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1 Introduction
Uniform distributed point sequences were extensively studied on the unit cube.
In this note we want to generalize this concept to Rs with a weight function of
Gaussian type. Also a Diaphony and a Weyl-type criterion is stated for such
point sequences.

2 Uniform Distribution with respect to Gaussian
measure

In the following we use the notation

Φ (x) : R→ (0, 1); Φ(x) =
1√
2π

ˆ x

−∞
e−

t2

2 dt =
1

2

(
1 + erf

(
x√
2

))

for the Gaussian distribution function with zero mean and variance equal to 1
2

and with
erf (x) :=

2√
π

ˆ x

0

e−t
2

dt.

The function

F (x) : Rs → (0, 1) , F (x) :=
s∏

j=1

Φ
(
x(j)

)

is the distribution function of the s-dimensional standard normal distribution.

Definition 1. We call a sequence {xk}k≥1 ∈ Rs uniform distributed with respect
to the measure F (x) if

lim
N→∞

1

N

N∑

k=1

χI (xk) =
1√
2π

s

ˆ

I

e−
|x|2
2 dx (1)

for all compact intervals I ⊂ Rs.
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Remark 1. In Definition 1 we have used only compact intervals I. It can be
shown that if (1) is valid for all compact intervals then it is valid for all intervals
J . Let J be an arbitrary interval. At first we consider a finite interval. Then
we have
∣∣∣∣∣

1

N

N∑

k=1

χJ (xk)− 1√
2π

s

ˆ

J

e−
|x|2
2 dx

∣∣∣∣∣ ≤
∣∣∣∣∣

1

N

N∑

k=1

χJ (xk)− 1√
2π

s

ˆ

J

e−
|x|2
2 dx

∣∣∣∣∣ =

=

∣∣∣∣∣
1

N

N∑

k=1

χJ (xk)− 1√
2π

s

ˆ

J

e−
|x|2
2 dx

∣∣∣∣∣

due to the continuity of the measure. Due to (1) and the compactness of J there
is an N0 (ε) with

∣∣∣∣∣
1

N

N∑

k=1

χJ (xk)− 1√
2π

s

ˆ

J

e−
|x|2
2 dx

∣∣∣∣∣ < ε.

Now we consider the case of an infinite interval J . Let I be a compact interval
with the property

1√
2π

s

ˆ

Rs\I
e−

|x|2
2 dx < ε. (2)

Then we have
∣∣∣∣∣

1

N

N∑

k=1

χJ (xk)− 1√
2π

s

ˆ

J

e−
|x|2
2 dx

∣∣∣∣∣ ≤
∣∣∣∣∣

1

N

N∑

k=1

χI∩J (xk)− 1√
2π

s

ˆ

I∩J
e−

|x|2
2 dx

∣∣∣∣∣+

+
1

N

N∑

k=1

χJ\I (xk) +
1√
2π

s

ˆ

J\I
e−

|x|2
2 dx ≤

≤
∣∣∣∣∣

1

N

N∑

k=1

χI∩J (xk)− 1√
2π

s

ˆ

I∩J
e−

|x|2
2 dx

∣∣∣∣∣+
1

N

N∑

k=1

χRs\I (xk)+
1√
2π

s

ˆ

Rs\I
e−

|x|2
2 dx.

We have
1

N

N∑

k=1

χRs\I (xk) = 1− 1

N

N∑

k=1

χI (xk)

Due to (1) there is an index N0 (ε) with
∣∣∣∣∣

1

N

N∑

k=1

χI (xk)− 1√
2π

s

ˆ

I

e−
|x|2
2 dx

∣∣∣∣∣ < ε

for N > N0 (ε) or equivalent

1√
2π

s

ˆ

I

e−
|x|2
2 dx− ε < 1

N

N∑

k=1

χI (xk) <
1√
2π

s

ˆ

I

e−
|x|2
2 dx+ ε.
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Therefor we get

1− 1√
2π

s

ˆ

I

e−
|x|2
2 dx+ ε > 1− 1

N

N∑

k=1

χI (xk) > 1− 1√
2π

s

ˆ

I

e−
|x|2
2 dx− ε.

