction-based SR algorithms when we refer to SR algorithms.

The remaining part of this paper is organized as follows. In Section II we motivate the application of SR algorithms
to endoscopic imagery. This is followed by a short explanation of the principles of SR algorithms in Section III. We
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Figure 1. The observation model usually assumed in case of SR algorithms.

then briefly describe the motion estimation and SR algorithms evaluated for HR image reconstruction in Section
IV and V, respectively. The termination criterion used for the SR algorithms evaluated is described in Section VI,
followed by a short description of the methods used to assess the visual quality of the images produced by the
different SR algorithms in Section VII. In Section VIII we describe our experimental setup, followed by the results
obtained in Section IX. We conclude the paper in Section X.

II. MOTIVATION

In the past we developed different approaches for the classification of colonic polyps (e.g. [4]–[7]). All these
methods have been developed and evaluated on an image database obtained with a zoom-endoscope with a
magnification factor of 150. The advantage of such endoscopes is obvious as they allow to inspect the colonic
mucosa in a magnified manner, thus uncovering the fine surface structure of the mucosa as well as small lesions.

The present work, however, is solely based on endoscopic images obtained with an HD endoscope. While such
an endoscope provides a roughly four times higher image resolution as compared to the previously used zoom-
endoscope, the currently used HD endoscope has no zooming capabilities.

Hence, the main question we try to answer in this work is whether it is feasible to employ SR algorithms in
order to increase the resolution of our HD images in order to reveal new details which may have got lost due to
the limited endoscope magnification inherent to the HD endoscope used (e.g. mucosal structures). To obtain an HR
image we use several LR images which are simply successive HD endoscopy video frames.

While it would be illusory to expect HR images generated by SR techniques, which are comparable to the ones
obtained with the zoom-endoscope, we at least hope to be able to increase the level of detail of HD images. For
this purpose we evaluate different well-known SR algorithms and measure the visual quality of the resulting HR
images using different image quality metrics.

Up to our knowledge currently there exists only one work which tries to tackle the SR problem with endoscopic
videos [8]. But the authors test their algorithm on LR images generated from a single video frame by shifting this
frame into different directions and downscaling the shifted frames. Our work, in contrast, aims at reconstructing a
HR image from several successive LR images which are not synthetically generated.

III. PRINCIPLES AND LIMITATIONS OF SR ALGORITHMS

Before evaluating SR algorithms on our images we give a brief introduction to the principles and limitations of
SR algorithms. This allows us to better understand and interpret the results we present later in Section IX. For a
more thorough overview and discussion of SR algorithms we refer the reader to the excellent review articles found
in [9]–[11].

A. Principles

Fig. 1 shows the observation model which is usually assumed in case of SR algorithms. The HR image is the
image which we aim to reconstruct from multiple LR images. It is the result of sampling a continuous scene into
a discrete image. The HR image is then subject to a warping, which might be caused for example by camera
movements or motion in the scene captured. Then, the image is usually degraded by some sort of blurring. This
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Figure 2. The reconstruction scheme common to reconstruction-based SR algorithms.

might be due to motion blur or optical blur inherent to the optics used. In addition, the image is influenced by
the point spread function (PSF) of the imaging sensor. The PSF describes how several HR pixels within a certain
neighborhood affect a LR pixel. This usually includes the spatial integration over the HR pixels as well as a defocus
component. For the sake of simplicity the PSF is usually modeled as a simple spatial averaging over the HR pixels.
Since the LR images have a lower resolution as compared to the HR image (limited by the sensor resolution), an
implicit downsampling is performed. This is also the point, where aliasing artifacts are generated. Finally, depending
on the sensor used, a certain amount of noise may be added to the LR image.

Multiple instances of such LR images are the basis for the reconstruction of the HR image. For this purpose SR
algorithms are usually based on the scheme shown in Fig. 2. It must be noted that, while in Fig. 2 the different
reconstruction stages are shown as separate steps, depending on the SR algorithm used, the steps may also be
carried out simultaneously. In this figure yk denotes an LR image, p the number of LR images available, and X
the HR image we aim to reconstruct. We notice that the reconstruction basically consists of three steps:
• Registration

During the registration step the relative motion of each LR image with respect to a reference image (often the
first LR image) is estimated with sub-pixel accuracy. As we notice from Fig. 1 this may include translation
and rotation (either local or global).

• Fusion
Once the relative motion has been estimated, the LR images are fused onto a HR grid. In other words, the
information from the different LR images is combined into an HR image, matching the resolution of the
desired HR image. Since the motion between the LR images is arbitrary the respective HR image will not
always match up with the regular HR grid. As a consequence non-uniform interpolation is necessary.

• Image restoration
Finally, to counteract blurring and noise degradations, usually an image restoration step is applied to the HR
image.

In order to successfully accomplish the SR reconstruction three important conditions must be met:
• Accurate motion estimation

The motion estimation, based on which the registration is performed, is a very crucial step in the reconstruction
process. Moreover, since the LR images are upscaled to the HR grid during the fusion step it is imperative
that the motion is estimated with sub-pixel accuracy.
But achieving high accuracy during the motion estimation highly depends on the type of motion present across
the LR images. If the image sequence exhibits global motion only (i.e. the motion is location-invariant and
therefore constant across an entire LR image) the respective estimation can be carried out fairly easy and
accurate. But as soon as the LR image sequence contains location-variant motion, the task of estimating the
respective motion field can get quite complicated (e.g. by using optical flow estimation).

• Sub-pixel shifts in LR images
Another important preliminary for SR algorithms to work is the need for sub-pixel shifts between LR images.
Fig. 3 schematically shows four different LR images. The LR image pixels denoted by the filled circles refer to
the reference image all other LR images are registered to. If two LR images are shifted by integer-shifts these
images are basically the same and contain the same information (except for border pixels). As a consequence
an SR algorithm will not be able to recover additional information from such two frames (illustrated in Fig.
3 by the LR images made of the pixels shown as circles and diamonds, respectively).

• Aliasing in LR images
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Figure 3. The difference between sub-pixel shifts and integer-shifts between a reference LR image (denoted by the filled circles) and three
additional, differently shifted LR images (denoted by the triangles, the squares, and the diamonds).
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Figure 4. Illustration of aliasing artifacts necessary in order to make SR algorithms work. (a) an example image, (b)-(e) a region of the
example image (denoted by a red square in (a)) after applying a blur, followed by a single pixel shift and a downscaling by a factor of four.

In order to obtain new high-frequency details for the reconstruction of the HR image we also need aliasing
artifacts within the LR images. Such artifacts arise when a signal (i.e. the continuous scene, which is considered
to be band-limited) is sampled below the Nyquist rate. This usually happens during the undersampling of the
scene due to a limited sensor resolution.
While usually such artifacts are unwanted in signal processing, for SR reconstruction they are necessary in
order to be able to obtain new image details by combining different LR images.
An example for aliasing artifacts is shown in Fig. 4. In Fig. 4(a) a test image is shown. This image is
translated to the right, to the bottom right, or down by one pixel, followed by a blur (simulating the PSF)
and a downsampling by a factor of four. The resulting image regions (simulated LR images) for the squared
region shown in Fig. 4(a) are shown in figures 4(c)-(e). Figure 4(b) also shows a blurred and downsampled
version of the squared region shown in Figure 4(a), but without any shift. The shifts by one pixel and the
downsampling by a factor of four correspond to sub-pixel shifts of 0.25 pixels in the LR images.
From figures 4(b)-(e) we notice slight differences which are the result of aliasing.
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IV. MOTION ESTIMATION

As already indicated in Section III, an accurate motion estimation is a crucial part of the SR reconstruction
process. This especially accounts to the endoscopic images used throughout our experiments. Since we are facing
highly complex motion patterns (e.g. position-variant transformations and parallax effects) simple motion models
(e.g. perspective projections or affine transformations) are not sufficient to describe the motion between successive
HD endoscopy video frames.

As a consequence we decided to use an optical flow method. While being more complex these methods are also
more versatile when it comes to the estimation of arbitrary complex motion between images. This is mainly due
to the fact that optical flow methods allow to estimate local motion, while the aforementioned motion estimation
methods usually assume a global motion.

Nevertheless, to be able to compare the HR reconstruction quality with simpler motion models, we also evaluate
a model estimation considering a global shift and rotation only.

