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Abstract. In this work we introduce a curvature based shape feature
extraction technique, which unlike others, does not necessarily depend
on a closed boundary or a defined region. While the proposed feature has
been developed for celiac disease diagnosis, it can potentially be utilized
in other problem domains as well.
To construct the proposed descriptor, first an input color channel is sub-
ject to edge detection and gradient computations. Then, based on the
gradient map and edge map, the local curvature is computed for each
pixel as the angular difference between the maximum and minimum gra-
dient angle within a certain neighborhood.
Experiments show, that the feature is competitive as far as the clas-
sification rate is concerned. Despite its discriminative power, a further
positive aspect is the compactness of the feature vector.

1 Introduction

Celiac disease is a complex autoimmune disorder in genetically predisposed indi-
viduals of all age groups after introduction of gluten containing food. Commonly
known as gluten intolerance, this disease has several other names in literature, in-
cluding cœliac disease, c(o)eliac sprue, non-tropical sprue, endemic sprue, gluten
enteropathy or gluten-sensitive enteropathy. The real prevalence of the disease
has not been fully clarified yet. This is due to the fact that most patients with
celiac disease suffer from no or atypical symptoms and only a minority develops
the classical form of the disease. Since several years, prevalence data have been
continuously adjusted upwards. Fasano et al. state that more than 2 million
people in the United States, this is about one in 133, have the disease [1].

Endoscopy with biopsy is currently considered the gold standard for the diag-
nosis of celiac disease. Due to the technological advances in endoscopy through-
out the past years, modern endoscopes also allow to capture images, which fa-
cilitates automated analysis and diagnosis. Thus, automated classification as a
support tool is an emerging option for endoscopic diagnosis and treatments [2].

In the past various different approaches for an automated classification of
celiac disease images have been proposed. The majority of these approaches
investigated different texture features for the classification. Features utilized
throughout these works include for example simple statistical features [3], statis-
tical features on color histograms [4], statistical features extracted from Fourier



magnitudes [5]. In the studies presented in [6] and [7] an extensive comparison
between various different types of features (e.g. wavelet-based, Fourier-based,
Random fields, and Local Binary Pattern variants) has been conducted. In [7]
two shape-based approaches have been evaluated [8, 9], which – to the best of
our knowledge – are the only two shape-based approaches ever evaluated for an
automated diagnosis of celiac disease. Actually, there exists different definitions
of shape-based features. In this paper, shape-based features are those, which are
based on a previous segmentation of sound objects in the image.

Compared to the results obtained with the texture features the shape-based
feature proposed in [8] yielded rather poor results only. The main cause for this
is the fact that this feature has been specifically tailored to another problem do-
main (i.e. colonic polyp classification). Although the second shape-based feature
(from [9]) performed rather well in terms of the classification rates achieved, it
must be pointed out that this approach is based on a feature selection, which is
an advantage compared to the other approaches evaluated.

In this work we present a novel shape-based feature, called Shape Curvature
Histogram (SCH). This feature describes the curvature of shapes found within
an image in the form of a compact descriptor. In contrast to many other shape-
based features the SCH feature does not require shapes with closed boundaries
which could be difficult or even impossible to obtain if single objects cannot be
identified. Thereby our approach is a very general one and can potentially be
applied to other problem domains as well.

To compute the SCH, first a binary edge map based on the input image is
generated. This is followed by computing the direction of the gradient for each
edge pixel. Then for each edge pixel the maximum difference between the gradi-
ent directions within a certain neighborhood around this pixel is computed. The
final descriptor is then obtained by generating a histogram over the differences
for all edge pixels.

The remaining part of this paper is organized as follows: In Section 2 a brief
overview of the medical background behind celiac disease is given, followed by
an explanation of the details behind SCH in Section 3 and a brief coverage of the
classification setup in Section 4. In Section 5 we show that the proposed method
is applicable to our problem. High classification rates imply a high discriminative
power even with a very compact feature representation. Section 6 concludes this
paper.

2 Medical Background

The gastrointestinal manifestations in case of celiac disease invariably comprise
an inflammatory reaction within the mucosa of the small intestine caused by a
dysregulated immune response triggered by ingested gluten proteins of certain
cereals (wheat, rye, and barley), especially against gliadine. During the course of
the disease, hyperplasia of the enteric crypts occurs and the mucosa eventually
looses its absorptive villi thus leading to a diminished ability to absorb nutrients.
People with untreated celiac disease, even if asymptomatic, are at risk for devel-



oping various complications like osteoporosis, infertility and other autoimmune
diseases including type 1 diabetes, autoimmune thyroid disease and autoimmune
liver disease.

