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Abstract

In the following we investigate the limit distribution of the Diaphony
created by the Mehler kernel. The classical Diaphony was introduced
by Zinterhof [5]. In [6] a Diaphony has been defined for reproducing
kernel Hilbert spaces over an abstract set E. The limit distribution of the
classical Diaphony has been investigated by H. Leeb [3].

1 Introduction
For λ = (λ1, . . . , λs) ∈ Rs , ν = (n1, . . . , ns) ∈ Ns0 and k ∈ N we use the notation

λν := λn1
1 . . . λns

s

λkν := λkn1
1 . . . λkns

s

and by ϕν (x) we denote the normalized Hermite polynomials given by

ϕν (x) :=

s∏

j=1

Hnj
(xj)√

2njnj !
√
π

whereHj (xj) denotes the Hermite polynomial with degree j. For a given λ ∈ Rs
with |λj | < 1 the Mehler kernel is given by (see [4])

K : Rs × Rs → R

K (x, y) =
∑

ν∈Ns
0

ϕν (x)ϕν (y)λ
2ν =

=
1

√
π
s
√∏s

j=1

(
1− λ4j

)×

× exp


1

2

s∑

j=1

λ2j
1 + λ2j

(xj + yj)
2 − 1

2

s∑

j=1

λ2j
1− λ2j

(xj − yj)2

 .
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The space

Hλ :=



f (x) : R

s → R

∣∣∣∣∣∣
f (x) =

∑

ν∈Ns
0

aνϕν (x)λ
ν ,
∑

ν∈Ns
0

|aν |2 <∞





equipped with the scalar product defined by

〈λµϕµ, λνϕν〉 = δµν (1)

forms a reproducing kernel Hilbert space with kernel K (x, y). The Diaphony is
given by

DN (xn) :=


 1

N2

N∑

n,k=1

K (xn, xk)−
1√
π
s




1
2

=

=


 1

N2

N∑

n,k=1

(
K (xn, xk)−

1√
π
s

)


1
2

=

=


 1

N2

N∑

n,k=1

∑

ν∈Ns
0\(0,...,0)

ϕν (xn)ϕν (xk)λ
2ν




1
2

=

=


 ∑

ν∈Ns
0\(0,...,0)

λ2ν

(
1

N

N∑

n=1

ϕν (xn)

)2



1
2

which appears in the estimation
∣∣∣∣∣
1

N

N∑

k=1

f (xk)−
1√
π
s

ˆ

Rs

f (x) e−|x|
2

dx

∣∣∣∣∣ ≤ DN (xn) . ‖f‖

for f (x) ∈ Hλ and ‖.‖ denotes the norm induced by the scalar product (1).

2 The limit distribution of ND2
N (xn)

In the following let Es := diag (1, . . . , 1) ∈ Rs×s. We investigate the limit
distribution of ND2

N (xn) for x1, . . . , xN independent identically distributed
N
(
0, 1√

2
Es

)
random variables. Let

IM := {(ν1, . . . , νs) ∈ Ns0, 0 ≤ νj ≤M, j = 1, . . . , s} .

We set

Y
(M)
N := N

∑

ν∈IM\(0,...,0)
λ2ν

(
1

N

N∑

n=1

ϕν (xn)

)2

=

2



=
∑

ν∈IM\(0,...,0)
λ2ν

(
1√
N

N∑

n=1

ϕν (xn)

)2

.

Lemma 1. 1. We have

E
(∣∣∣ND2

N (xn)− Y (M)
N

∣∣∣
)
→ 0

for M →∞ uniformly with respect to N .

2. Let h (x) : R → R be a bounded and Lipschitz continuous function. Then
we have for all given ε > 0 an index M0 (ε, h) (independent from N) with
the property that

∣∣∣E
(
h
(
ND2

N

))
− E

(
h
(
Y

(M)
N

))∣∣∣ < ε

for all M > M0 (ε, h).

Proof. ad 1) We have

∣∣∣ND2
N (xn)− Y (M)

N

∣∣∣ =

∣∣∣∣∣∣
∑

ν∈Ns
0\IM

λ2ν

(
1√
N

N∑

n=1

ϕν (xn)

)2
∣∣∣∣∣∣
=

=
∑

ν∈Ns
0\IM

λ2ν

(
1√
N

N∑

n=1

ϕν (xn)

)2

= ND2
N (xn)− Y (M)

N

and therefor
E
(∣∣∣ND2

N (xn)− Y (M)
N

∣∣∣
)
=

= E
(
ND2

N (xn)− Y (M)
N

)
= E


 ∑

ν∈Ns
0\IM

λ2ν

(
1√
N

N∑

n=1

ϕν (xn)

)2

 =

= E


 ∑

ν∈Ns
0\IM

λ2ν


 1

N

N∑

n=1

ϕ2
ν (xn) +

1

N

∑

n,k=1;n 6=k
ϕν (xn)ϕν (xk)




 =

=
∑

ν∈Ns
0\IM

λ2νN
1

N
E
(
ϕ2
ν (x)

)
=

1√
π
s

∑

ν∈Ns
0\IM

λ2ν

by orthogonality of the ϕν . For all ε > 0 there is an index M (ε) (of course
independent from N) with the property that

1√
π
s

∑

ν∈Ns
0\IM

λ2ν < ε

for all M > M (ε) by geometric series and therefor

E
(∣∣∣ND2

N (xn)− Y (M)
N

∣∣∣
)
→ 0
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for M →∞ uniformly with respect to N .
ad 2) Let h (x) : R→ R be a bounded and Lipschitz continuous function. Then
we have