A. Global Shift and Rotation Estimation

In order to obtain an estimate for global motion which is assumed to be planar and parallel to the image plane,
we use the motion estimation proposed in [12]. First, this method estimates the global rotation by investigating
the correlation between the Fourier amplitudes of two images I1 and I2. Then, image I2 is rotated such that it is
aligned to the reference image I1 with respect to the rotation. Once this is done, the horizontal and vertical shifts
are estimated by utilizing the Fourier shifting property.

The rotation between two images I1 and I2 is estimated by investigating the correlation between the amplitudes
of the respective Fourier-transformed images Î1 and Î2. Since shifts in the spatial domain only affect the phase
angles of the Fourier-transformed images, the rotation can be estimated without knowing the actual shifts between
the images. But before performing motion estimation, we multiply the LR images with a Tukey window to make
the images circularly symmetric and thus obtain a more robust motion estimate.

In order to estimate the rotation, the mean of amplitudes is computed for angular slices of the frequency spectrum.
Since the images are discrete we can write the mean within such a slice as:

M(α, Î) =
1

N

R∑

r=r0

α+∆ω/2∑

θ=α−∆ω/2

|Î(r, θ)|, (1)

where R = min(Sx/2, Sy/2) denotes the image radius with Sx and Sy being the width and height of the images,
respectively. N is the number of coefficients within a slice, ∆ω denotes the angular width of an angular slice,
measured in degrees (10◦ degrees in our experiments), and r0 denotes a starting radius greater zero. Such a starting
radius is used since within the low-frequency region the values are sampled in a very coarse manner. In addition,
the low frequencies usually have rather high amplitudes, which would have a biasing effect on the mean.

By computing M(α, Î) for each angular slice, we obtain a sequence containing the mean of amplitudes for each
slice:

M(Î) =
(
M(a∆α, Î)

)(360/∆α)−1

a=0
, (2)

where ∆α denotes the angular step between successive slices (i.e. the reciprocal of 360/∆α equals the number of
slices) measured in degrees (0.1◦ degrees in our experiments). It must be noted, that, since in our case ∆α < ∆ω,
it follows that the angular slices are overlapping.

Once M(Î) has been computed for Î1 and Î2, the rotation angle (in degrees) between the images is estimated
by

R(Î1, Î2) = ∆α argmax
s∈0,...,(360/∆α)−1

corr(M(Î1), circshift(M(Î2), s)), (3)

where corr(·, ·) and circshift(·, ·) denote the correlation and a circular shift operation, respectively. Having estimated
R(Î1, Î2), I2 is rotated to cancel out the rotation.

To estimate the horizontal and vertical shifts between I1 and I2 the Fourier shifting property is exploited. By
denoting the horizontal shift by ∆x and the vertical shift by ∆y, the shift between I1 and I2 can be expressed as

I1(x+ ∆x, y + ∆y) = I2(x, y). (4)
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After transforming the images to the Fourier domain, the shift between the images can be expressed in the Fourier
domain as (the Fourier shifting property)

Î2(u, v) = e2πi(u∆x+v∆y)Î1(u, v), (5)

which can be reformulated to
Î2(u, v)

Î1(u, v)
= e2πi(u∆x+v∆y). (6)

Now we compute the phase angle ∠(z) = atan2(im(z), re(z)) on both sides. By denoting Z(u, v) = Î2(u,v)

Î1(u,v)
we

obtain
∠(Z(u, v)) = atan2

(
im(e2πi(u∆x+v∆y)), re(e2πi(u∆x+v∆y))

)
. (7)

By using Euler’s formula we obtain

∠(Z(u, v)) = atan2 (sin(2π(u∆x+ v∆y)), cos(2π(u∆x+ v∆y))) , (8)

which corresponds to

∠(Z(u, v)) = atan

(
sin(2π(u∆x+ v∆y))

cos(2π(u∆x+ v∆y))

)
+ P

= atan(tan(2π(u∆x+ v∆y))) + P

= 2π(u∆x+ v∆y) + P,

with P = ±π or P = 0, depending on the sign of the sin(·) and cos(·) terms. By setting ∆x′ = 2π∆x and
∆y′ = 2π∆y, we obtain a system of linear equations with one equation

∠(Z(u, v)) = u∆x′ + v∆y′ + P (9)

for each (u, v). By employing, for example LSE, we can solve the system of linear equations and obtain estimates
for the values ∆x′ and ∆y′. From these we compute ∆x = Sx∆x′/2π and ∆y = Sy∆y

′/2π.
As indicated in [12], the motion estimation described in this section does not longer work as soon as the input

images are aliased. To resolve this issue the estimation of the motion must be restricted to a certain frequency band
such that eventual aliasing artifacts and high frequencies do not pose a problem (i.e. R in Equ. (1) and u and v in
Equ. (9) must be restricted accordingly). Especially an optimal choice for the range of u and v (width of centered
window in the Fourier-spectrum being aliasing-free) in Equ. (9) is crucial to an exact shift estimation. Since the
optimal values for this window width may change significantly depending on the LR images used, we test different
window widths (between 3 and 25) and use the one which produces the smallest root mean square (RMS) between
I1 and I2 (after applying the estimated shift to I2).

B. Optical Flow Motion Estimation

The optical flow estimation we use for our experiments is based on [13] which uses the work presented in [14],
[15] as the baseline model. The method works in a coarse-to-fine manner by constructing a Gauss-Laplace image
pyramid for the two images the motion should be estimated between. Then the motion is estimated between the
images at the coarsest level. The resulting estimate is used as a seed for the estimation at the next finer level. This
is repeated until the motion has been estimated at the finest level in the pyramids.

To obtain the motion estimate at a certain pyramid level l between two images I1 and I2 (these are considered to
show a scene at time instants t and t+ 1, respectively), usually several constraints are introduced in order to get a
stable and robust estimate (in the following we omit the pyramid level from our descriptions, since the computations
are the same for all pyramid levels).

First of all, it is assumed that the gray level of a pixel is not changed during motion (gray level constancy
assumption), that is

I1(x+ u1, y + v1) = I2(x, y), (10)
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where (x, y) denotes a pixel location within the images and u1 and v1 denote the flow field from I1 to I2. From
this assumption we are able to derive an energy functional, which has to be minimized during motion estimation:

Edata =
∑

x,y

|I1(x+ u1(x, y), y + v1(x, y))− I2(x, y)| (11)

In [13] a symmetry constraint is introduced which not only considers the flow field from I1 to I2 but also the flow
field into the other direction to obtain a more accurate motion estimate. As a consequence, based on Equ. (11), we
end up with

E
(1)
data =

∑

x,y

|I1(x+ u1(x, y), y + v1(x, y))− I2(x, y)| (12)

E
(2)
data =

∑

x,y

|I1(x, y)− I2(x+ u2(x, y), y + v2(x, y))| (13)

where E(1)
data and E

(2)
data denote the energy functionals for both flow directions and u2 and v2 denote the flow field

from I2 to I1.
In addition a smoothness term is used due to the assumption of a piecewise smooth flow field:

E
(1)
smooth =

∑

x,y

(|∇u1(x, y)|2 + |∇v1(x, y)|2)η (14)

E
(2)
smooth =

∑

x,y

(|∇u2(x, y)|2 + |∇v2(x, y)|2)η (15)

where η has a value between 0 and 1. These energy terms penalize strong variations within the flow fields, hence,
for the motion estimation these terms must be minimized.

Finally, the algorithm proposed in [13] uses an additional energy term, which is used to enforce symmetry
between the flow fields. To obtain the respective functional we assume the following:

u1(x, y) = −u2(x+ u1(x, y), y + v1(x, y)) → u1(x, y) + u2(x+ u1(x, y), y + v1(x, y)) = 0

v1(x, y) = −v2(x+ u1(x, y), y + v1(x, y)) → v1(x, y) + v2(x+ u1(x, y), y + v1(x, y)) = 0

Based on these assumptions we obtain the following energy functions, which again must be minimized to estimate
the correct motion fields:

E
(1)
symmetry =

∑

x,y

|u1(x, y) + u2(x+ u1(x, y), y + v1(x, y))|+ |v1(x, y) + v2(x+ u1(x, y), y + v1(x, y))|(16)

E
(2)
symmetry =

∑

x,y

|u1(x+ u2(x, y), y + v2(x, y)) + u2(x, y)|+ |v1(x+ u2(x, y), y + v2(x, y)) + v2(x, y)|(17)

Using Equs. (12) to (17) the objective function to be minimized is then formulated as:

E(u1, v1, u2, v2) =

2∑

i=1

E
(i)
data + αE

(i)
smooth + βE

(i)
symmetry, (18)

where α and β are parameters allowing the user to control the smoothness of the flow fields.
Although the algorithm presented in [13] is based on iterative reweighted least square (IRLS) to solve the

optimization problem, the actual implementation used1 is based on successive over-relaxation (SOR) since this
method is faster as compared to previously used ones.

