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Abstract. Local Binary Patterns and various derivatives of the method
have been widely used in the field of texture recognition over the past
15 years. A restriction of these methods is their variance with respect
to affine transformations of an image. This is caused by the fixed cir-
cular neighborhood and the fixed support area of sampling points. The
main approach to deal with affine transformations such as rotations is
based on modifying or enhancing the encoding scheme of the patterns.
In this work we present an extension to Local Ternary Patterns which is
based on adaptive elliptic shaped neighborhoods with adaptive support
areas of sampling points. We use scale normalized Laplacian maxima in
a scale-space to identify interest points within an image. Based on the
scale information the multi-scale second moment matrix is computed to
estimate the affine transformation at the location of a Laplacian scale-
space maximum. Utilizing this information, a scale mask is computed to
improve the reliability of scale estimation. Finally Local Ternary Pat-
terns are computed along equidistant points in terms of arc length along
the estimated ellipse.

1 Introduction

The Local Binary Pattern approach as introduced by Ojala et al. [1] as well
as the Local Ternary Patterns method proposed by Tan and Triggs [2] are not
invariant with regard to affine transformations.

In certain scenarios, endoscopic image classification for example, textures
are captured at various perspectives and distances. These variations, caused by
camera motion, lead to a visualization of textures under affine transformations.
Methods that are invariant in terms of these type of transformation could there-
fore improve the accuracy of an automated classification.

The main approach found in literature on LBP to deal with these kind of
transformation is to enhance or modify the encoding scheme of the patterns.
Ojala and Mäenpää [3] for example deal with rotations by circular shifting the
computed patterns until a minimum (in terms of decimal interpretation of the
binary string) is found. By doing so, the patterns are implicitly aligned. A draw-
back however is that the number of possible patterns is heavily reduced losing
discriminative power.
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Ojala and Mäenpää also introduced multi-resolution Local Binary Patterns [3],
using a set of different radii with appropriate sampling areas sizes. This approach
however does not employ a scale selection mechanism and does not improve in-
variance in terms of re-scaling of a texture.

We propose an affine invariant method based on Local Ternary Patterns
that employs scale-normalized derivatives of local scale-space maxima for scale
selection. We utilize additional information gained by the computation of multi-
scale second moment matrices in combination with scale-normalized Laplacian
maxima in a scale-space. The method shares the idea of using the scale-space
framework with methods such as the SIFT feature detector [4] and other region
detectors.

The idea of combining scale-space maxima with Local Binary Patterns has
also been explored by Li et al. [5]. Their approach also uses scale-space maxima
to adaptively select the radius of the Local Binary Pattern descriptor. Rotational
invariance is achieved by analyzing the computed patterns, identifying subuni-
form patterns with the maximum statistical value. These subuniform patterns
are finally circularly shifted to the first position within the patterns in order to
achieve rotational invariance, a method similar to the approach as suggested by
Ojala and Mäenpää [3].

In analogy with the technique proposed by Li et al. our scale selection mech-
anism is also based on scale-normalized Laplacian scale-space maxima. But in-
stead of modifying or enhancing the encoding scheme of the Local Binary Pat-
terns to achieve rotational invariance, our method is based on adaptive, ellip-
tically shaped, neighborhoods. The shape of the neighborhoods is derived from
information encoded by multi-scale second moment matrices which are com-
puted at corresponding sampling locations. Following this approach we are able
to compensate for an even larger number of affine transformations including ro-
tation, uniform scaling as well as non-uniform scaling. Finally we improve the
robustness of the scale selection mechanism, by the computation of a scale reli-
ability mask which employs local shape and scale information using a Gaussian
probability density function.

In Section 2 we will give a brief review of the traditional LBP methodology
and point out the restrictions of those methods relating to affine transformations.
We will cover our methodology in Section 3, including the mechanism for scale-
selection, shape estimation, as well as the computation of adaptive sampling
support areas, the adaptive elliptic neighborhoods and the adaptive sampling
point indexing. Section 4 covers the experiments conducted to evaluate the per-
formance of the proposed method. Section 5 concludes the paper.

