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Abstract

In the following we investigate the limit distribution of the Diaphony
created by the Mehler kernel. The classical Diaphony was introduced
by Zinterhof [5]. In [6] a Diaphony has been defined for reproducing
kernel Hilbert spaces over an abstract set E. The limit distribution of the
classical Diaphony has been investigated by H. Leeb [3].

1 Introduction
For A= (A1,...,As) €R® v =(nq,...,ns) € N§ and k € N we use the notation
A= AT LA
DTS LD U

and by ¢, () we denote the normalized Hermite polynomials given by

f[ _Hy, (z5) (x])
V2hingl/m
where H; (z;) denotes the Hermite polynomial with degree j. For a given A € R®
with |A;| < 1 the Mehler kernel is given by (see [4])
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The space
Hy:=<f(z):R°=>R|f(z) = Z aypu () N, Z la, > < 00
veNg veNg
equipped with the scalar product defined by
<)‘M<Ppn AV(PV> = 6#1/ (1)

forms a reproducing kernel Hilbert space with kernel K (z,y). The Diaphony is
given by
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which appears in the estimation
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for f(x) € Hy and ||.|| denotes the norm induced by the scalar product (1).

2 The limit distribution of ND% (z,)

In the following let Es := diag(1l,...,1) € R**5. We investigate the limit
distribution of ND?% (z,,) for z1,...,2zy independent identically distributed

N (0, %Es) random variables. Let
Ing :={(v1,...,vs) €N, 0<v; <M,j=1,...,s}.

We set
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1/611\/[\(0,...,0)
Lemma 1. 1. We have
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for M — oo uniformly with respect to N.
2. Let h(x) : R = R be a bounded and Lipschitz continuous function. Then

we have for all given € > 0 an index My (e, h) (independent from N ) with
the property that

B (n(ND3)) — B (h(vi"))] <
for all M > My (e, h).
Proof. ad 1) We have
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and therefor
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by orthogonality of the ¢,. For all ¢ > 0 there is an index M (g) (of course
independent from N) with the property that

# Z A < e

veENS\ I

for all M > M (e) by geometric series and therefor

E (‘NDJQV (0) — Y}VM)D =0



for M — oo uniformly with respect to V.
ad 2) Let h(z) : R — R be a bounded and Lipschitz continuous function. Then
we have

B (h(vD3)) = B (n (vi"))] = |E (h (¥DR) -1 (v{"))| <

< B (|0 (vD3) —n (vi")]).

h (z) is Lipschitz continuous and therefor a constant L (h) exists with the prop-

erty
|h(z) = h(y)l < L(h). [z -yl

for all z,y € R. So we get
B (n(NDR) — B (n (M) < L) .E (|NDF = V™).

From part 1 of the Lemma there is an index My (¢) independent from N with
the property that

E (‘NDJQV - Y}VM)D <e
for M > M (e). O

Lemma 2. Let
Yy = 3 X
vely\(0,...,0)
where the random variables X, are independent and identically distributed

N (0,71'_%) random variables. Then we have

VM g YD
for N — oc.

Proof. We consider the vector vy € R(M+D =1 defined by

UN = <\/1N Z Oy (xn)>

By multidimensional central limit theorem [1] this vector converges in distribu-
tion to

veln\(0,...,0)
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because of the orthogonality of the Hermite polynomials. If a vector is normal
distributed with a regular covariance matrix it has a density function and if the
covariance matrix is a diagonal matrix this density function is separable. Be-
cause of this separability the components of the vector are independent random
variables. The quadratic form A (z) : RM+D"=1 5 R defined by

A(z) =2 Az



with A = dzag (AQV)I/EIJM\(O.... 0) (S R((]\/[*‘l)gfl)x((M#’l)s*l) is of course contin-

uous and by continuous mapping theorem [1] we have

VM = A(vy) —a A(v) = YD,

Lemma 3. Let

Y= > NX]
veNg\(0,...,0)

with i.i.d X, ~ N (o,f%).

1. Then we have

E (’Y—Y(M)D =0
for M — oo.

2. Let h(xz): R — R be a bounded and Lipschitz continuous function. Then
we have for all given € > 0 an index My (e, h) with the property

‘E (h (Y<M>)) “EMY)| <e

for all M > My (¢, h).

Proof. ad 1) We have
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and therefor
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for M — co. Part 2 is proved in the same way as in Lemma (1). O

Theorem 1. Let xj, ~ N (0, %Es) fork=1,...,N ii.d RV. Then we have

ND% (z,) =q Y
for N — oc.

Proof. If we have
E(h(Xn)) = E(h(X))

for n — oo for all real valued, bounded and Lipschitz continuous functions h
then we have X,, —4 X by Portmanteau Theorem (see [2]). Let & > 0 be



arbitrary and & (z) be an arbitrary bounded and Lipschitz continuous function.
According to Lemma (1), part 2 there is an index My (g, k) with the property

B (n (ND% (wa))) = B (h (v4"))] <«

for all M > My (g, h). According to Lemma (3) there is an index M; (e, h) with
the property

‘E (h (YOn)) —E (Y))‘ <e
for all M > M; (e, h). Now let M > max (My (¢, h), M (¢,h)). Then we have

|E (h (ND% (z4))) — E(h(Y))] <
< |B (0 (ND% @a)) = B (0 (v&) |+ B (0 (vE"")) = B (0 (YO)) |+
+ ‘E (n (v®n)) - E(h(Y))’ <2+ ‘E (n () - £ (n (Y(M)))’ .

By Lemma (2) we have weak convergence of Y]S,M) to Y(M) 5o we can find an
index N (e, M, h) with the property that

0 () - (0 ) <

for all N > N (¢, M, h) and summing up we have

|E (h (ND3 (#n))) — E (h(Y))] < 3e.
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