So we get the estimation

1

N

N∑

k=1

χRs\I (xk) < 2ε.

for N > N0 (ε). By (2) we have

1√
2π

s

ˆ

Rs\I
e−

|x|2
2 dx < ε

and due to (1) there is an index N1 (ε) with
∣∣∣∣∣

1

N

N∑

k=1

χI∩J (xk)− 1√
2π

s

ˆ

I∩J
e−

|x|2
2 dx

∣∣∣∣∣ < ε

for N > N1 (ε). So finally we have
∣∣∣∣∣

1

N

N∑

k=1

χJ (xk)− 1√
2π

s

ˆ

J

e−
|x|2
2 dx

∣∣∣∣∣ < 4ε

for N > max (N0 (ε) , N1 (ε)).

Another criterion for a sequence being uniform distributed with respect to
F (x) is the following:

Theorem 1. The point sequence {xk}k≥1 ∈ Rs is uniformly distributed with
respect to F (x) if and only if we have for all continuous functions f (x) with
compact support

lim
N→∞

1

N

N∑

k=1

f (xk) =
1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx. (3)

Proof. Let {xk}k≥1 ∈ Rs be uniform distributed with respect to F (x) and f (x)
be a continuous function with compact support. Then there are step functions
g1, g2 with g1 ≤ f ≤ g2 and

ˆ

Rs
(g2 − g1) e−

|x|2
2 dx < ε.

Due to the uniform distribution we have (3) for step functions. Now we use the
following (see [1])
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Lemma 1. Let mN (N ∈ Z, N ≥ 0) and m be positive functionals on some space
F of real valued functions f : X → R (X 6= Ø) and let L ⊆ F be the subspace
of these functions f satisfying

lim
N→∞

mN (f) = m (f) .

Suppose that f ∈ F has the property that for each ε > 0 there are functions
g1, g2 ∈ L with g1 ≤ f ≤ g2 and m (g2)−m (g1) < ε. Then we have f ∈ L.

From this we have (3) for f . Now let (3) be valid for all continuous functions
with compact support and let I be an arbitrary compact interval. Then there
are continuous function g1, g2 with compact support with g1 ≤ χI ≤ g2 and

ˆ

Rs
(g2 − g1) e−

|x|2
2 dx < ε.

Then by Lemma 1 we have (3) also for χI .

It is also possible to use f ∈ C∞0 in Theorem 1. So it can be reformulated
in the following way:

Theorem 2. The point sequence {xk}k≥1 ∈ Rs is uniformly distributed with
respect to F (x) if and only if we have for all f (x) ∈ C∞0

lim
N→∞

1

N

N∑

k=1

f (xk) =
1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx. (4)

3 The reproducing kernel Hilbert space Hλ

Let λ = (λ1, . . . , λs) ∈ Rs with |λi| < 1. Let Hn(x) be the n-th Hermite
polynomial with the generating function

e2xt−t
2

=
∞∑

n=0

Hn(x)

n!
tn

Let ν = (n1, . . . , ns) ∈ Ns0. It is well known that the system of functions


ϕν

(
x(1), . . . , x(s)

)
:=

s∏

j=1

e−
(x(j))

2

2
Hnj

(
x(j)

)
√

2njnj !
√
π
|ν ∈ Ns0





forms a basis of the space L2 (Rs). For λ ∈ Rs and ν ∈ Ns0 we use the abbrevi-
ation λν := λn1

1 . . . λnss . In the following we fix a λ and consider the space

Hλ :=



f(x) : Rs → R|f (x) :=

∑

ν∈Ns0

aνλ
νϕν ,

∑

ν∈Ns0

|aν |2 <∞



 .

The following theorem can be shown:
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Theorem 3. Equipped with the scalar product defined by

〈λνϕν , λµϕµ〉 = δn1m1
. . . δnsms

the space Hλ is a reproducing kernel Hilbert space with kernel

K : Rs × Rs → R;K (x, y) =

=
1√
πs

s∏

j=1

1√
1− λ4j

exp




4x(j)y(j)λ2j −
(
1 + λ4j

) ((
x(j)

)2
+
(
y(j)
)2)

2
(
1− λ4j

)


 .