V. ALGORITHMS EVALUATED

Once, the relative motion for all LR images has been estimated, we evaluate the approaches – described in the
following in more detail – in order to reconstruct HR images.

1MATLAB package available at: http://people.csail.mit.edu/celiu/OpticalFlow/ – downloaded on the 10th of July, 2012
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A. Iterative Back Projection (IBP)

The Iterative Back Projection method has been proposed by Irani and Peleg [16] and was chosen for our
experiments due to its simplicity and intuitive nature. Although being very simple, IBP yielded excellent results on
artificial image data.

Based on the observation model from Fig. 1 the formation process for an LR image yk based on an HR image
X can be formulated in matrix notation as [17]:

yk = DkBkWkX + η, (19)

where Dk denotes the decimation matrix used for downscaling, Bk is the blur matrix modeling the PSF and all other
types of blur, Wk represents the warp-matrix which represents the motion between X and yk before downscaling
(this matrix is constructed from the estimated motion information). η denotes a normally distributed additive noise.

Based on Equ. (19) we can formulate how to obtain an LR image ŷk based on an HR estimate X̂:

ŷk = DkBkWkX̂ (20)

In our implementation the initial estimate for X̂ = X̂0 is set to an upscaled version of y1. Based on Equ. (20) the
error ek between an yk and ŷk can be computed by

ek = yk − ŷk (21)

It must be noted that, by neglecting the noise component in Equ. (20), ek also includes the noise. Thus, by
minimizing the error ek we also minimize the noise in the HR estimate.

By using Equs. (20) and (21) the total squared error (based on the L2-norm) for an HR estimate X̂ over all yk
can therefore be written as

E(X̂) =
1

2

p∑

k=1

||ek||22 =
1

2

p∑

k=1

||yk −DkBkWkX̂||22 (22)

Thus, by solving the minimization problem

X̂ = argmin
X

p∑

k=1

||yk −DkBkWkX||22 (23)

we end up with the desired HR image.
In order to obtain update weights for each pixel of X̂ we compute the gradient of E with respect to X̂ . For a

single image this results in the gradient

Gk = W T
k B

T
k D

T
k (DkBkWkX̂ − yk). (24)

The operations W T
k , BT

k , and DT
k denote the inverse warp, a sharpening, and an upscaling, respectively.

The final values for the pixel-wise HR estimate updates are then obtained by taking the sum over all Gk in a
pixel-by-pixel fashion. Simply put, the update weight for a pixel (x, y) in X̂ is the sum over all Gk at position
(x, y). This can be formulated as:

∇E(X̂) =

p∑

k=1

Gk (25)

The new HR estimate X̂n+1 is then computed using steepest descent minimization:

X̂n+1 = X̂n + λ∇E(X̂n), (26)

where λ is a factor affecting the convergence speed of the iterative process.
The full iteration step can be summarized into the following equation:

X̂n+1 = X̂n + λ

p∑

k=1

W T
k B

T
k D

T
k (DkBkWkX̂

n − yk) (27)
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B. Modified IBP (ROBZ)

In [18] the authors propose a modification of the IBP approach. Instead of summing up the single gradient images
Gk, they propose to compute a scaled pixel-wise median to obtain the update weight for each pixel. Thus, Equ.
(25) is changed to

∇E(X̂) = pmedian(Gk)
p
k=1, (28)

where the operator median(Gk)
p
k=1 denotes the pixel-wise median over all Gk.

By changing the IBP algorithm this way, outlier pixels are removed. Such outliers might arise for example due
to an inaccurate motion estimation.

C. Regularized Super-resolution (RSR)

The regularized super-resolution approach evaluated was proposed by Farsiu et al. [19]. Since basically the SR
reconstruction problem is an ill-posed one [20], regularized approaches aim at finding the desired HR image in the
space of possible solutions by imposing one or more constraints on the SR reconstruction.

The algorithm proposed in [19] is in some way similar to the IBP method described in Section V-A. Similar
to Equ. (23), the RSR approach also minimizes the error between an observed LR image yk and a simulated LR
image ŷk. But instead of the L2-norm cost function used in Equ. (23) Farsiu et al. use the L1-norm. Thus, the
starting point for the RSR method is the following equation:

X̂ = argmin
X

p∑

k=1

||yk −DkBkWkX||1 (29)

To compensate for the ill-posedness nature of SR reconstruction problems, an additional regularization constraint
is introduced. This regularization usually contains prior information about the desired HR image solution (e.g.
smoothness or preserving edges). The minimization problem then becomes

X̂ = argmin
X

[
p∑

k=1

||yk −DkBkWkX||1 + λΦ(X)

]
, (30)

where Φ(·) is the regularization cost function and λ is the regularization parameter, allowing to weight the
regularization constraint against the similarity cost (i.e. the first term). The regularization function used in [19],
termed as bilateral total variation (BTV), is inspired by the total variation (TV) criterion. Based on the L1 norm on
the gradient magnitude, the TV criterion penalizes the total variation within an image. The BTV function follows
a similar principle and looks like

ΦBTV(X) =

P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m≥0

α|m|+|l|||X − SlxSmy X||1, (31)

where P specifies the size of the image area which is considered for the computation of the criterion. The matrices Slx
and Smy shift the image X by l and m pixels horizontally and vertically, respectively. The parameter α (0 < α < 1)
controls the spatial decaying effect on the summation of the regularization terms.

When substituting Equ. (31) into Equ. (30), we obtain the solution of the SR problem by minimizing

X̂ = argmin
X




p∑

k=1

||yk −DkBkWkX||1 + λ

P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m≥0

α|m|+|l|||X − SlxSmy X||1



. (32)
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To solve Equ. (32) steepest descent is used. For our experiments the initial estimate for X̂ = X̂0 is set to the
result of the Shift-and-Add method (see Section V-E). The full iteration step used to compute X̂n+1 is then

X̂n+1 = X̂n − β




p∑

k=1

W T
k B

T
k D

T
k Λ(DkBkWkX̂

n − yk) + λ

P∑

l=−P

P∑

m=0︸ ︷︷ ︸
l+m≥0

α|m|+|l|[I − S−my S−lx ]Λ(X̂n − SlxSmy X̂n)



,

(33)
where Λ(·) denotes the sign function.

Based on this iterative procedure, Farsiu et al. propose additional improvements which make the algorithm very
fast by avoiding decimation and warping during the iterations. For details on these optimizations we refer the reader
to [19]. The implementation used for this work is based on Equ. (33) and also allows to use optical flow motion
estimation.

D. Projection Onto Convex Sets (POCS)

The idea of Projection onto convex sets was introduced to image processing by the work in [21]. For POCS it
is assumed that all images X , represented by one-dimensional vectors, are elements of a Hilbert space H . The
projection PX onto a convex set C ⊂ H is then defined as

||X − PX|| = argmin
x∈C

||X − x|| ∀X ∈ H. (34)

A set C is said to be convex if it has the following property:

∀X1, X2 ∈ C : X3 ∈ C with X3 = λX1 + (1− λ)X2 ∀λ ∈ [0, 1] (35)

We now assume that we have m closed convex sets Ci, i = 1, . . . ,m and the projection operator on Ci is denoted
by Pi. It has been shown that the iteration

X̂n+1 = PmPm−1 . . . P1X̂
n (36)

will converge to a point X̂∗ inside C0 , ∩mi=1Ci for an arbitrary initial image X̂0. However, while convergence is
assured (as long as C0 is not the empty set), the solution X̂∗ is not necessarily unique.

The key idea of POCS-based SR algorithms is to express every piece of prior knowledge about the solution as
a constraint in image space H . More specifically, the solution is constrained by convex sets which, according to
the prior knowledge available, impose restrictions on an HR estimate in order to be a valid one. Based on such an
HR estimate X̂n we then obtain a new estimate X̂n+1 by projecting X̂n onto the convex sets according to Equ.
(36). Since X̂n+1 lies within C0 it is assured that the new estimate satisfies all constraints imposed by the convex
sets. Hence, X̂n+1 is one possible solution to the reconstruction problem.