∣∣∣E
(
h
(
ND2

N

))
− E

(
h
(
Y

(M)
N

))∣∣∣ =
∣∣∣E
(
h
(
ND2

N

)
− h

(
Y

(M)
N

))∣∣∣ ≤

≤ E
(∣∣∣h

(
ND2

N

)
− h

(
Y

(M)
N

)∣∣∣
)
.

h (x) is Lipschitz continuous and therefor a constant L (h) exists with the prop-
erty

|h (x)− h (y)| ≤ L (h) . |x− y|
for all x, y ∈ R. So we get

∣∣∣E
(
h
(
ND2

N

))
− E

(
h
(
Y

(M)
N

))∣∣∣ ≤ L (h) .E
(∣∣∣ND2

N − Y (M)
N

∣∣∣
)
.

From part 1 of the Lemma there is an index M0 (ε) independent from N with
the property that

E
(∣∣∣ND2

N − Y (M)
N

∣∣∣
)
< ε

for M > M0 (ε).

Lemma 2. Let
Y (M) =

∑

ν∈IM\(0,...,0)
λ2νX2

ν

where the random variables Xν are independent and identically distributed
N
(
0, π−

1
4

)
random variables. Then we have

Y
(M)
N →d Y

(M)

for N →∞.

Proof. We consider the vector vN ∈ R(M+1)s−1 defined by

vN :=

(
1√
N

N∑

n=1

ϕν (xn)

)

ν∈IM\(0,...,0)
.

By multidimensional central limit theorem [1] this vector converges in distribu-
tion to

v := (Xν)ν∈IM\(0,...,0)
∼ N

(
0, π−

1
4E(M+1)s−1

)

because of the orthogonality of the Hermite polynomials. If a vector is normal
distributed with a regular covariance matrix it has a density function and if the
covariance matrix is a diagonal matrix this density function is separable. Be-
cause of this separability the components of the vector are independent random
variables. The quadratic form A (z) : R(M+1)s−1 → R defined by

A (z) = zTAz

4



with A = diag
(
λ2ν
)
ν∈IM\(0,...,0) ∈ R((M+1)s−1)×((M+1)s−1) is of course contin-

uous and by continuous mapping theorem [1] we have

Y
(M)
N = A (vN )→d A (v) = Y (M).

Lemma 3. Let
Y :=

∑

ν∈Ns
0\(0,...,0)

λ2νX2
ν

with i.i.d Xν ∼ N
(
0, π−

1
4

)
.

1. Then we have
E
(∣∣∣Y − Y (M)

∣∣∣
)
→ 0

for M →∞.

2. Let h (x) : R → R be a bounded and Lipschitz continuous function. Then
we have for all given ε > 0 an index M0 (ε, h) with the property

∣∣∣E
(
h
(
Y (M)

))
− E (h (Y ))

∣∣∣ < ε

for all M > M0 (ε, h).

Proof. ad 1) We have

∣∣∣Y − Y (M)
∣∣∣ =

∣∣∣∣∣∣
∑

ν∈Ns
0\IM

λ2νX2
ν

∣∣∣∣∣∣
=

∑

ν∈Ns
0\IM

λ2νX2
ν

and therefor
E
(∣∣∣Y − Y (M)

∣∣∣
)
=

1√
π
s

∑

ν∈Ns
0\IM

λ2ν → 0

for M →∞. Part 2 is proved in the same way as in Lemma (1).

Theorem 1. Let xk ∼ N
(
0, 1√

2
Es

)
for k = 1, . . . , N i.i.d RV. Then we have

ND2
N (xn)→d Y

for N →∞.

Proof. If we have
E (h (Xn))→ E (h (X))

for n → ∞ for all real valued, bounded and Lipschitz continuous functions h
then we have Xn →d X by Portmanteau Theorem (see [2]). Let ε > 0 be
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arbitrary and h (x) be an arbitrary bounded and Lipschitz continuous function.
According to Lemma (1), part 2 there is an index M0 (ε, h) with the property

∣∣∣E
(
h
(
ND2

N (xn)
))
− E

(
h
(
Y

(M)
N

))∣∣∣ < ε

for all M > M0 (ε, h). According to Lemma (3) there is an index M1 (ε, h) with
the property ∣∣∣E

(
h
(
Y (M)

))
− E (h (Y ))

∣∣∣ < ε

for all M > M1 (ε, h). Now let M > max (M0 (ε, h) ,M1 (ε, h)). Then we have
∣∣E
(
h
(
ND2

N (xn)
))
− E (h (Y ))

∣∣ ≤

≤
∣∣∣E
(
h
(
ND2

N (xn)
))
− E

(
h
(
Y

(M)
N

))∣∣∣+
∣∣∣E
(
h
(
Y

(M)
N

))
− E

(
h
(
Y (M)

))∣∣∣+

+
∣∣∣E
(
h
(
Y (M)

))
− E (h (Y ))

∣∣∣ < 2ε+
∣∣∣E
(
h
(
Y

(M)
N

))
− E

(
h
(
Y (M)

))∣∣∣ .

By Lemma (2) we have weak convergence of Y (M)
N to Y (M) so we can find an

index N (ε,M, h) with the property that
∣∣∣E
(
h
(
Y

(M)
N

))
− E

(
h
(
Y (M)

))∣∣∣ < ε

for all N > N (ε,M, h) and summing up we have
∣∣E
(
h
(
ND2

N (xn)
))
− E (h (Y ))

∣∣ < 3ε.
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