2 Traditional LBP based Methods

The Local Binary Patterns (LBP) operator [1] is used to model a pixel neighbor-
hood in terms of pixel intensity differences. A pixel neighborhood ν is defined in
relation to a pixel at (x, y) of the image intensity function f as a sequence of p
equidistant points on a circle with radius r around (x, y):
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φr,p(x, y, k) :=


x + r cos

(
2πk

p

)

y − r sin
(

2πk
p

)



T

(νk) :=
(
f
(
φr,p(x, y, k)

))
k∈{0 ... p−1}

Based on a sign function a weighted sum is computed and interpreted as binary
label according to the specific pixel neighborhood intensity relationship:

s(x) :=

{
1, if x ≥ 0

0, if x < 0

For a position (x, y) the local binary pattern of p neighbors and radius r is
computed as:

LBP :=

p−1∑

k=0

2k s(νk − f(x, y)).

The joint distributions of these labels are then used to characterize a texture.

2.1 Local Ternary Patterns

Local Ternary Patterns [2] are derived from Local Binary Patterns. The authors
modified the original method to improve it’s robustness with regard to varying
lighting conditions. In LTP, the sign function is changed from a binary function
to a ternary function

s(x) =





1, if x ≥ Th

0, if |x| < Th

−1, if x ≤ −Th.

(1)

The ternary decision leads to two separate histograms, one representing the
distribution of the patterns resulting in a −1, the other representing the distri-
bution of the patterns resulting in a 1. Two separate histograms are computed

HI,lower(i) =
∑

x,y

(LBPr,p(x, y) = −i) i = 0, · · · , 2p − 1 (2)

HI,upper(i) =
∑

x,y

(LBPr,p(x, y) = i) i = 0, · · · , 2p − 1. (3)

The neighbor information of pixels that lie within the threshold is encoded
implicitly by this splitting. Finally, both histograms are concatenated and treated
as a single histogram.
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2.2 Restrictions of the Traditional LBP-based Methods

The main restriction of LBP based methods is their variance with respect to
affine transformations of an image. This is caused by the fixed circular neigh-
borhood and the fixed support area of sampling points. Rotations can not be
compensated due to the ambiguous orientation of the circular neighborhood.

(a) Original Texture (b) Rotated Texture

Fig. 1: Restriction Concerning Rotation

Figure 1 demonstrates how the rotation of a texture affects the calculation
of the binary pattern. The sampling points along the circle are labeled by their
corresponding indices in the pattern. Due to the fixed indexing of sampling
points, a rotation of the texture results in a circular shift of the pattern.

(a) Original Texture (b) Scaled Texture

Fig. 2: Restriction Concerning Uniform Scaling

Figure 2 shows the effects of uniform scaling to the computation of the LBP
patterns. Caused by the fixed sized radius of the operator, the spatial sampling
locations are implicitly changed due to uniform scaling. Additionally the fixed
size of the support area of the sampling points is a restriction. We see that the
textures are analyzed at two different scales leading to two different, incompa-
rable patterns.

Finally, Figure 3 shows the effects of non-uniform scaling. We can observe
that the circular shape of the neighborhood is not well suited to compensate for
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(a) Original Texture (b) Non-Uniform Scaled Texture

Fig. 3: Restriction Concerning Non-Uniform Scaling

this type of transformation. In parallel to uniform scaling, the textures are ana-
lyzed at different scales. Even more, different parts of the textures are analyzed.

3 Affine Invariant Local Ternary Patterns

Instead of modifying the encoding scheme of the computed patterns, we use
an adaptive neighborhood with adaptive sampling support areas and adaptive
indexing to achieve affine transformation invariance. The general methodology
can be seen as an extension to the entire class of LBP based methods and will be
presented based on Local Ternary Patterns in this work. The advantage of using
Local Ternary Patterns is the implicit thresholding that prohibits structures
detected as highly anisotropic, from contributing to the joint distributions of
the patterns significantly.

Figure 4 gives a schematic overview of the separate steps of the method. The
following sections cover these steps in detail.

3.1 Scale Estimation based on Scale-Normalized Laplacian Maxima
in Scale-Space

The scale-space theory was first extensively explored in the field of signal pro-
cessing by Lindeberg [6]. It presents a framework to analyze signals at different
scales. Let f : R2 7→ R represent a continuous signal, then the linear scale-space
representation L : R2 × R+ 7→ R is defined by

L(·; σ) = g(·; σ) ∗ f, (4)

with initial condition L(·, 0) = f . Where t ∈ R+ is the scale parameter, g is
a Gaussian function and “∗“ denotes convolution. The scale-space family L is
the solution to the diffusion equation (heat equation):

∂σL = σ

(
∂2L

∂x2
+

∂2L

∂y2

)
= σ△L. (5)

The popular Difference of Gaussians (DoG) approach is a finite element ap-
proximation of the Laplacian of Gaussians. This technique is used in several
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Fig. 4: Schematic Overview of the Method

methods, SIFT [4] being the most prominent. Instead of using the DoG approx-
imation to the Laplacian of Gaussians, we construct the scale-space and com-
pute the scale-normalized Laplacians (σ2 |△L|) of each image I at each location

x ∈ N2 at different scales with σ = 1.5√
2

k
, k ∈ {1, . . . , 20} denoted as (△I(x; σ)).

