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Abstract

Template protection targets privacy and se-
curity risks caused by unprotected storage
of biometric data. Meeting properties of ir-
reversibility and unlinkability template pro-
tection systems can be applied to secure ex-
isting records within biometric databases,
i.e. without re-enrollment of registered
subjects. The National Institute of Stan-
dards and Technology (NIST) demonstrated
that iris recognition algorithms can main-
tain their accuracy and interoperability with
compressed images. While template protec-
tion schemes are generally conceded highly
sensitive to any sort of signal degradation,
investigations on the impact of image com-
pression on recognition accuracy have re-
mained elusive. In this work a comprehen-
sive study of different image compression
standards applied to iris-biometric fuzzy
commitment schemes is presented. It is
demonstrated that compressed images, com-
pact enough for transmission across global
networks, do not drastically effect the key re-
trieval performance of a fuzzy commitment
scheme.

1 Introduction

Biometric template protection schemes are de-
signed to meet major requirements of biometric in-
formation protection (ISO/IEC FCD 24745), i.e.
irreversibility (infeasibility of reconstructing orig-
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Figure 1: Supposed scenario: compressed images are transmit-
ted and applied in a template protection system based on the
FCS.

inal biometric templates from the stored refer-
ence data) and unlinkability (infeasibility of cross-
matching different versions of protected templates).
In addition, template protection schemes, which are
commonly categorized as biometric cryptosystems
(also referred to as helper data-based schemes) and
cancelable biometrics (also referred to as feature
transformation), are desired to maintain recogni-
tion accuracy [10]. Due to the sensitivity of tem-
plate protection schemes it is generally conceded
that deployments of biometric cryptosystems as
well as cancelable biometrics require a constraint
acquisition of biometric traits, opposed to signal
degradation which may be caused by compression
algorithms [3]. However, so far no studies about the
actual impact of image compression algorithms on
the recognition performance of template protection
schemes have been conducted.

Biometric fuzzy commitment schemes (FCSs)
[11], biometric cryptosystems which represent in-
stances of biometric key-binding, have been pro-
posed for several modalities. While it is generally
considered that template protection schemes, such
as the FCS, are restricted to be operated under con-
straint circumstances detailed performance analysis
regarding compression algorithms are non-existent.
The contribution of this work is the investigation
of the impact of image compression on the perfor-
mance of FCSs. Different types of image compres-
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Figure 2: Basic operation mode of the FCS.

sion standards are utilized to generate compact iris
biometric data: JPEG (ISO/IEC 10918), JPEG
2000 (ISO/IEC 15444), and JPEG XR (ISO/IEC
29199-2). In Figure 1 the supposed scenario of ap-
plying compressed biometric data in a FCS is il-
lustrated. Experimental studies are carried out on
an iris-biometric database employing different fea-
ture extraction algorithms to construct FCSs. It is
found that the incorporation of image compression
standards to FCSs reveal key retrieval rates, com-
parable to the performance of original recognition
algorithms even at high compression levels.

This paper is organized as follows: in Section
2 related work regarding biometric cryptosystems
and FCSs is reviewed. Subsequently, a comprehen-
sive evaluation on the effect of image compression
standards on an iris-biometric FCS is presented in
Section 3. A conclusion is given in Section 4.

2 Previous Work

2.1 Fuzzy Commitment Schemes

In the last years several types of template protec-
tion schemes have been proposed (a review can be
found in [19]). In 1999, Juels and Wattenberg [11]
proposed the FCS, a bit commitment scheme re-
silient to noise. A FCS is formally defined as a
function F , applied to commit a codeword c ∈ C
with a witness x ∈ {0, 1}n where C is a set of error
correcting codewords of length n. The witness x
represents a binary biometric feature vector which
can be uniquely expressed in terms of the codeword
c along with an offset δ ∈ {0, 1}n, where δ = x− c.
Given a biometric feature vector x expressed in this
way, c is concealed applying a conventional hash
function (e.g. SHA-3), while leaving δ as it is. The

Ref. Modality FRR/ FAR Key Bits Remarks

[7]
Iris

0.47/ 0 140 ideal images
[2] 5.62/ 0 42 short key
[18] 4.64/ 0 128 –

[21]
Fingerprint

0.9/ 0 296 secret tokens
[17] 12.6/ 0 327 –

[22]
Face

3.5/ 0.11 58 >1 enrol. sam.
[1] 7.99/ 0.11 >4000 secret tokens

[15] Online Sig. EER >9 >100 >1 enrol. sam.