Let f(x) ∈ Hλ . Then we have the following estimation for the integration
error, which is analogous to the error estimation in [7]:

∣∣∣∣∣
1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx− 1

N

N∑

k=1

f (xk)

∣∣∣∣∣ ≤

≤ ‖f‖Hλ .


 1

N2

N∑

k,l=1

K (xk, xl)−
2

N
√

2π
s

∑

k=1

e−
|xk|2

2 +
1

(2
√
π)
s




1
2

. (5)

Lemma 2. Let {xk}k≥1 ∈ Rs be a sequence uniform distributed with respect to
the measure F (x). Then we have

lim
N→∞

1

N

N∑

k=1

ϕν (xk) =
1√
2π

s

ˆ

Rs
ϕν (x) e−

|x|2
2 dx

for all ν ∈ Ns0.

Proof. The functions |ϕν (x)| are decreasing for |x| → ∞. Now we consider a
fix ϕν (x). Let ε > 0. There is a compact interval I (ν, ε) with the property

|ϕν (x)| < ε

for x /∈ I (ν, ε). There is a continuous function f (x) with compact support
I (ν, ε) with the property

max
x∈I(ν,ε)

|f (x)− ϕν (x)| < ε.

Then we have
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)− 1√
2π

s

ˆ

Rs
ϕν (x) e−

|x|2
2 dx

∣∣∣∣∣ ≤

≤
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)χRs\I(ν,ε) (xk)

∣∣∣∣∣+
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)χI(ν,ε) (xk)− 1

N

N∑

k=1

f (xk)

∣∣∣∣∣+
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+

∣∣∣∣∣
1

N

N∑

k=1

f (xk)− 1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣∣+

+

∣∣∣∣∣
1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx− 1√

2π
s

ˆ

I(ν,ε)

ϕν (x) e−
|x|2
2 dx

∣∣∣∣∣+

+

∣∣∣∣∣
1√
2π

s

ˆ

Rs\I(ν,ε)
ϕν (x) e−

|x|2
2 dx

∣∣∣∣∣ ≤

≤ ε+

∣∣∣∣∣
1

N

N∑

k=1

ϕν (xk)χRs\I (xk)

∣∣∣∣∣+

∣∣∣∣∣
1

N

N∑

k=1

f (xk)− 1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣∣+

+2ε ≤

≤ 4ε+

∣∣∣∣∣
1

N

N∑

k=1

f (xk)− 1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣∣ .

Due to Theorem 1 there is an index N (ε) with the property
∣∣∣∣∣

1

N

N∑

k=1

f (xk)− 1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣∣ < ε

for N > N (ε) . So we get
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)− 1√
2π

s

ˆ

Rs
ϕν (x) e−

|x|2
2 dx

∣∣∣∣∣ < 5ε.

We denote the second factor in (5) by

FN (xn) :=


 1

N2

N∑

k,l=1

K (xk, xl)−
2

N
√

2π
s

N∑

k=1

e−
|xk|2

2 +
1

(2
√
π)
s




1
2

(6)

and can show the following

Theorem 4. Let {xk}k≥1 ∈ Rs be uniform distributed with respect to the mea-
sure F (x). Then we have FN (xn)→ 0 for N →∞.

Proof. The reproducing kernel has the series expansion

K (x, y) =
∑

ν∈Ns0

ϕν (x)ϕν (y)λ2ν .

With the property
|ϕν (x)| ≤ 1
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we have the uniform convergence of the series expansion:
∣∣∣∣∣∣
∑

ν∈Ns0

ϕν (x)ϕν (y)λ2ν

∣∣∣∣∣∣
≤

s∏

j=1

( ∞∑

n=0

|λj |2n
)

=
s∏

j=1

1

1− λ2j
.