Before the iterative SR reconstruction process can be started, two important steps are required: first, the closed
convex sets, constraining the HR solution, must be defined. Then, based on the convex sets, the projection operators
need to be derived from the definitions of the Ci’s.

Throughout literature several different constraint sets have been proposed (e.g. [17], [22]). In the following we
list some convex set constraints which are frequently incorporated into SR methods or at least may be useful for
such algorithms (along with the respective projection operators):
• Amplitude constraint

This constraint simply limits pixel values within images in the respective convex set to certain predefined
bounds:

CA = {X : Bmin
p ≤ Xp ≤ Bmax

p ,∀p = 1, . . . ,M}, (37)

where M denotes the number of pixels in X and Bmin
p and Bmax

p denote the lower and upper bound for
the p-th pixel, respectively. This definition uses separate bounds for each pixel and thus allows to impose
spatially-dependent limits on pixel values.
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The projection of an image X onto CA is then defined as

X ′p = PAXp =





Bmin
p , Xp < Bmin

p

Xp, Bmax
p ≤ Xp ≤ Bmax

p

Bmax
p , Xp > Bmax

p

, (38)

where X ′p denotes the p-th pixel value within the projection of X .
• Non-negativity constraint

The non-negativity constraint simply prohibits pixel values below 0 and can thus be regarded as a special case
of the amplitude constraint (with Bmin

p = 0 and Bmax
p = ∞ for all p = 1, . . . ,M ). The respective convex set

can be defined as
CN = {X : 0 ≤ Xp,∀p = 1, . . . ,M}, (39)

with the respective projection

X ′p = PNXp =

{
0, Xp < 0
Xp, Xp ≥ 0

. (40)

• Energy constraint
The energy constraint is used to limit the energy in an image to a maximum permitted energy level:

CE = {X : ||X||2 ≤ E}, (41)

where E is the maximum allowed energy within an image X . One possibility for the respective projection is
then

X ′p = PEXp =

{
Xp, ||X||2 ≤ E√
E/||X||2Xp, ||X||2 > E

. (42)

• Data consistency constraint
This constraint is a very important one in SR algorithms since it measures the consistency between observed
LR images and a simulated LR image. In its most general form the respective convex set can be formulated
as

CC = {X : ||X − g|| ≤ εR}, (43)

where g denotes some reference image and εR denotes the maximum distance allowed between X and g. One
possible projection for this convex set is:

X ′ = PCX =

{
X, ||X − g|| ≤ εR
X −∆C(X − g), ||X − g|| > εR

(44)

where ∆C denotes a factor, specifying the correction strength.
In terms of the SR terminology the convex set for the k-th LR image can be formulated as

CkC = {X : ||DkBkWkX − yk|| ≤ εR}, (45)

with the following projection:

X ′ = P kCX =

{
X, ||DkBkWkX − yk|| ≤ εR
X +W T

k B
T
k D

T
k (∆C(yk −DkBkWkX)) , ||DkBkWkX − yk|| > εR

. (46)

In our implementation of the POCS approach [23] we use the data consistency constraint and the amplitude
constraint. Since our consistency constraint correction step also involves a sharpening of the HR estimate (induced
by BT

k in Equ. (46)), we also employ a correction amplitude constraint, which prevents over-sharpening:

CkCA = {X : ||X −W T
k D

T
k yk|| ≤ εCA}, (47)

where εCA denotes a parameter which controls the over-sharpening correction. This constraint simply states that
the pixel-wise differences between the current estimate X and the LR images (after upscaling and inverse warping)
must not exceed a certain limit. In fact, this constraint is a special case of the amplitude constraint with pixel-wise
bounds which are based on the pixels of upscaled and warped LR images. The respective projection is

X ′ = P kCAX =

{
X, ||X −W T

k D
T
k yk|| ≤ εCA

X +
(
∆C(W T

k D
T
k yk −X)

)
, ||X −W T

k D
T
k yk|| > εCA

. (48)
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In our implementation the initial estimate X̂0 is set to an upscaled version of y1. In order to obtain a new HR
estimate X̂n+1, based on a current estimate X̂n, we successively apply all projections used onto each LR image.
This can be written as

X̂n+1 = P pAP
p
CAP

p
CP

p−1
A P p−1

CA P p−1
C · · ·P 1

AP
1
CAP

1
CX̂

n, (49)

where P k· denotes the respective projection onto the k-th LR image.
As we have seen, a clear advantage of POCS is the fact that prior knowledge can formulated conveniently in terms

of convex sets and the associated projections. While it may not always be trivial to find the Pi’s, it is usually easier
than finding a projection which immediately projects an arbitrary X onto the solution set C0. Moreover, POCS
is very intuitive since it allows to specify the constraints in the spatial domain, based on the observation model.
However, POCS has also the drawbacks of a rather slow convergence, a high computational cost, the non-uniqueness
of the solution, and strong dependence on the initial estimate.

E. Shift-and-Add (S&A)

The Shift-and-Add method is probably one of the simplest SR algorithms, originally proposed in [24]. We
nevertheless use this method for our experiments for comparison purposes.

Having estimated the motion, an initial HR estimate X̂0 is computed as the pixel-wise average of the LR images,
after those have been aligned properly (according to the motion estimate), upsampled, and interpolated. Using the
terminology from above, this can be expressed more formally as:

X̂0 =
1

p

p∑

k=1

W T
k D

T
k yk (50)

In order to cope with degradations (noise and blur) in X̂ and obtain the final HR estimate X̂ , this method applies a
deconvolution step to X̂0. For our experiments we use a regularized deconvolution [25], but any other deconvolution
method might be used too.

VI. TERMINATION OF THE ITERATIVE PROCESS

Since all SR algorithms evaluated (except for the Shift-and-Add algorithm) are iterative processes, we need to
define a stopping criterion for the iterations. One possibility would be to simply fix the number of iterations carried
out. But this approach has the drawback that it may be hard to find a number which works well for different kinds
of images. If the number of iterations is too high this may lead to severe over-sharpening in case of certain images.
If chosen too low, the resulting HR images may suffer from missing details.

Another possibility would be to measure the difference between a HR estimate X̂n+1 and its predecessor X̂n

and stop the iterative process as soon as the difference drops below a certain threshold. But again, it is not easy
to find a threshold which works well for different types of images. Choosing a wrong threshold value may lead to
the same problems as in case of a fixed iteration count.

For the aforementioned reasons we chose to use the adaptive termination criterion already used in [23]. Using
this criterion, the iterative process can be outlined as follows:

1) Carry out the first three iterations and keep track of the differences between X̂n and X̂n−1, where n denotes
the current iteration (starting at 1). The difference is measured by computing the root mean square:

∆n =

√√√√ 1

N

N∑

i=1

(
X̂n
i − X̂n−1

i

)2
(51)

2) Based on the differences for iterations two and three, we compute a threshold value εiter, which is used later
to decide upon termination of the iterative process:

εiter = κ|∆3 −∆2|, (52)

where κ is a multiplier which specifies how much changes we allow between two successive estimates to
consider a solution to have converged. In our experiments we choose κ = 0.05.
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3) Additional iterations are carried out as long as the following equation evaluates to 1:

crit(∆n,∆n−1) =

{
1, |∆n −∆n−1| ≥ εiter

0, |∆n −∆n−1| < εiter
(53)

In addition we terminate the iterative process as soon as for two successive iterations the difference values
are growing again.

Since the values of ∆n can vary significantly depending on the LR images used we do not compare these values
directly against a threshold. As a consequence we compute the differences of the differences (i.e. an approximate
first derivative of the differences) for the termination test in step 3. Since the value of ∆1 highly depends on the
initial HR estimate, we use the values ∆2 and ∆3 to compute the threshold εiter. The multiplier κ = 0.05 implies
that we consider the iterative process to have converged as soon as the difference of differences falls below 5%
of the difference between ∆2 and ∆3. If the difference values are growing again for two successive iterations we
assume that we already found a good HR estimate and stop the iterative process too.