The initial scale is chosen such that it corresponds to the LBP radius of 1.5.

3.2 Shape Estimation based on the Multi-Scale Second Moment
Matrix

The second moment matrix (also known as structure tensor) summarizes the
predominant directions of the gradient in a specific point neighborhood of an
image. In contrast to the second moment matrix, the multi-scale second moment
matrix [7] is defined over two scale parameters. It allows to estimate the shape of
visual structures at their dominant scale, as detected by employing the maximum
responses of the Laplacian of the scale-space representation.

The local scale, denoted by t determines the amount of smoothing applied
prior to computing the gradient of the image. The integration scale s is used as
parameter to a Gaussian function g defining the shape and weights of a specific
neighborhood area in the image over which the gradients are accumulated. We
compute the multi-scale second moment matrices at each location x of an image
I which is attaining a local maximum. We use the detection scale of the max-
imum as the local scale t, the integration scale s =

√
2t depends only on the
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corresponding detection scale.

µ(x; t, s) =

∫

ξ∈R2

(∇I)(x − ξ; t)(∇I)T (x − ξ; t) g(ξ; s) dξ. (6)

We denote (∇I)(x; t) as the gradient of the scale-space orientation at scale t
and position x. The eigenvalues of the multi-scale second moment matrix charac-
terize the length of the axes of an ellipse (up to some constant multiplier) while
the eigenvectors describe the orientations of the axes. We use the information
encoded by the multi-scale second moment matrix to adapt the shape of the
LTP neighborhoods in relation to local structural properties.

Due to the fact that the orientation of the ellipse described by the second
moment matrix is summarizing the gradient, the orientation is normal to a struc-
ture in the analyzed area, we use the inverse of the second moment matrix. The
inverse does not modify the ratios of the axis lengths, the shape is therefore
retained.

3.3 Computation of the Scale Reliability Mask

The SIFT method identifies locations attaining a local maximum and a maxi-
mum across the scale dimension of the scale-space to compute feature descriptors.
The property that Laplacian maxima are preserved on re-scaling of a signal the-
oretically leads to a one-to-one mapping between descriptors of a signal at two
different scales. Hence the classification of SIFT features is based on matching
pairs of keypoints descriptors.

The LBP descriptor in contrast is a global descriptor, the discriminative
power does not lie within the single patterns but within the joint distribution
of those patterns. The identification of locations of SIFT like keypoints to com-
pute the features would lead to a insufficient number of patterns, leading to
a diminished discriminative power for classification. Therefore the patterns are
computed along a fixed grid (all pixel positions) in an image and are used in
combination with the scale reliability mask. Because of the fixed sampling, we
can not guarantee that a pixel position attains a scale-space maximum across
the scale dimension. This is in parallel to dense SIFT features [8] where the
SIFT descriptors are computed along a fixed grid. Dense SIFT uses a fixed scale
parameter, losing the scale invariance property.

To achieve scale invariance in our method, we employ the scale selection
mechanism as explained in Section 3.1 at each pixel location and employ the
scale-normalized Laplacian responses at each scale to compute a scale reliability
mask.

The mask is especially useful when textures are not strictly periodic and
attain multiple scales among the texture as is the case in endoscopic imagery. We
exploit the fact that image structures at close spatial proximity to a Laplacian
maximum are at the same scale or relatively close to the scale of the detected
maximum.

We combine the computed shape information at the spatial location of a
maximum with the detection scale of the maximum to identify a corresponding
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area in relation to the specific maximum. The corresponding area is defined as
the area of the normalized ellipse (see Section 3.5) as represented by the specific
multi-scale second moment matrix. All spatial locations within the corresponding
area are assigned to the scale and response of that maximum. In our terminology
this maximum is called the corresponding maximum for the spatial locations
within the corresponding area of the maximum. It is possible that a single spatial
location attains multiple scales and responses, this is due to the fact that the
support areas of multiple maxima might overlap.