During standard upper endoscopy at least four duodenal biopsies are taken.
Microscopic changes within these specimen are then histologically classified ac-
cording to the modified Marsh classification, as proposed by Oberhuber et al.
[10]. This classification is based on a scheme originally proposed by Marsh in 1992
[11]. The modified Marsh classification distinguishes between classes Marsh-0 to
Marsh-3, with subclasses Marsh-3a, Marsh-3b, and Marsh-3c, resulting in a total
number of six classes.

According to the modified Marsh classification Marsh-0 denotes a healthy
mucosa (without visible changes of the villous structure) and Marsh-3c desig-
nates a complete absence of villi (villous atrophy). Table 1 briefly summarizes
the characteristic changes of the mucosal tissue caused by celiac disease.

Table 1. Characteristic changes of mucosal tissue caused by celiac disease.

Marsh class Characteristic changes

0-2 No visible changes of villi structure
3a Mild villous atrophy
3b Marked villous atrophy
3c Absent villi

Figure 1 shows example images for the different Marsh classes. From these
images we clearly notice the villous atrophy in classes Marsh-3a to Marsh-3c,
while the villi show up very clear in case of Marsh-0.

Since there are no visual differences between Marsh-0, Marsh-1, and Marsh-
2, we consider Marsh-0 and Marsh-3a to Marsh-3c only throughout this paper.
Moreover, we restrict our experiments to a classification between healthy patients
(i.e. Marsh-0) and those who are affected by celiac disease (i.e. Marsh-3a to
Marsh-3c).

(a) Marsh-0 (b) Marsh-3a (c) Marsh-3b (d) Marsh-3c

Fig. 1. Examples images for the different Marsh classes.



3 Shape Curvature Histogram (SCH)

The computation of the SCH feature can be divided into the following steps:
edge map generation, orientation computation, curvature computation, and the
creation of the final feature vector.

In the explanations below I denotes the image the SCH feature should be
computed for. If I is a grayscale image the computation steps are carried out
only once, resulting in a single histogram. For RGB images the steps are carried
out for each color channel separately, resulting in one histogram for each color
channel. These histograms are then concatenated in order to obtain the final
feature vector.

In the following we explain the computation steps in more detail.

3.1 Edge Map Generation

To be able to compute the curvature information the first step is the generation
of an edge map. For this purpose we employ the Canny edge detector [12]. The
result of the edge detection is an edge map which contains all pixel for which we
compute the curvature values. In other words, pixels which do not belong to an
edge are masked out from the computation steps below.

Although in special cases the edge map might contain closed boundaries, gen-
erally the edge map could consist of an arbitrary number of disconnected parts
of arbitrary shapes. Thus, we can not make any assumption on the existence of
closed boundaries, which would be obligate for contour-based or region-based
shape feature extraction techniques.

3.2 Computation of Orientation

Once the edge map is generated, we compute the gradient direction for each
edge pixel. Having both partial derivatives, this direction can be calculated as 1

Θ(x, y) = atan2

(
∂I

∂y
(x, y),

∂I

∂x
(x, y)

)
, (1)

where (x, y) denotes the position of the edge pixel for which the orientation is
computed. The resulting values for Θ(x, y) always lie within the range (−π, π].

The partial derivatives ∂I
∂x and ∂I

∂y are approximated by a convolution of the

image with Sobel filters. Figure 2(e) shows an example orientation image, which
has been computed from the example image shown in Fig. 2(a) and the edge
map shown in Fig. 2(b).

1 The function atan2 denotes the four-quadrant implementation of the atan-function
in MATLAB.



(a) Example image (b) Edge map (c) Superimposed
edges

(d) Gradient direc-
tions

(e) Orientations (f) Curvature map

Fig. 2. Output of the different steps when extracting the SCH feature for a grayscale
image. (a) the input image, (b) the corresponding edge map, (c) the edge map super-
imposed to the input image, (d) the gradient directions for the input image, (e) the
edge pixel orientations, and (f) the final image showing the curvature values for the
edge pixels (based on a 3× 3-neighborhood).