We have

1

N2

N∑

k,l=1

K (xk, xl) =
1

N2

N∑

k,l=1

∑

ν∈Ns0

ϕν (xk)ϕν (xl)λ
2ν =

=
∑

ν∈Ns0

λ2ν
1

N2

N∑

k,l=1

ϕν (xk)ϕν (xl) =
∑

ν∈Ns0

λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

.

By the uniform convergence of

∑

ν∈Ns0

λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

we have I ⊂ Ns0 with

I := {(n1, . . . , ns) |0 ≤ nj ≤M, j = 0, . . . , s}

with
∑

ν /∈I
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

< ε.

So we have
F 2
N (xn) =

=
∑

ν∈I
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

+
∑

ν /∈I
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

−

− 2

N
√

2π
s

∑

k=1

e−
|xk|2

2 +
1

(2
√
π)
s .

By the fact that the point sequence is uniform distributed with respect to F (x)
we have an index N0 (ε)with

∣∣∣∣∣∣

(
1

N

N∑

k=1

1√√
π
sϕ(0,...,0) (xk)

)2

− 1

(2
√
π)
s

∣∣∣∣∣∣
< ε

for N > N0 (ε) and we have an index N1 (ε)with
∣∣∣∣∣∣

1

N

N∑

k=1

e−
|xk|2

2

√
2π

s −
1

(2
√
π)
s

∣∣∣∣∣∣
< ε
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and by Lemma 2 we have for all ν ∈ I \(0, . . . , 0) we have an index N (ε, ν) with
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)− 1√
2π

s

ˆ

Rs
ϕν (x) e−

|x|2
2 dx

∣∣∣∣∣ < ε

for N > N (ε, ν). Then we have for N > max (maxν∈I N (ε, ν) , N0 (ε) , N1 (ε))

F 2
N (xn) ≤

∣∣∣∣∣∣

(
1

N

N∑

k=1

1√√
π
sϕ(0,...,0) (xk)

)2

− 1

(2
√
π)
s

∣∣∣∣∣∣
+

+2

∣∣∣∣∣∣
1

N

N∑

k=1

e−
|xk|2

2

√
2π

s −
1

(2
√
π)
s

∣∣∣∣∣∣
+

∑

ν∈I\(0,...,0)
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

+

+
∑

ν /∈I
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

<

< ε+ 2ε+
∑

ν∈I\(0,...,0)
λ2νε2 + ε ≤ 4ε+ ε2

s∏

j=1

1

1− λ2j
.

Remark 2. From the proof we see that it is possible to set λj = λ0 with |λ0| <
1 for j = 1, . . . , s. If we have FN (xn) → 0 for all λ = (λ0, . . . , λ0) then
we have FN (xn) → 0 for all λ = (λ1, . . . , λs) with |λj | < 1: We set λ0 =
max (|λ1| , . . . , |λs|) and we get

∑

ν∈I\(0,...,0)
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

+
∑

ν /∈I
λ2ν

(
1

N

N∑

k=1

ϕν (xk)

)2

≤

≤
∑

ν∈I\(0,...,0)
λ2ν0

(
1

N

N∑

k=1

ϕν (xk)

)2

+
∑

ν /∈I
λ2ν0

(
1

N

N∑

k=1

ϕν (xk)

)2

<

< ε2
∑

ν∈I\(0,...,0)
λ2ν0 + ε2

1

(1− λ20)
s .

4 A Weyl criterion for a sequence uniform dis-
tributed with respect to F (x)

Let f (x) ∈ C∞0 (Rs). From the fact that the Riesz-means

(SαRf) (x) =
∞∑

n=0

(
1− 2n+ s

R

)α

+

∑

|µ|=n
ϕµ (x)

ˆ

Rs
f (y)ϕµ (y) dy

8



where

(x)+ =

{
x x > 0

0 x ≤ 0

and α > s−1
2 converge uniformly to f (x) ∈ C∞0 for R → ∞ (see [5]) we have

for given ε > 0 an R0 (ε) > 0 with

‖(SαRf)− f‖∞ < ε

for R > R0 (ε) on Rs. Then we get
∣∣∣∣∣

1

N

N∑

k=1

f (xk)− 1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣∣ ≤

≤
∣∣∣∣∣

1

N

N∑

k=1

f (xk)− 1

N

N∑

k=1

(SαRf) (xk)