We observed, that the reliability, that a local structure inside the correspond-
ing area of a maximum attains the same scale as the maximum decreases with
spatial distance.

We therefore employ a measure for the reliability, that a local structure at-
tains the same scale as a corresponding maximum at a certain distance d from
this maximum, using a Gaussian probability density function.

This function is parametrized by σp. The parameter is chosen such that the
reliability of a local structure with a distance, according to the length of the
minor axis (b) of the ellipse describing the corresponding area, to the maximum
is 0.5.

σp =

(
−( b

2 )2

2 log(0.5)

) 1
2

(7)

We additionally use the responses of all corresponding maxima for a spatial
location to ensure that maxima with lower responses have lower reliabilities.
Please remember that the responses are scale normalized and can be compared
across different scale levels. Let’s denote △M(x; ·) as the set of all corresponding
maximas for a location x and △Mi(x; ·) the i-th corresponding maximum. We
utilize the responses to give the main emphasis on the corresponding maximum
with the highest response. The reliability of a location x to attain scale l is then

r(x; l) =
△Mi(x; l)

max
t

△M(x; t)
e

−d2

2σ2
p . (8)

The reliability measure is finally used to assign a weight, controlling the
contribution of each computed pattern to the histogram. Figure 5 illustrates
the distribution of reliabilities for a maximum, not taking into account multiple
overlapping maxima.

3.4 Adaptive Sampling Support Area

Ojala and Mäenpää [3] first used Gaussian filtering to adapt the sampling sup-
port area to various LBP scales. By employing low-pass filtering, a pixel at a
single spatial location contains information of it’s spatial neighborhood. By em-
ploying the scale information of the corresponding Laplacian maxima at each
image location we apply an adaptive Gaussian filter prior to computing the LTP
pattern at a location. The width of the Gaussian filter is chosen such that the
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Fig. 5: Scale Reliability Mask with Fixed Responses

area covered by the operator in relation to the local scale is the same across all
scales. This gives invariance to uniform scaling. The width of the Gaussian filter
is computed as

fw =

√
2σ2π

N
, (9)

for N being the number of neighbors, and σ being the current scale. The
Gaussian Filter coefficients are then computed adaptively for a given radius
r = fw

2 such that P percent of the area below the Gaussian is covered:
∫ r

−r

e− x2

2σ2 dx = P

∫ ∞

−∞
e− x2

2σ2 dx

2

∫ r

0

e− x2

2σ2 dx = Pσ
√

2π

σ =
r√

2erf−1(P )
(10)

We chose P to be 0.9 which corresponds to 90% of the area. Figure 6 illus-
trates the computation of the adaptive sampling area.

(a) Support on Ellipse (b) Width of Gaussian

Fig. 6: Adaptive Sampling Area by Gaussian filtering
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3.5 Adaptive Elliptic Neighborhood

Non-uniform scaling transforms a circle to an ellipse. Using a fixed circular neigh-
borhood leads to incorrect sampling positions in case of this type of transforma-
tion. Therefore the neighborhood of sampling points is required to be adaptive
to be able to compensate for non-uniform scaling. Utilizing the information en-
coded by the multi-scale second moment matrix at a given location we compute
an adaptive LTP neighborhood.

The absolute lengths of the ellipse’s axes are not known from the information
encoded by the multi-scale second moment matrix. We therefore resort to utiliz-
ing the scale information gained by the scale-space representation. A Laplacian
maximum found at scale σ corresponds to a circular shaped structure with ra-
dius

√
2σ (often denoted as a Blob in literature). By using the scale information

we normalize the ellipse’s axes such that the circumference is equal to the cir-
cumference of the detected Blob. Denoting a as the major semi-axis of the ellipse
and b as the minor semi-axis respectively, we utilize Ramanujan’s formula for
approximating the circumference of the ellipse and solve the quadratic equation
for a constant scaling factor c

√
2σ2π = π

(
3(ac + bc) −

√
(3ac + bc)(ac + 3bc)

)
. (11)

The axes of the ellipse are then re-scaled by the appropriate solution of c. Figure 7
illustrates the normalized ellipses at a fixed scale.

Fig. 7: Normalized Ellipses

As described in Section 3.4 we use adaptive Gaussian filtering to compen-
sate for scaling. Please note however that non-uniform scaling of an image also
changes the shape of the sampling areas from circles to ellipses. Unfortunately
the pre-computation of non-uniform Gaussians for computing elliptically shaped
sampling areas is currently unfeasible.