VII. QUALITY ASSESSMENT FOR SR ALGORITHMS

In order to be able to compare the quality of the results produced by the SR algorithms evaluated, we need some
sort of metric which allows us to quantitatively measure the visual quality of the outcomes of the different SR
methods. Basically we distinguish between metrics which need a reference image (e.g. the PSNR) and those, which
are reference-free and hence do not rely on an reference image. Since the main focus of this work lies on applying
SR algorithms to endoscopic images, we restrict our comparison to reference-free metrics as we have no reference
images in case of that application scenario. The quality assessment algorithms used throughout our experiments
are2:
• Anistropic measure [26]

This method aims at measuring the entropy within an image for different directions. This is done by first
computing the discrete Pseudo-Wigner distribution for an image. Then, an approximate PDF is computed, for
which the pixel-wise Rény-entropy is computed. By repeating these computations for different directions and
taking the mean over all entropy values for each direction considered, an anisotropic entropy measure for an
image is obtained.

• Metric Q [27]
This metric measures sharpness and contrast caused by edges in an image. For this purpose Metric Q is based
on the coherence computed from a singular value decomposition of local gradient matrices in tiles of an image.
By summing up the product of the absolute value of the largest singular value and the coherence for all tiles,
a measure for anisotropy is obtained for the whole image.

• BRISQUE [28]
This image quality measure is a so-called natural scene statistics-based approach. In this type of methods,
certain features from a set of different images are extracted (training). Then a statistical distribution is fitted
to the extracted data. In case of BRISQUE the generalized Gaussian distribution (GGD) and an asymmetric
GGD (AGGD) are used. The features used operate in the spatial domain and are computed as the normalized
luminance values in an image. Since it has been observed that these values exhibit Gaussian characteristics,
the aforementioned distributions are fitted to the values to obtain descriptive model parameters. In addition
also inter-pixel relationships are investigated in order to detect distortions (e.g. noise or blur) within an image.
Once the features for training images have been obtained, support vector regression (ε-SVR) is used to learn
a mapping from feature space to quality scores. The learned model is then used to predict the quality score
for an image with an unknown quality.

• DIIVINE [29]
The DIIVINE metric is very similar to BRISQUE. But instead of spatial features, this approach relies on
statistical features computed in the wavelet domain. In addition, DIIVINE uses a two-stage approach for the
quality assessment. In the first stage, distortions are identified, whereas in the second stage a quality score is
computed for each class of distortions. Since, however, we do not aim at computing scores for each type of
distortion, we modified the original implementation to perform a one-stage classification only (as done in case
of BRISQUE).

2For each metric evaluated we used the MATLAB code provided by the authors of the respective work as a code-basis.
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Table I
DETAILS ON OUR ARTIFICIAL LR IMAGE SETS USED.

Training (DIIVINE and BRISQUE) Validation (All metrics)
Name Color Dimensions Shift Rotation Name ID Color Dimensions Shift Rotation
Hill 7 256× 256 3 7 Airplane A1S 3 256× 256 3 7

7 256× 256 3 3 A1SR 3 256× 256 3 3

House 7 128× 128 3 7 Boat A2S 7 256× 256 3 7
7 128× 128 3 3 A2SR 7 256× 256 3 3

Lena 7 256× 256 3 7 Elaine A3S 7 256× 256 3 7
7 256× 256 3 3 A3SR 7 256× 256 3 3

Text 7 302× 198 3 7 Resolution Chart A4S 7 128× 128 3 7
7 302× 198 3 3 A4SR 7 128× 128 3 3

Table II
DETAILS ON THE NON-MEDICAL REAL-WORLD LR IMAGE SETS USED.

Training (DIIVINE and BRISQUE) Validation (All metrics)
Name Color Dimensions Name ID Color Dimensions
Bookcase 3 320× 240 Carphone R1 3 176× 144
Car 7 72× 121 City R2 3 352× 288
Foreman 1 3 352× 288 Container R3 3 352× 288
Foreman 2 3 352× 288 Garden R4 3 352× 288
Library 7 350× 286 Mobile R5 3 352× 288

VIII. EXPERIMENTAL SETUP

A. Evaluated Image Sets

For our experiments we evaluated the different SR algorithms on a variety of LR image sequences. These
sequences can be divided into artificial ones and real-world sequences. In case of the artificial sets we use well-
established test images, while in case of the real-world sequences we use widely used sequences as well as
endoscopic images. Two things common to all sequences are the number of LR images available for each sequence,
which has been fixed to eight for our experiments, and the upscaling factor to obtain the HR results, which has
been fixed to two for our experiments.

In Table I details on the 16 artificial LR image sets used are provided. We always started with a HR reference
image twice as high and wide as the LR images to generate these image sets. Based on the reference image we
then created eight LR frames according to the following procedure (see also the observation model in Fig. 1):

1) In case of the first frame we continue with step 4 since this LR frame serves as the reference frame for the
motion estimation. Hence, no motion must be applied.

2) Apply a circular shift (one pixel horizontally and two pixels and vertically, respectively) multiplied by the
frame index (starting at zero) to the image.

3) If enabled for the current image set, apply a counterclockwise rotation of 0.5◦ multiplied by the frame index
to the image.

4) Apply a PSF to the image (in our case a Gaussian kernel of size 3× 3 with σ = 1).
5) Skip every second pixel (horizontally and vertically) in order to obtain the final undersampled LR image.

As we notice, we created sequences exhibiting translational motion only and sequences also including rotation. This
allows us to assess how the different motion estimation algorithms and SR algorithms perform in case of different
motion types.

Table II provides details on the ten non-medical real-world sequences used. These sequences consist of the first
eight frames of different popular test sequences.

The medical videos used for the experiments have been acquired during colonoscopy sessions between the years
2011 and 2012 at the Department for Internal Medicine (St. Elisabeth Hospital, Vienna) using a HD colonoscope
(Pentax HiLINE HD+ 90i Colonoscope) with a video resolution of 1280× 1024. Since our SR algorithms all work
with images only, a sequence of eight consecutive frames was extracted from each video considered.

One problem, which quite frequently occurs in endoscopy videos, is a rapid movement of the tip of the endoscope,
resulting in severe motion blur. As a consequence we selected the frames in a way such that the displacement between
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Table III
DETAILS ON THE ENDOSCOPIC REAL-WORLD LR IMAGE SETS USED.

Training (DIIVINE and BRISQUE) Validation (All metrics)
Compressed Compressed

ID Color Dimensions Deblocked ID Color Dimensions Deblocked
E1 3 256× 256 7 E6 3 256× 256 7
E1D 3 256× 256 3 E6D 3 256× 256 3
E2 3 256× 256 7 E7 3 256× 256 7
E2D 3 256× 256 3 E7D 3 256× 256 3
E3 3 256× 256 7 E8 3 256× 256 7
E3D 3 256× 256 3 E8D 3 256× 256 3
E4 3 256× 256 7 E9 3 256× 256 7
E4D 3 256× 256 3 E9D 3 256× 256 3
E5 3 256× 256 7 E10 3 256× 256 7
E5D 3 256× 256 3 E10D 3 256× 256 3

Uncompressed Uncompressed
U3 3 256× 256 7 U1 3 256× 256 7

U2 3 256× 256 7

two successive frames is not too large. Nevertheless, the frames selected exhibit a fairly complex motion pattern
(perspective changes, zoom, translation, and rotation).

To reduce the computational demand for our methods we chose positions from which we manually extracted
256× 256-pixel patches which serve as LR image (the position remained the same in case of a single sequence).
Another issue, which might pose problems to the SR methods evaluated, are compression artifacts present in the
extracted frames. Hence, in order to assess whether these artifacts affect the image quality of the reconstructed
HR images, we also carry out experiments with sequences, after applying a DCT deblocking algorithm [30]. In
addition, we also carried out SR experiments with three uncompressed endoscopic video sequences (the IDs of
these sequences start with the letter “U”). Details on the medical image sequences used can be found in Table III.

Each of the image databases used has been tested with the SR algorithms presented in Section V. For each
combination of image database and SR algorithm we carried out experiments using the two different motion
estimation methods described in Section IV.

B. Quality Assessment

Since the luminance channel of an image captures details well enough, we restrict our quality assessment to this
channel. That is, prior to computing the quality scores, we convert our HR images to the CIELAB color space and
apply the metrics to the luminance channel only.

The anisotropic measure and Metric Q are both tile-based. Hence, we need to specify a size for the tiles to be
used. In accordance to the experiments in [26], [27] we chose a size of 8× 8 pixels for our experiments. Since the
values returned by the anisotropic measure are rather small, we multiplied these scores by 103 in order to enhance
the readability within the result tables.