3.3 Computation of Curvature

Having the orientation for each edge pixel, we compute the curvature for an edge
pixel as the difference between the maximum and minimum gradient angle over
all edge pixels within a certain neighborhood. The curvature C for an edge pixel
located at (x, y) can thus be formulated as:

C(x, y) = D(Θmin(x, y), Θmax(x, y)), (2)

with

Θmin(x, y) = min
(i,j)∈N(x,y)

Θ(i, j) (3)

and

Θmax(x, y) = max
(i,j)∈N(x,y)

Θ(i, j), (4)

where N(x, y) denotes the set of pixel positions of edge pixels within an w×w-
neighborhood centered at (x, y) (w denotes the width and height of the neigh-
borhood).

The difference between two arbitrary gradient directions might yield two
different types of angles: either an angle in the range [0, π] or the respective reflex
angle in the range (π, 2π]. Since we are only interested in angle differences in the



range [0, π], we quite often need to compute the smaller angle from the reflex
angle. Hence, we use the following formula to compute the difference between
two angles α and β:

D(α, β) =

{
∆(α, β), if ∆(α, β) ≤ π,
2π −∆(α, β), if ∆(α, β) > π

, (5)

with
∆(α, β) = max(α, β)−min(α, β). (6)

A schematic illustration of the pixel-wise curvature computation is provided
in Fig. 3.
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Fig. 3. Computation of the curvature for a pixel (black, filled square). The gradient
directions for the edge pixels (shown in dark gray) are indicated by arrows (the ac-
cording angles are given in degrees). The 3×3-neighborhood used in this example is
indicated by a black square. While the left image shows an example for a low curvature
value (C(x, y) = 30◦), the right image shows a rather high curvature (C(x, y) = 142◦).

Figure 2(f) shows an example for a curvature map based on the input image
shown in Fig. 2(a). In this figure, blue pixels denote a low curvature whereas red
pixels denote a high curvature value.

3.4 Generation of Feature Vector

Based on the curvature values for the edge pixels a histogram based on these
values is created.

For the construction of a histogram we do not consider curvature values of
non-edge pixels since these contain no information anyway (due to the restric-
tion of the curvature computation to edge pixels). Hence, the number of pixels
contributing to the curvature histogram is likely to change from image to image.
As a consequence we normalize each histogram by the number of edge pixels
found in the respective image.

The limits of the histograms cover the complete range of possible curvature
values (i.e. [0, π]). The number of bins to be used for histogram creation can be



adjusted. The higher the number of bins the more detailed the curvature values
get captured by the resulting histogram. But the length of the resulting feature
vectors will also be higher. In addition, in case of too many bins the bin values
may get rather noisy, making the feature unstable in terms of the classification. If,
in contrast, the number of bins is too low potentially discriminative information
may get lost in the histogram, with the advantage of a more compact descriptor.

In our experiments we use 8 bins for our histograms, which yields high clas-
sification results although the feature vectors are pretty compact. The choice for
the number of bins corresponds to a range of π/8 (i.e. 22.5◦) covered by each
bin.

4 Classification

To estimate the classification accuracy of our system we use leave-one-patient-
out cross-validation (LOPO-CV). In this setup one image out of the database is
considered as an unknown image. The remaining images are used to train the
classifier (omitting those images which originate from the same patient as the
image left out). The class of the unknown image is then predicted by the system.
These steps (training and prediction) are repeated for each image, yielding an
estimate of the overall classification accuracy.

To actually classify an unknown image (not contained in the training set)
we use the k-nearest-neighbor classifier (k-NN). This rather weak classifier has
been chosen to emphasize more on quantifying the discriminative power of the
features proposed in this work.

To measure the distance between two histograms we employ the histogram
intersection distance metric, defined as

d(Hi, Hj) = 1−
B∑

k=1

min (Hi,k, Hj,k) , (7)

where Hi and Hj are two normalized histograms, B denotes the number of bins
used in our histograms, and Hi,k and Hj,k represent the value of the k-th bin of
histogram Hi and Hj , respectively. We also carried out experiments using other
distance metric (the Euclidean distance metric and the Bhattacharyya distance
metric) but the classification results were rather similar to those obtained with
the histogram intersection distance metric. Hence, since the histogram intersec-
tion can be computed more efficiently as compared to the two other alternatives,
we decided to use this distance metric for our experiments.