This is due to the extra degrees of freedom as compared to uniform Gaussians.
Based on the assumption that the major number of this type of transformation
is not highly anisotropic we use uniform Gaussian filtering as an approximation.
Figure 8 illustrates the change of sampling locations after non-uniform scaling of
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a circle with axis aligned equidistant sampling points. By using the approxima-
tion however the intersecting areas of adjacent sampling points would be large
at certain positions along the ellipse, therefore losing discriminant information
encoded by the patterns.

Fig. 8: Sampling Point Positions after Non-Uniform Scaling

We therefore distribute sampling points such that the distance in terms of
arc length between adjacent points is equal, giving n-equidistant points along the
ellipse. To speed up the computation we define four support points on the ellipse
which lie on the ends of the major and minor axes respectively. The definition of
support points limits the method to distribute a number of 4N + 4 equidistant
points along the ellipse but reduces the computation to N points. We use the fact
that all ellipses can be described as a scaled and rotated version of a canonical
ellipse. To distribute the points on a canonical ellipse in parametric form the
positions of N points in the first quadrant are computed and symmetries are
exploited to gain the remaining 3N points. To find the offset on the x-axis of
the n-th point (∆xn) from the center of the ellipse the equation

n

N + 1

∫ a

0

√
1 +

(
dy

dx

)2

dx =

∫ ∆xn

0

√
1 +

(
dy

dx

)2

dx (12)

is solved for ∆xn. Where a is the length of the horizontal semi-axis, N is the
number of points to distribute per quadrant and the second additive term is the
derivative of the canonical implicit equation of an ellipse. Figure 9 illustrates the
distribution of sampling points on the ellipse.

Please note that using uniform Gaussians leads to a decreased invariance
with regard to non-uniform scaling. In case of highly anisotropic scaling the ap-
proximation does not suffice. Therefore using non-uniform Gaussians to compute
adaptive sampling areas is a topic for future work.

3.6 Adaptive Sampling Point Indexing

The shape information employed in the LTP neighborhood allows to define an
adaptive indexing of points in the neighborhood. The first sampling point defines
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(a) Support Points (b) Distributed Points

Fig. 9: Sampling Point Positions used with Uniform Gaussian Filtering

the orientation of the computed pattern. In standard LBP based methods the
sampling start indexing is fixed. This is caused by the missing shape information.

To cope with the ambiguous orientation of an ellipse we use two starting
points instead of one (computing two patterns per position). The computation
of two patterns per location leads to an implicit alignment of orientation between
two patterns when computing the histogram distances. Experiments have shown
that the discriminative power of the computed histograms does not decrease
significantly by the computation of extra patterns. Alternatively the dominant
orientation could be computed in the respective area to determine the orientation
unambiguously.

In our methodology the first sampling point is defined as the point of the
intersection of the major axis with the ellipse. In case of ellipses that are close to
a circle this definition becomes unreliable. By choosing the larger axis the first
sampling point would ”jump“ in case of small scaling differences (due to the
swaps of the major and minor axis). We therefore compute an isotropy measure
as the ratio of eigenvalues of the corresponding second moment matrix to identify
this case. If the ratio of eigenvalues λmin

λmax
is greater or equal to 0.95 the vertical

axis is always considered as the major axis.
Due to the fact that rotation of a texture will be reflected by the multi-scale

second moment matrix we are able to compensate for this kind of transformation
by employing this approach. Figure 10 illustrates the computation of patterns
with adaptive sampling start points. The arrows indicate that direction of com-
putation. The numbers give the position of the sampling point in the pattern
where the numbers in circles indicate the start of indexing (and computation of
the patterns).

3.7 Proposed Solutions

In this Section we will briefly summarize the proposed solutions to the restric-
tions of the traditional LBP methods regarding affine transformations as dis-
cussed in Section 2.2. Figure 11 illustrates how the adaptive indexing of sam-
pling points leads to invariance with regard to rotation. Please remember that
two patterns are computed due to the ambiguous orientation of the ellipse. The
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(a) Starting Points on Ellipse

(b) Starting Points on Ellipse close to Circle

Fig. 10: Definition of Sampling Start Points

orange sampling points, highlighted using an arrow, indicate the respective start-
ing points for the computation of each pattern.