∣∣∣∣∣+

+

∣∣∣∣∣
1

N

N∑

k=1

(SαRf) (xk)− 1√
2π

s

ˆ

Rs
(SαRf) (x) e−

|x|2
2 dx

∣∣∣∣∣+

+

∣∣∣∣
1√
2π

s

ˆ

Rs
(SαRf) (x) e−

|x|2
2 dx− 1√

2π
s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣ .

Due to the uniform convergence we have
∣∣∣∣∣

1

N

N∑

k=1

f (xk)− 1

N

N∑

k=1

(SαRf) (xk)

∣∣∣∣∣ < ε

for R > R0 (ε). By Theorem 3.3.2 from [5] we have also convergence in L2 so
we get for the last term

∣∣∣∣
1√
2π

s

ˆ

Rs
(SαRf) (x) e−

|x|2
2 dx− 1√

2π
s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣ ≤

≤ 1√
2π

s

(
ˆ

Rs
(SαRf − f)

2
dx

) 1
2
(
ˆ

Rs
e−|x|

2

dx

) 1
2

<
ε√
2
s

for R > R1 (ε). In the second term we consider the case R > max (R0, R1). The
Riesz-means are finite linear combinations of the Hermite functions:

(SαRf) (x) =
∑

µ∈I⊂Ns0

cµϕµ (x) .

Now suppose that we have for all Hermite functions the following:

lim
N→∞

1

N

N∑

k=1

ϕν (xk) =
1√
2π

s

ˆ

Rs
ϕν (x) e−

|x|2
2 dx (7)
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for all ν ∈ Ns0. Then we have for all µ ∈ I an index N0 (ε, µ) with the property
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)− 1√
2π

s

ˆ

Rs
ϕν (x) e−|x|

2

dx

∣∣∣∣∣ < ε

for N > N0 (ε, µ) and for N > maxµ∈I N0 (ε, µ) we have
∣∣∣∣∣

1

N

N∑

k=1

(SαRf) (xk)− 1√
2π

s

ˆ

Rs
(SαRf) (x) e−

|x|2
2 dx

∣∣∣∣∣ ≤

≤
∞∑

m=0

(
1− 2m+ s

R

)α

+


 ∑

|µ|=m
|cµ| ×

×
∣∣∣∣∣

1

N

∑

k=1

ϕµ (xk)− 1√
2π

s

ˆ

Rs
ϕµ (x) e−

|x|2
2 dx

∣∣∣∣∣

]
<

< ε

∞∑

m=0

(
1− 2m+ s

R

)α

+

∑

|µ|=m
|cµ|

with the coefficients
cµ =

ˆ

Rs
f (x)ϕµ (x) dx.

Therefor we get the estimation

ε
∞∑

m=0

(
1− 2m+ s

R

)α

+

∑

|µ|=m
|cµ| ≤ ε


∑

µ∈Ns0

|cµ|2



1
2

= ε ‖f‖2 .

Summing up we get
∣∣∣∣∣

1

N

N∑

k=1

f (xk)− 1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

∣∣∣∣∣ < ε+ ε ‖f‖2 +
ε√

2
√
π
s

for R > max (R0 (ε) , R1 (ε))and N > maxµ∈I N0 (ε, µ). So assumption (7) is
sufficient to have

lim
N→∞

1

N

N∑

k=1

f (xk) =
1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

for f ∈ C∞0 (Rs). So we have the following

Theorem 5. The sequence {xk}k≥1 ∈ Rs is uniform distributed with respect to
F (x) if and only if we have

lim
N→∞

1

N

N∑

k=1

ϕν (xk) =
1√
2π

s

ˆ

Rs
ϕν (x) e−

|x|2
2 dx (8)

for all ν ∈ Ns0.
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Proof. From the computations above the criterion (8) is sufficient to have

lim
N→∞

1

N

N∑

k=1

f (xk) =
1√
2π

s

ˆ

Rs
f (x) e−

|x|2
2 dx

for all f ∈ C∞0 (Rs) which is equivalent to the uniform distribution of the se-
quence by Theorem 2. If the sequence is uniform distributed then we have the
property (8) by Lemma 2.