In case of BRISQUE and DIIVINE the underlying SVR model needs to be trained. Therefore we created an
additional set of image sequences (also listed in Tables I, II, and III). These sequences have been created using the
same procedure as used for the validation images (already described above). A random subset of the images in the
training set (50%, including the HR images if available and a bicubic interpolation of the first LR frame of each
sequence) has then been rated by eight human raters. Based on these ratings, the differential mean opinion score
(DMOS) was computed (we use the median instead of the mean to be resistant against outlier ratings). The DMOS
values have then been used to train BRISQUE and DIIVINE. For all metrics evaluated a higher higher score means
a higher quality. In case of BRISQUE and DIIVINE the score is usually in the range between 0 and 100 (there
might be some outliers leaving this range).

IX. RESULTS

An overview of the scores obtained by the different quality metrics is given in Figs. 5 to 12. These plots show
the minimum and maximum quality scores for the different sequences among all SR methods evaluated (denoted
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Figure 5. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (Anisotropic measure, global shift and rotation estimation).

by the black dots). The black solid line shows the scores obtained for an upscaled version of the reference frame of
the respective sequence (upscaling factor of two, using bicubic interpolation). The green areas denote scores which
are higher as compared to the scores for upscaling with bicubic interpolation whereas the red area shows scores
below the bicubic interpolation scores.

What we immediately notice from Figs. 5 to 12 is that the anisotropic measure seems to produce rather high
scores for the SR results as compared to the bicubic interpolation (see Figs. 5 and 9). However, it does not seem
to make that much of a difference whether we use the simple global motion estimation or the more sophisticated
local optical flow method. Only in case of the endoscopic sequences it seems that using optical flow has the effect
that for almost all sequences the SR methods reach at least roughly the quality of the bicubic interpolation.

For all other metrics, the picture is quite different. In case of Metric Q (see Figs. 6 and 10) at least for the
artificial and the real-world sequences we on average have rather high scores as compared to the bicubic interpolation.
However, for the endoscopic sequences the SR methods seem to produce a lower quality. According to the Metric Q
scores, switching from a global motion estimation to the optical flow method lowers the quality of the SR results.
While this applies to all sequence types, this is especially noticeable in case of the scores for the endoscopic
sequences.

In case of BRISQUE and DIIVINE we have a rather mixed picture (see Figs. 7 and 11 and Figs. 8 and 12).
In case of the artificial sequences both metrics sometimes show SR result scores above and sometimes below the
bicubic interpolation. This is quite similar in case of the real-world sequences. For the endoscopic sequences both
metrics show dramatically low scores as compared to the score for the interpolated reference image. However, the
scores get noticeably higher when using optical flow instead of a global motion estimation. While this applies to
all sequence types, this can be observed especially in case of the endoscopic sequences.

A compact view on the results is provided in Table IV. This table indicates how often a SR method was able
to yield a higher score as compared to the result of upsampling with bicubic interpolation. From this table we
notice that, according to the anisotropic measure, the SR methods almost always deliver a higher quality score
as compared to the bicubic score in case of the artificial and the real-world sequences. In case of the endoscopic
sequences only IBP, ROBZ, and POCS are able to deliver higher scores in most cases. According to the remaining
metrics, the overall picture is quite different. According to Metric Q, only in case of the artificial sequences in
conjunction with the global motion estimation the visual quality seems to have been improved by SR methods.
For all other quality metrics there are no dominant SR methods, which are consistently able to improve the visual
quality by applying SR techniques. But we notice that, except for Metric Q, using optical flow seems to raise the
reconstruction quality above the bicubic interpolation for endoscopic sequences at least in some cases.

Detailed scores are given in Tables V to VIII. In these tables the coloring used is the same as in the overview
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Figure 6. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (Metric Q, global shift and rotation estimation).

A
1S

A
1S

R

A
2S

A
2S

R

A
3S

A
3S

R

A
4S

A
4S

R R
1

R
2

R
3

R
4

R
5

E
6

E
6D E
7

E
7D E
8

E
8D E
9

E
9D E
10

E
10

D U
1

U
2

Artificial Real-world Endoscopy

-10

0

10

20

30

40

50

60

70

Figure 7. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (BRISQUE, global shift and rotation estimation).

plots, i.e. scores shown in red (green) are lower (higher) as compared to the scores for the result of upscaling
the reference image, using bicubic interpolation. From Table V we notice that in most cases the SR methods are
able to yield a higher quality score as compared to the score of bicubic interpolation. While for the real-world
sequences this is always the case, there are some scores which are lower as compared to the bicubic score (in
case of the endoscopic sequences noticeably more than in case of the artificial sequences). In case of Metric Q the
overall picture changes significantly (see Table VI). While in case of the artificial and real-world sequences there
are still quite a few improvements, the scores for the endoscopic sequences are in most cases below the bicubic
scores. When using optical flow all methods seem to fail to produce a SR result of higher quality than the bicubic
interpolation. In case of BRISQUE and DIIVINE (see Tables VII and VIII) things get even worse. While in case
of the artificial and real-world sequences the number of scores above the bicubic score again dropped, there are
almost no more improvements in case of the endoscopic images.

A different view on the results from Tables V to VIII is given in Table IX. This table indicates how often a
certain SR method delivers the highest score among all SR methods, grouped by the quality metrics. From this
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Figure 8. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (DIIVINE, global shift and rotation estimation).
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Figure 9. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (Anisotropic measure, optical flow estimation).

table we notice that when using the global motion estimation, there is a high disagreement between the different
metrics on the visual quality of the SR results. The only agreement between the different metrics seems to be
that the POCS method delivers the highest scores among all methods in rare cases only. When using optical flow
instead, there is still a certain disagreement, but in this case all metrics agree that in most cases either S&A, IBP,
or RSR deliver the highest visual quality.

A. Effects of Deblocking

Comparing the scores for the deblocked endoscopic sequences with the scores for the non-deblocked sequences,
we notice that, according to the anisotropic measure, the visual quality of the SR results is always lower when
deblocking is applied (see Table V). Metric Q and DIIVINE behave rather similar, as we can see from Tables VI
and VIII. In both cases there is no clear tendency on whether applying deblocking has a positive or negative impact
on the quality of the SR results. Nevertheless, for both metrics there are slightly more improvements in case of the
optical flow estimation as compared to the global motion estimation. From Table VII we notice, that, compared to
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Figure 10. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (Metric Q, optical flow estimation).
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Figure 11. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (BRISQUE, optical flow estimation).

all other metrics, BRISQUE shows the highest number of quality score improvements after deblocking no matter
which motion estimation method we use.

B. Uncompressed Endoscopic Sequences

When comparing the scores for the uncompressed sequences against the scores for the other endoscopic sequences,
we notice that the scores are not clearly higher (this applies to all combinations of quality metrics and motion
estimation methods). However, considering the fact that we had only two sequences at hand for the evaluation
process, a solid statement about whether uncompressed sequences deliver SR results of higher quality or not is not
possible. In addition, the uncompressed sequences are not just uncompressed versions of other sequences in the
dataset, but different sequences. This makes a comparison with the compressed sequences even more difficult.

C. Shift vs. Shift and Rotation in Artificial Sequences

As already indicated in Section VIII-A, we used two different types of artificially generated image sequences
for our experiments. Ones which exhibit translational motion only and ones which also exhibit rotation between
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Figure 12. Minimum and maximum quality scores for the different sequences among all SR methods compared to the scores for a bicubic
interpolation (DIIVINE, optical flow estimation).

Table IV
NUMBER OF CASES IN WHICH EACH OF THE SR METHODS DELIVERS A HIGHER SCORE AS COMPARED TO BICUBIC INTERPOLATION.

Vandewalle Optical flow
Metric Sequence type (count) S&A IBP RSR ROBZ POCS S&A IBP RSR ROBZ POCS

Anisotropic
Artificial (8) 7 8 7 8 6 8 8 7 8 8
Real-world (5) 5 5 5 5 5 5 5 5 5 5
Endoscopic (12) 2 12 0 12 6 2 12 5 12 12

Metric Q
Artificial (8) 6 7 6 6 6 6 3 7 3 3
Real-world (5) 3 5 3 4 4 2 2 1 2 3
Endoscopic (12) 0 7 0 4 4 0 0 0 0 0

BRISQUE
Artificial (8) 1 2 3 4 2 3 6 5 6 7
Real-world (5) 1 3 1 2 2 1 2 0 2 2
Endoscopic (12) 0 0 0 0 0 0 0 1 0 0

DIIVINE
Artificial (8) 4 3 4 2 4 1 3 3 3 3
Real-world (5) 2 1 3 1 3 3 2 2 2 2
Endoscopic (12) 0 0 0 0 0 0 1 2 1 0

the image sequence frames. From Table VI we notice that in case of Metric Q there is no clear tendency for
the scores between shift-only sequences and sequences with rotation incorporated into the LR images generation
process. In case of the anisotropic measure (see Table V) the scores for sequences with rotation are always lower
as compared to the shift-only sequences. This is a bit more pronounced in case of the optical flow estimation. In
case of BRISQUE and DIIVINE the sequences with rotation almost always produce higher scores as compared to
the shift-only sequences (see Tables VII and VIII).