(a) Original Texture (b) Rotated Texture

Fig. 11: Solution Concerning Rotation

Figure 12 illustrates how the adaptive sampling support area and adaptive
neighborhood size improves the scale invariance with regard to uniform scaling.
Note, that in contrast to the traditional LBP methods the same textural areas
are analyzed.

Finally, Figure 13 presents the theoretical approach to invariance with respect
to non-uniform scaling. Please note that, as discussed in Section 3.5 we resort
to using circular shaped sampling areas due to the computational complexity.
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(a) Original Texture (b) Scaled Texture

Fig. 12: Solution Concerning Uniform Scaling

In general, the amount of anisotropy in natural images in terms of scaling is not
as significant as the illustrated Figure however.

(a) Original Texture (b) Non-Uniform Scaled Texture

Fig. 13: Solution Concerning Non-Uniform Scaling

4 Experiments

4.1 Feature Extraction and Classification

For our experimental evaluation we use a set of scale invariant methods which
have been published in the recent past and have gained attention by the commu-
nity. We restrict the set of methods to scale-invariant methods to be capable of
analyzing and comparing the scale-invariance property of the proposed method
in an experimental setup especially designed for evaluating scale-invariance.

We present a short overview of the evaluated methods. Please refer to the
original publications for more detailed information. Where available the imple-
mentation of the authors of the corresponding publications have been used. The
methods without publicly accessible code have been re-implemented in Matlab.
The proposed method was implemented in Java.

The various methods published in the original manuscripts employ a wide
variety of different classifiers. We chose to use the k-nearest neighbor classifier
(kNN) to put the main emphasis on the features as well as to allow comparisons
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between methods. All data was split into distinct training and evaluation sets
for experimentation. Where appropriate, feature optimization was performed on
the training set using cross validation.

– Fractal Analysis using Filter Banks [9]:
The fractal dimension gives a measure of how the detail of a pattern changes
with the analyzing scale. We compute the local fractal dimension [9] using
the Laplacian measure on images pre-filtered using the MR8 filter bank [10,
11]. The local fractal dimensions combined with the bag of visual words ap-
proach is then used to form the feature vector.

– Multi-Fractal Spectrum [12]:
The method is based on the computation of the local fractal dimension for
each pixel in an image. Again, only the Laplacian measure is used to com-
pute the local fractal dimension. Based on the local fractal dimension, binary
images are generated by applying a set of appropriate thresholds. Finally,
the feature vector of an image consists of the concatenation of the global
fractal dimensions of the binary images.

– Multiscale Blob Features (number) [13]:
The method uses a series of flexible threshold planes which are computed
for an image to construct a set of binary images. Geometrical attributes are
then used to describe the image texture. We use the number of identified
Blobs to form a feature vector.

– DT-CWT [14]:
The dual-tree complex wavelet transformation is applied prior to comput-
ing statistical features from the resulting subbands. The mean and standard
deviations of the absolute subband coefficients are computed and used as
features.

– DT-CWT with DCT [15]:
The method is based on the DT-CWT method. The features are computed
by applying the discrete cosine transform across the scale dimension of a
feature vector of the DT-CWT.

– D3T-CWT [16]:
The D3T-CWT is applied to the image data. We compute the mean and
standard deviation of the absolute subband coefficient values as feature.

– D3T-CWT with DCT [15]:
Features are computed by applying the DCT across the scale dimension of
a feature vector of the D3T-CWT.

– D3T-CWT with DCT (local) [15]:
Each D3T-CWT is resized to match the size of the original image. A local
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feature vector for each pixel is computed. Finally the DCT is applied across
the scale dimension of these local feature vectors.

– D3T-CWT with DFT (local) [17]:
Each D3T-CWT is resized to match the size of the original image. A local
feature vector for each pixel is computed. Finally the DFT is applied across
the scale dimension of these local feature.

– D3T-CWT with DFT [15]:
Features are computed by applying the discrete Fourier Transform DFT
across the scale dimension of a feature vector of the D3T-CWT.

– Fractal Dim. for Orientation Histograms [18]:
The first step is the computation of a local orientation histograms, followed
by the computation of binary images which are based on the orientation his-
tograms. The fractal dimension is then computed using the binary images.
This is done for eight different scale levels. Finally a wavelet transform is
applied across the scale dimension. The feature vector consists of the detail
coefficients of this wavelet transform.