Remark 3. From Theorem 4 we can deduce another criterion for uniform dis-
tribution with respect to F (x):

Theorem 6. The sequence {xk}k≥1 ∈ Rs is uniform distributed with respect to
F (x) if and only if we have have FN (xn)→ 0 for N →∞.

Proof. From Theorem 4 we have FN (xn)→ 0 for N →∞ for a point sequence
{xk}k≥1 ∈ Rs uniform distributed with respect to F (x). Now let FN (xn)→ 0
for N → ∞. Due to the fact that ϕν ∈ Hλ for all ν ∈ Ns0 the error estimation
(5) is valid. With

‖ϕν‖Hλ =
1

λν

we have
∣∣∣∣∣

1

N

N∑

k=1

ϕν (xk)− 1√
2π

s

ˆ

Rs
ϕν (x) e−|x|

2

dx

∣∣∣∣∣ ≤
1

λν
FN (xn)→ 0

for all ν ∈ Ns0 and therefor by Theorem 5 we have uniform distribution of the
point sequence.
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5 Numerical results
In the following we present some numerical results using the built-in random
number generator of R [4] and the Zinterhof sequence [6]. We compute (6) and
the integration error of a test function f (x1, . . . , xs). Due to the scaling of (6)
we compute π

s
4FN (xn). As parameter λ we choose λj = 0.5 for j = 1, . . . , s.

In the following we denote the number of points by N and the dimension by s.

1. The R-built in random generator: We use the point sequence
xn = (xn,1, . . . , xn,s) where each vector is generated by the built-in ran-
dom generator with normal distribution N (0, I).

s N π
s
4FN (xn)

1 8192 0.005748381
1 65536 0.001103242
1 106496 0.002917923
5 8192 0.004736215
5 65536 0.001080732
5 106496 0.001352613
10 8192 0.00188253
10 65536 0.0005729474
10 106496 0.0005028543
70 8192 4.513478e-08
70 65536 1.083406e-08

2. Zinterhof sequence: Set θ =
(
exp (1) , exp

(
1
2

)
, . . . , exp

(
1
s

))
. Then we use

the sequence xn =
(
Φ−1 ({nθ1}) , . . . ,Φ−1 ({nθs})

)
with {x} = x mod 1.

s N π
s
4FN (xn)

1 8192 8.214825e-05
1 65536 9.455125e-05
1 106496 9.058794e-09
5 8192 0.0004311535
5 65536 0.0001032745
5 106496 8.713051e-05
10 8192 0.0008466832
10 65536 0.0003279167
10 106496 0.0001804514
70 8192 5.463154e-08
70 65536 1.357898e-08

Conclusion: The built-in random generator and the Zinterhof sequence show
comparable results. For small s the Zinterhof sequence is much better than
the random vector sequence. For higher dimensionality this advantage seems
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to decrease which is also founded by the used inversion method. In case of
the Zinterhof sequence a decrease of π

s
4FN (xn) by increasing N is visible which

is not the case for the random vector sequence (especially for small dimensions).

Now we have a look to the behavior of π
s
4FN (xn) under increase of the di-

mension. In the table below we have values for π
s
4FN (xn) , N = 16384 and

various dimensions. The point sequence is generated by the R built-in random
generator.

s π
s
4FN (xn)

1 0.001756766
3 0.00204581
7 0.002421785
12 0.0009855352
17 0.0003569184
22 0.0001435636
35 1.555285e-05
60 1.256569e-07
90 2.661663e-10

This shows that π
s
4FN (xn) is still not properly normalized. This problem is also

present in the ordinary L2-discrepancy. For the L2-discrepancy it is discussed
in [3], for reproducing kernel Hilbert spaces see [2].
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