5 Experiments

5.1 Experimental Setup

The image database used throughout our experiments is based on images taken
during duodenoscopies at the St. Anna Children’s Hospital, using pediatric



gastroscopes without magnification (GIF-Q165 and GIF-N180, Olympus, Ham-
burg). The main indications for endoscopy were the diagnostic evaluation of
dyspeptic symptoms, positive celiac serology, anemia, malabsorption syndromes,
inflammatory bowel disease, and gastrointestinal bleeding. Images were recorded
by using the modified immersion technique, which is based on the instillation
of water into the duodenal lumen for better visibility of the villi. Using this
technique, the tip of the gastroscope is inserted into the water and images of
interesting areas are taken. A study [13] shows that the visualization of villi
with the immersion technique has a higher positive predictive value. Previous
work [6] also found that the modified immersion technique is more suitable for
automated classification purposes as compared to the classical image capturing
technique.

To study the prediction accuracy of different features we manually created
an “idealistic” set of textured image patches with optimal quality. Thus, the
captured data was inspected and filtered by several qualitative factors (sharp-
ness, distortions, and visibility of features). In the next step, texture patches
with a fixed size of 128× 128 pixels were extracted (a size which turned out to
be optimally suited in earlier experiments on automated celiac disease diagnosis
[6]). This way we created an extended set containing more images available for
classification.

In order to generate ground truth for the texture patches used in experimen-
tation, the condition of the mucosal areas covered by the images was determined
by histological examination of biopsies from the corresponding regions. Severity
of villous atrophy was classified according to the modified Marsh classification.

Table 2. The detailed ground truth information for the celiac disease image database
used throughout our experiments.

NO NE NP

No celiac 234 306 131
Celiac 172 306 40

Total 406 612 171

Table 2 shows the detailed ground truth information used for our experiments
where NO, NE, NP denote the number of original images, the number of images
in the extended image set, and the number of patients in each class, respectively.

Since the optimal choices for the k-value for the k-NN classifier are not known
at beforehand, we decided to carry out an exhaustive search for the k-value
which leads to the highest overall classification rates (k ∈ 1, . . . , 50). Apart from
that we carry out experiments with grayscale images as well as with RGB color
images. In order to compute the local curvature values (see Equ. (2)), we used
a 3 × 3-neighborhood. While bigger neighborhoods are theoretically possible,
experiments showed that, especially in case of dense edge maps (i.e. a high
number of edge pixels), bigger neighborhoods are more likely to interfere with
edge pixels from different edges.



We also aim at a comparison between the proposed method and a set of four
features proposed in the past. These features include texture-based features as
well as shape-features:

– Graylevel Co-occurrence Matrix features (GLCM) [14]
The GLCM is a 2D-histogram, which describes the spatial relationship be-
tween neighboring pixels. The matrix is created based on the co-occurring
values of pixels across an image (for some fixed pixel offset). In other words,
for each possible combination of two pixel values the GLCM stores the num-
ber of co-occurrences within an image for a given displacement between the
pixels. While the displacement is fixed for a single GLCM, it can be ad-
justed with respect to the pixel distance (one pixel in our experiments) and
the direction.
To obtain features for the classification, we compute a GLCM for four dif-
ferent directions (up, down, left, and right) and compute a subset of the
statistical features proposed in [14] (i.e. contrast, correlation, energy, and
homogeneity) on each GLCM. The final features used are composed by con-
catenating the Haralick features extracted.

– Edge Co-occurrence Matrix (ECM) [15]
After applying eight differently orientated directional filters (rotated Sobel
filters) on the source image a gradient magnitude image is constructed for
each direction. Based on these the direction with the maximum response is
determined for each pixel, followed by masking out pixels with a gradient
magnitude below some threshold (75% below the maximum response in our
experiments). Then the methodology of GLCM is used to obtain the ECM
for one specific displacement (one pixel displacement in our experiments).
As suggested in [15], we compute the element-wise sum of eight ECMs (one
for each direction) to obtain the final ECM for one specific displacement
distance.

– Local Binary Patterns (LBP) [16]
Local binary patterns are a powerful method to describe local texture prop-
erties within an image. In its simplest form, this method compares the
grayscale value of a pixel to the values of the eight nearest neighbors. If
the value of a neighbor exceeds the center pixel value the respective neigh-
borhood position is set to one. The number resulting from the neighborhood
bit sequence corresponds to the LBP number. In other words, the neighbors
of each pixel are thresholded by the respective center pixel and the result-
ing binary sequence is used to obtain the final LBP number. Based on the
LBP numbers computed for all pixels in the source image a histogram is
generated, which then serves as the feature vector.