– Cyclic Shifting of Local Features [16]:
The D3T-CWT is applied and a local feature vector for each pixel is com-
puted. The local feature vectors are cyclically shifted across the scale di-
mension. A circular-correlation is computed between a specific mask and
the squared feature vectors across the scale dimension. The original feature
vector is then cyclically shifted in the scale dimension, so that the first scale
level of the new local feature vector is at the same scale level as the original
local feature vector.

– Log-Polar Approach [19]:
The log-polar method transforms the image into the log-polar domain which
converts scaling and rotation to translations. The DT-CWT [14] which is
shift invariant is then applied. Therefore the DT-CWT features are scale
invariant in the log-polar domain. The feature vectors are the subband co-
efficients’ means and standard deviations.

– Dominant Scale Approach [20]:
The accumulated energies of the image is computed for a set of scales across
several orientations. The dominant scale is defined by the scale with the
highest accumulated energy. We adapted the approach to use subband means
instead of energies. The feature vectors consist of the means and standard
deviations of the subband coefficients.

– Slide Matching (original) [21]:
We use the slide matching approach with the D3T-CWT. The features con-
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sist of the means and standard deviations of subbands with same scale level.

– Slide Matching (modified) [22]:
In contrast to the original approach the means and standard deviations at
the same scale level are not summed up. For each scale level 12 features (6
orientations, 2 parameters per subband) instead of 2 features for the slide
matching process are used.

– Local Affine Regions [23, 24]:
The Harris detector is used to identify interest points by using a multi-scale
second moment matrix. The region described by the multi-scale second mo-
ment matrix is then mapped to a unit circle, finally SIFT [4] descriptors are
computed. For each class cluster, centers of the aggregated SIFT descriptors
are learned by using k-means clustering. The identified cluster centers are
then used to label the SIFT descriptors with the closest distance to the re-
spective center. The resulting histograms are used as features.

– Multiscale Blob Features (shape) [13]:
The method uses a series of flexible threshold planes which are computed
for an image to construct a set of binary images. Geometrical attributes are
then used to describe the image texture. We use the shape of the blobs to
form a feature vector.

– Multiscale Blob Features (number) [13]:
In parallel to the Multiscale Blob Features (shape) multiple binary images
are computed using flexible threshold planes. The number of identified blobs
is then used as feature.

– ICM [25]:
The intersecting cortical model (ICM) is a method derived from Pulse Cou-
pled Neural Networks. Image data from the spatial domain is used as input
to the ICM with a series of binary images as output. The entropies of the
binary outputs are then used to form a feature vector.

– SCM [26]:
The Spiking Cortical Model (SCM) is a derivation of the Pulse Coupled
Neural Network. In analogy to ICM the output of the network is a series of
binary images. The features consist of the entropies of the binary output.

– Dense SIFT Features [8]:
Dense SIFT features are computed for each pixel within an image. For each
class cluster, centers of the aggregated SIFT descriptors are learned, em-
ploying k-means clustering. The identified cluster centers are then utilized
to label the SIFT descriptors with the closest distance to the respective
center. The resulting histograms are used as features.
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4.2 Data

The experimentation is based on two datasets with different properties. The first
dataset is the CUReT texture data set while the second dataset consists of a set
of endoscopic images with indication for celiac disease.

1. CUReT Data Set

We use the cropped version of the CUReT database which consists of 92
images per texture with different viewing and illumination conditions. We
use the CUReT textures with available scale information only. The CUReT
textures were evenly divided into an evaluation set and two training sets. We
follow the experimental setup used in [27] to test scale invariance. The first
training set consists of textures at a single scale, while the second training
set is based on textures at both scales. The evaluation set contains textures
at both scales. Experiment 1 (E1) is based on the first training set while
Experiment 2 (E2) is based on the second training set. The differences be-
tween classification accuracy will give an indication for the degree of scale
invariance.

2. Celiac Disease Scale Data Set (CDS)

Endoscopic imagery exhibits a high amount of variance in perspective. Due
to the tubic shape of the bowel, similar image textures are often captured in
a rotated and scaled form. We created a database based on endoscopic video
data with visually determined distances to the mucosal tissue. We took care
that approximately the same mucosal area of the same patient is existent
in both scales. We denote this database as the celiac disease scale (CDS)
database. Table 1 shows the distribution of data. The captured endoscopic
image data was inspected and filtered by several qualitative factors (sharp-
ness, lack of distortions like specular reflections, visibility of features, etc.).
In the next step, texture patches with a fixed size of 128 × 128 pixels were
extracted from the full sized frames, a size which turned out to be optimally
suited in previous experiments [28]. The condition of the mucosal areas cov-
ered by the images was determined by histological examination of biopsies
from the corresponding regions. Severity of villous atrophy was classified
according to the modified Marsh classification proposed in [29].