When comparing the scores for each metric between the two motion estimation methods evaluated there is no
really big difference observable. This is quite surprising since one could expect higher scores in case of the global
motion estimation since the LR sequence generation process perfectly corresponds to a global motion. In addition,
the optical flow method estimates local motion which is prone to errors in case of a global motion in the data.

X. CONCLUSION

From the results in Section IX we notice that in case of the artificial and real-world sequences there are indeed
SR methods which are able to yield a higher quality in case of the SR reconstruction as compared to the simple
bicubic interpolation. But we also notice that this highly depends on the quality metric used. Especially in case of
the endoscopic sequences there is a high disagreement between the metrics.

While the SR algorithms seem to work quite well for artificial and non-medical real-world sequences, the overall
picture is that they are not working with our endoscopic sequences. One might speculate that one possible reason for
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Table V
DETAILED SCORES OBTAINED WITH THE ANISOTROPIC METRIC.

Vandewalle Optical flow
ID INT HR S&A IBP RSR ROBZ POCS S&A IBP RSR ROBZ POCS
A1S 0.78 1.35 5.62 4.41 5.51 4.26 2.94 7.70 2.15 6.61 2.13 2.08
A1SR 0.78 1.35 2.63 2.96 2.62 2.94 1.95 1.92 2.06 1.60 1.96 1.97
A2S 1.60 3.55 6.90 4.67 6.61 4.55 3.88 10.45 3.65 9.21 3.58 3.52
A2SR 1.60 3.55 3.80 4.74 3.82 4.52 3.81 3.75 3.98 3.50 3.82 3.75
A3S 0.46 0.49 3.51 2.01 3.31 1.22 1.94 4.83 0.94 4.03 0.94 0.88
A3SR 0.46 0.49 2.34 1.84 2.21 1.82 1.16 1.51 1.04 1.39 0.96 1.02
A4S 12.59 17.13 15.41 17.02 15.64 18.97 12.15 19.53 20.98 16.23 20.67 19.39
A4SR 12.59 17.13 11.74 14.81 12.54 15.68 10.55 14.16 20.57 11.58 19.25 17.25
R1 2.58 4.48 9.03 4.99 8.33 7.63 5.54 6.18 4.67 5.98 6.15
R2 1.06 1.99 5.49 1.79 6.06 4.37 2.16 3.12 1.98 2.99 3.06
R3 3.96 10.70 7.51 9.89 6.83 7.50 10.67 6.72 9.77 6.70 6.77
R4 5.92 6.21 10.95 6.51 9.45 7.67 8.63 10.97 6.98 10.30 10.33
R5 3.78 4.79 9.56 4.78 10.12 6.46 4.99 6.63 3.98 6.30 5.58
E6 7.50 3.96 11.47 3.73 12.31 7.30 6.87 10.54 11.78 9.41 10.74
E6D 6.61 3.26 10.13 3.21 11.03 6.65 6.26 9.28 11.86 8.41 9.85
E7 1.40 1.34 4.20 1.05 4.21 1.67 1.58 2.39 1.52 2.24 2.22
E7D 1.29 1.20 3.60 0.96 3.61 1.56 1.44 2.11 1.41 2.05 2.00
E8 1.01 1.11 1.94 0.79 1.71 0.92 0.77 1.89 0.94 1.67 1.75
E8D 0.88 1.25 1.78 0.88 1.51 0.89 0.68 1.61 0.79 1.45 1.52
E9 4.02 2.11 7.88 1.71 9.45 2.95 3.20 6.82 3.63 5.99 7.04
E9D 3.47 1.77 6.32 1.42 7.65 2.55 2.95 5.96 3.26 5.17 5.92
E10 9.02 3.70 10.75 3.06 11.43 3.89 8.66 12.48 8.33 11.81 11.95
E10D 8.57 3.03 10.56 2.51 10.72 3.65 8.31 12.09 8.02 11.15 11.44
U1 1.81 1.38 2.88 1.16 3.00 2.53 1.28 3.08 1.79 2.72 3.09
U2 4.75 2.04 8.36 1.72 9.58 6.08 3.95 10.58 5.75 8.06 12.75

Table VI
DETAILED SCORES OBTAINED WITH METRIC Q.

Vandewalle Optical flow
ID INT HR S&A IBP RSR ROBZ POCS S&A IBP RSR ROBZ POCS
A1S 20.31 24.71 22.89 31.58 23.61 29.58 27.09 27.14 13.93 21.80 13.81 14.25
A1SR 20.31 24.71 25.30 27.90 26.42 24.30 26.26 21.80 18.12 27.61 17.55 19.39
A2S 23.25 27.83 23.72 33.20 25.21 33.63 29.03 31.99 23.11 26.35 22.97 23.09
A2SR 23.25 27.83 25.33 34.12 28.15 32.38 29.04 26.16 24.70 24.58 24.10 25.22
A3S 18.38 10.95 14.30 18.17 15.61 12.62 16.59 16.74 8.37 12.47 8.33 8.93
A3SR 18.38 10.95 16.53 20.33 17.87 17.74 16.25 14.98 9.92 21.81 9.88 11.09
A4S 80.15 128.05 99.30 95.25 104.23 121.97 92.53 94.48 91.87 88.50 90.97 94.54
A4SR 80.15 128.05 87.66 85.69 89.51 96.62 87.62 101.49 99.18 90.11 91.13 107.35
R1 36.41 48.71 46.08 53.50 42.35 43.48 31.51 34.85 30.08 32.90 34.85
R2 23.13 13.67 34.23 16.62 31.81 29.63 24.08 25.39 21.46 24.41 24.46
R3 27.22 44.60 30.18 39.98 27.90 30.03 37.70 25.63 33.38 24.96 26.07
R4 27.08 29.76 30.88 32.93 21.58 28.04 26.60 30.59 20.33 27.11 30.98
R5 48.83 30.92 51.52 33.63 59.00 38.69 46.54 44.22 38.20 41.79 49.17
E6 24.29 12.55 21.42 13.20 21.47 14.00 14.75 11.88 12.19 9.86 10.92
E6D 24.14 12.15 19.72 12.83 17.47 13.24 15.21 11.94 13.17 9.87 10.99
E7 18.66 16.31 28.96 15.65 19.88 18.67 15.44 13.99 11.81 11.22 13.76
E7D 17.99 14.95 28.19 14.72 20.21 18.91 15.03 12.73 11.27 10.25 12.32
E8 17.05 12.41 16.22 12.55 8.56 11.49 7.88 9.45 5.85 6.40 8.89
E8D 15.96 13.88 18.04 13.87 9.94 13.07 7.90 9.20 6.46 6.42 8.79
E9 20.87 13.59 23.30 13.48 19.03 13.06 10.27 10.41 7.46 8.40 9.66
E9D 20.08 12.13 20.89 12.29 16.10 13.36 10.91 11.21 8.01 8.45 10.60
E10 37.75 14.74 28.69 15.74 24.27 14.72 25.34 21.91 20.62 17.22 19.77
E10D 37.10 13.77 32.64 14.75 25.46 15.77 25.46 21.56 20.88 17.47 19.90
U1 18.05 14.67 29.56 13.93 23.30 26.17 7.82 13.68 3.90 8.58 13.07
U2 22.68 13.90 35.12 13.01 28.15 27.37 10.07 17.32 6.06 12.09 14.96

this are the compression artifacts present in our sequences which cancel out important high frequency information
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Table VII
DETAILED SCORES OBTAINED WITH THE BRISQUE METRIC.