– Shape features combination (EDGEFEATURES) [9]
After Canny Edge detection, different features from edge-enclosed regions are
computed. In the original paper [9] we used edge shape features as well as
texture features. For the results in this work we slightly modified this method
to restrict the features to shape features. To find the most discriminative
combination of features we use a greedy forward feature subset selection.



Since our image database is quite limited in terms of the number of im-
ages available, we employ the leave-one-patient-out cross-validation (LOPO-
CV). Hence, the images from one patient are removed from the image set (serving
as the validation samples) while the remaining images are used to train the un-
derlying classifier. This process is repeated for all patients in the image database.

In order to be able to assess whether two different methods produce statis-
tically significant differences in the results obtained, we employ McNemar’s test
[17]. For two methods M1 and M2 this test statistic keeps track of the number of
images which are misclassified by method M1 but classified correctly by method
M2 (denoted by n01) and vice versa (denoted by n10). The test statistic, which
is approximately Chi Square distributed (with one degree of freedom), is then
computed as

T =
(|n01 − n10| − 0.5)2

n01 + n10
. (8)

From T the p-value can be computed as

p = 1− Fχ2
1
(T ) (9)

where Fχ2
1

denotes the cumulative distribution function of the Chi Square dis-
tribution with one degree of freedom. The null-hypothesis H0 for McNemar’s
test is that the outcomes of M1 and M2 lead to equal error rates. Given a fixed
significance level α, there is evidence that the methods M1 and M2 produce
significantly different results if p < α. As a consequence we can reject the null-
hypothesis H0. Throughout this work we chose a significance level of α = 0.05.
This implies that, if M1 and M2 are significantly different, there is a confidence
level of 95% that the differences between the outcomes of the methods are not
caused by random variation.

5.2 Results

Table 3 shows the detailed results for our experiments. The column “SD” in
this table indicates whether there is a statistically significant difference between
the results obtained with the SCH method and the other methods according
to McNemar’s test. In addition, the sign given in brackets indicates whether
the results obtained are significantly lower (−) or significantly higher (+) as
compared to the results of the SCH method. The last column (SCS) provides
the information whether there is a statistically significant difference between the
results for a specific method when comparing the grayscale and color results.

From these results we immediately notice that the SCH feature yields the
highest overall classification rate (accuracy) as compared to the other features.
This accounts to the results with grayscale images as well as to the color images
results. We also notice that SCH in most cases delivers significantly higher re-
sults when compared to the other methods. Only in case of LBP applied to the
grayscale images the difference to SCH is not significant, although also in this
case SCH delivers a higher classification accuracy.



Table 3. Detailed classification rates obtained for grayscale images and color images.

Grayscale Images

Method Accuracy Specificity Sensitivity SD SCS

SCH 87.58 89.87 85.29
ECM 77.45 75.16 79.74 3 (−)
GCM 73.69 67.97 79.41 3 (−)
LBP 84.97 82.35 87.58 3 (−)
EDGEFEATURES 67.16 75.49 58.82 3 (−)

RGB Color Images

Method Accuracy Specificity Sensitivity SD SCS

SCH 85.78 89.22 82.35
ECM 76.31 78.10 74.51 3 (−)
GCM 75.98 74.84 77.12 3 (−)
LBP 81.54 80.72 82.35 3 (−) 3 (+)
EDGEFEATURES 70.92 75.82 66.01 3 (−)

We also see that there are two methods only, which deliver a slightly higher
accuracy when extracting the features from color images (i.e. GCM and EDGE-
FEATURES). In case of all other methods we observe a slight decrease of the
accuracy in case of color images. But, except for the LBP method, the differences
observed are not significantly different.

When looking at the results yielded by the EDGEFEATURES method we
notice that the results are considerably lower as compared to the SCH method.
This is especially interesting since the EDGEFEATURES method employs a fea-
ture selection algorithm, which – at least theoretically – should be advantageous.

6 Conclusion

We proposed a novel shape-based feature which we successfully applied to the
problem of an automated celiac disease diagnosis. We showed that, although the
descriptor used is very compact, we in most cases achieve significantly higher
classification accuracies as compared to some well-established feature extraction
methods (texture features as well as shape-based features).

We also showed that the SCH method can be easily extended to work with
RGB color images. However, compared to the accuracy in case of grayscale im-
ages, the accuracy changes observed in our experiments are not statistically
significant.

Since the proposed feature has not been tailored specifically to celiac disease
images (i.e. it makes no assumptions about the edges and gradients used), it
may be potentially applied to other problem domains as well.
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