For explicitly testing scale invariance we perform two experiments. In the
first experiment, we use training set Regular-Far and evaluation set Regular-
Far. In the second experiment, we use training set Regular and evaluation
set Regular-Far. Scale invariance is only needed in the second experiment.
The difference in classification rate of the first and second experiment (which
are denoted as E3 and E4 respectively in Table 2) gives an indication for the
degree of scale invariance of the methods.
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Training set Regular-Far
healthy celiac total

Images 40 40 80
Patients 20 12 32

Training set Regular
healthy celiac total

Images 20 20 40
Patients 20 12 32

Evaluation set Regular-Far
healthy celiac total

Images 38 38 76
Patients 19 10 29

Table 1: Image and Patient Distribution of the CDS Database

4.3 Experimental Results

The presented results in Table 2 are the average classification accuracies using
a k-NN classifier in a range of k = 1 − 20. The column labeled as Diff lists
the relative differences in classification accuracy in percent. The methods were
ordered by the average classification accuracy of all four experiments.

We see that the proposed method shows a high degree of scale invariance in
both experimental setups. The non-uniform and rotational invariance is implic-
itly tested by using the CDS dataset where the proposed method is among the
best.This indicates that the affine invariance is beneficial to the classification
accuracy of endoscopic images.

5 Conclusion

We have utilized the information gained by computing local scale-normalized
Laplacian maxima in a scale-space to employ an adaptive neighborhood. The
scale information utilizing the scale-space representation was used to improve
the scale invariance of the LBP method. We used elliptically formed neighbor-
hoods to improve invariance to anisotropic scaling and used the orientation of
eigenvectors of the multi-scale second moment matrices to add invariance to
rotations.

We note that the use of uniform Gaussians for computing adaptive sampling
areas leads to a diminished invariance to non-uniform scaling in case of highly
anisotropic scaling. We see a lot of potential for improvement by using anisotropic
Gaussian filters and sampling areas which should be employed in future work.
Additionally the stated properties of invariance with respect to non-uniform
scaling as well as rotation were only implicitly tested using the CDS database
and have to be validated more thoroughly in future work.
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Method
CUReT CDS

E1 E2 Diff E3 E4 Diff

Affine Invariant LTP 99.0 95.7 3.3 74.4 75.8 -1.9
Cyclic Shifting of Local Features 98.8 95.1 3.7 73.3 72.8 0.7
D3T-CWT with DCT 98.3 88.7 9.8 76.1 73.8 3.0
D3T-CWT with DCT (local) 97.7 92.9 4.9 72.2 71.1 1.5
D3T-CWT with DFT (local) 96.3 89.7 6.9 72.9 73.0 -0.1
DT-CWT with DCT 98.4 87.1 11.5 75.3 70.9 5.8
Log-Polar Approach 90.7 88.3 2.6 72.6 73.4 -1.1
Multiscale Blob Features (shape) 96.9 93.9 3.1 72.0 62.0 16.1
Dominant Scale Approach 92.7 93.9 -1.3 72.4 64.8 11.7
Fractal Analysis using Filter Banks 91.1 85.8 5.8 71.8 70.5 1.8

D3T-CWT with DFT 95.9 89.2 7.0 63.7 69.1 -8.5
Multiscale Blob Features (number) 97.2 89.6 7.8 65.9 59.9 9.1
Local Affine Regions 96.1 89.8 6.6 67.6 59.0 12.7
Multi-Fractal Spectrum 91.4 77.0 15.8 69.1 71.1 -2.8
SCM 97.9 92.6 5.4 60.3 56.5 6.3
Fractal Dim. for Orientation Histograms 86.9 74.1 14.7 71.7 70.6 1.5
Slide Matching (modified) 97.6 75.3 22.8 63.2 60.5 4.3
ICM 90.2 81.4 9.8 64.8 59.8 7.7
Slide Matching (original) 93.5 81.4 12.9 58.8 54.3 7.6
Dense SIFT Features 71.5 67.4 5.7 68.1 66.7 2.1

Table 2: OCR results for the CDS and CUReT database.
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