Vandewalle Optical flow
ID INT HR S&A IBP RSR ROBZ POCS S&A IBP RSR ROBZ POCS
A1S 47.08 62.12 29.90 26.45 40.23 38.01 27.79 7.22 55.29 17.94 55.70 50.24
A1SR 47.08 62.12 42.49 46.82 49.39 63.19 40.48 61.66 60.08 66.88 58.74 52.61
A2S 48.57 71.41 43.68 53.22 53.45 61.85 53.17 36.74 58.85 34.27 59.01 61.96
A2SR 48.57 71.41 57.72 54.93 58.91 72.36 49.69 85.36 66.03 112.48 66.23 67.87
A3S 45.93 90.60 20.82 35.29 23.65 44.57 29.44 1.94 43.80 5.05 43.96 46.29
A3SR 45.93 90.60 26.27 35.47 30.86 55.35 28.89 61.61 61.34 78.54 60.64 55.86
A4S 36.55 29.10 -0.13 4.96 -2.41 0.24 18.68 5.92 32.80 39.22 31.97 30.86
A4SR 36.55 29.10 9.46 6.71 6.39 5.19 21.07 28.42 37.73 90.14 37.07 40.07
R1 43.12 31.78 29.40 36.41 34.96 33.91 38.75 36.89 30.75 38.00 36.17
R2 42.10 43.17 43.19 52.25 48.25 42.41 37.02 50.26 24.23 49.95 48.94
R3 40.32 34.70 54.35 36.99 52.68 54.06 44.97 56.26 36.15 57.58 54.75
R4 37.76 28.64 25.49 33.02 23.24 29.26 29.57 30.00 12.54 29.36 31.91
R5 39.34 31.68 40.42 31.89 38.88 35.49 28.58 35.11 6.64 32.18 32.09
E6 48.80 22.98 19.86 23.37 16.75 21.30 43.46 27.39 30.28 31.74 27.47
E6D 46.85 31.08 25.01 29.77 26.71 29.84 40.75 26.98 28.79 31.95 26.79
E7 50.53 24.15 14.72 21.53 15.07 14.25 46.19 19.45 36.29 26.44 19.29
E7D 48.55 23.67 12.94 19.68 16.02 17.89 48.01 23.57 37.09 31.90 22.71
E8 49.01 28.02 18.21 27.81 9.61 22.32 39.16 24.03 39.15 26.62 23.46
E8D 48.68 28.54 17.15 30.31 21.55 23.25 39.13 24.75 39.86 32.37 24.67
E9 48.36 17.39 11.96 18.04 15.55 19.69 41.49 24.50 45.12 32.61 25.69
E9D 47.05 25.90 10.77 23.49 21.60 24.69 41.35 23.63 50.00 32.86 26.79
E10 51.47 25.21 17.86 21.64 13.48 25.48 49.21 23.60 35.26 26.68 22.40
E10D 51.46 26.73 18.33 23.99 16.27 27.78 49.57 25.98 36.00 30.81 24.90
U1 51.46 23.04 14.92 25.02 18.54 11.30 34.99 22.17 27.28 26.04 23.24
U2 48.45 16.58 17.21 13.49 21.64 8.26 30.83 24.27 29.24 24.55 32.47

Table VIII
DETAILED SCORES OBTAINED WITH THE DIIVINE METRIC.

Vandewalle Optical flow
ID INT HR S&A IBP RSR ROBZ POCS S&A IBP RSR ROBZ POCS
A1S 45.91 73.86 47.14 35.64 46.57 45.86 52.09 27.94 56.24 28.47 56.63 45.74
A1SR 45.91 73.86 65.11 62.37 57.75 61.97 64.62 49.38 59.18 79.91 58.56 49.53
A2S 59.40 82.12 32.72 37.84 31.13 46.15 45.59 29.69 49.52 27.00 49.70 50.54
A2SR 59.40 82.12 66.50 57.27 63.03 57.89 62.26 57.93 56.11 51.32 54.86 54.92
A3S 36.86 52.78 32.04 38.19 33.70 30.39 34.14 30.20 31.41 38.08 31.49 37.11
A3SR 36.86 52.78 46.37 40.98 40.66 50.13 41.27 32.15 32.99 66.65 33.56 34.30
A4S 53.90 56.75 47.72 39.36 50.36 46.08 47.51 43.50 53.52 41.34 53.16 50.09
A4SR 53.90 56.75 41.14 36.98 44.01 44.15 44.92 52.61 57.07 51.02 55.78 54.12
R1 47.52 40.86 68.68 44.48 73.25 57.46 48.61 63.97 50.85 62.65 62.27
R2 42.97 36.38 36.71 44.66 38.92 35.78 60.06 66.64 57.35 67.23 66.54
R3 51.75 31.24 40.03 34.21 44.99 37.73 30.85 33.78 30.15 35.61 33.27
R4 49.84 56.56 39.04 65.22 33.19 51.90 40.45 27.08 27.18 27.21 29.42
R5 40.94 46.82 32.62 50.98 28.75 41.09 43.14 36.16 29.34 36.04 38.69
E6 42.90 16.15 11.20 33.09 15.21 17.79 42.03 17.36 36.60 16.74 9.99
E6D 45.24 12.34 12.51 36.84 14.71 13.89 40.01 20.13 36.47 18.62 12.99
E7 34.44 18.42 20.14 20.30 17.39 13.23 30.41 25.17 38.28 28.96 23.97
E7D 29.05 15.92 19.91 20.87 21.02 10.46 25.40 30.52 33.13 32.32 28.37
E8 51.36 18.01 26.61 28.45 27.23 20.71 32.58 30.72 36.03 30.01 31.02
E8D 51.95 10.62 24.79 27.39 28.56 15.33 28.50 31.58 34.64 32.24 31.14
E9 52.12 18.96 20.54 24.24 18.31 19.16 34.87 24.27 37.54 27.83 23.38
E9D 52.88 15.25 18.45 28.70 17.83 14.71 27.96 27.19 37.15 29.08 26.71
E10 44.95 16.79 13.47 32.16 17.05 23.28 35.65 23.55 29.35 23.86 24.16
E10D 43.37 15.02 17.62 34.20 16.24 22.45 36.12 21.63 30.95 20.25 20.73
U1 48.31 10.94 8.52 19.53 16.35 4.97 40.90 24.05 27.25 25.91 23.15
U2 45.24 12.20 12.01 22.24 19.78 13.83 41.69 22.13 22.90 23.39 22.89

important for a successful SR reconstruction.
When applying a deblocking algorithm to the endoscopic sequences, the quality scores for the SR results do not
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Table IX
NUMBER OF CASES IN WHICH EACH OF THE SR METHODS DELIVERS THE HIGHEST SCORE AMONG ALL METHODS.

Vandewalle Optical flow
Metric Sequence type (count) S&A IBP RSR ROBZ POCS S&A IBP RSR ROBZ POCS

Anisotropic
Artificial (8) 4 2 0 2 0 4 4 0 0 0
Real-world (5) 1 2 0 2 0 1 4 0 0 0
Endoscopic (12) 0 2 0 10 0 0 7 2 0 3

Metric Q
Artificial (8) 0 5 0 3 0 4 0 2 0 2
Real-world (5) 1 1 2 1 0 1 2 0 0 2
Endoscopic (12) 0 11 0 1 0 6 6 0 0 0

BRISQUE
Artificial (8) 0 0 1 5 2 0 0 5 1 2
Real-world (5) 0 2 3 0 0 1 2 0 1 1
Endoscopic (12) 5 0 3 1 3 8 0 3 0 1

DIIVINE
Artificial (8) 2 1 1 2 2 1 2 3 1 1
Real-world (5) 0 0 3 2 0 2 1 0 2 0
Endoscopic (12) 0 0 10 2 0 6 0 6 0 0

get consistently higher. This is most likely caused by the interpolation inherent to the deblocking, which eliminates
even more details. As a consequence, a meaningful SR reconstruction gets even more challenging, if not impossible.

In case of the uncompressed endoscopy sequences the scores are also consistently lower as compared to the
bicubic scores. One reason might be that even in case of the uncompressed sequences we notice a slight blur in the
images. As a result there might be not enough high frequency content present for a meaningful SR reconstruction.

The bottom-line of our experimental results is that at least in case of our endoscopic sequences, applying the
evaluated reconstruction-based SR techniques is not meaningful. But especially in case of uncompressed videos
future work should include additional experiments on more sequences to be able to make more robust statements
on the usability of case of such sequences. In addition, this work was limited to a selection of reconstruction-based
algorithms. Since there also exist other types of SR algorithms, future work should also include an evaluation of
other types (e.g. learning-based approaches).
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