Table 1: Experimental results of proposed FCSs.

stored helper data is defined as,

F (c, x) =
(
h(x), x− c

)
. (1)

In order to achieve resilience to small corruptions
in x, any x′ sufficiently “close” to x according to
an appropriate metric (e.g. Hamming distance),
should be able to reconstruct c using the difference
vector δ to translate x′ in the direction of x. In case
‖x − x′‖ ≤ t, where t is a defined threshold lower
bounded by the according error correction capacity,
x′ yields a successful decommitment of F (c, x) for
any c. Otherwise, h(c) 6= h(c′) for the decoded
codeword c′ and a failure message is returned. In
Figure 2 the basic operation mode of the FCS is
shown.

Key approaches to FCSs with respect to applied
biometric modalities, performance rates in terms
of false rejection rate (FRR) and false acceptance
rate (FAR), and extracted key sizes are summa-
rized in Table 1. The FCS was applied to iris-
codes in [7]. In the scheme 2048-bit iris-codes are
applied to bind and retrieve 140-bit cryptographic
keys prepared with Hadamard and Reed-Solomon
error correction codes. Hadamard codes are applied
to eliminate bit errors originating from the natu-
ral biometric variance and Reed-Solomon codes are
applied to correct burst errors resulting from dis-
tortions. In order to provide an error correction
decoding in an iris-based FCS, which gets close to
a theoretical bound, two-dimensional iterative min-
sum decoding is introduced in [2]. A matrix formed
by two different binary Reed-Muller codes enables
a more efficient decoding. Different techniques to
improve the accuracy of iris-based FCSs have been
proposed in [18, 23]. In [17] a binary fixed-length
minutiae representation obtained by quantizing the
Fourier phase spectrum of a minutia set is applied
in a FCS where alignment is achieved through focal

2



points of high curvature regions. In [21] a random-
ized dynamic quantization transformation is ap-
plied to binarize fingerprint features extracted from
a multichannel Gabor filter. Subsequently, Reed-
Solomon codes are applied to construct the FCS
incorporating a non-invertible projection based on
a user-specific token. A similar FCS based on a
face features is presented in [1]. A FCS based on
face biometrics is presented in [22] in which real-
valued face features are binarized by simple thresh-
olding followed by a reliable bit selection to detect
most discriminative features. In [15] a FCS for
on-line signatures is presented. It has been found
that FCSs (template protection schemes in general)
reveal worse performance on non-ideal data sets
(e.g. in [2]), however, this is the case for under-
lying recognition algorithms, too. To our knowl-
edge, with respect to template protection schemes
no detailed investigations about the impact of sig-
nal degradation caused by image compression have
been proposed.

2.2 Image Compression in
Biometrics

During the last decade, several algorithms and
standards for compressing image data relevant in
biometric systems have evolved. The certainly
most relevant one is the ISO/IEC 19794 standard
on Biometric Data Interchange Formats, where in
its former version (ISO/IEC 19794-6:2005), Parts
4, 5, and 6 cover fingerprint, face, and iris im-
age data, respectively. In this standard, JPEG
and JPEG 2000 (and WSQ for fingerprints) were
defined as admissible formats for lossy compres-
sion, whereas for lossless and nearly lossless com-
pression JPEG-LS as defined in ISO/IEC 14495
was suggested. In the most recently published ver-
sion (ISO/IEC FDIS 19794-6 as of August 2010),
only JPEG 2000 is included for lossy compression
while the PNG format serves as lossless compres-
sor. These formats have also been recommended for
various application scenarios and standardized iris
images (IREX records) by the NIST Iris Exchange
(IREX http://iris.nist.gov/irex/) program.

The ANSI/NIST-ITL 1-2011 standard on “Data
Format for the Interchange of Fingerprint, Facial
& Other Biometric Information” (2nd draft as of
February 2011, former ANSI/NIST-ITL 1-2007)
supports both PNG and JPEG 2000 for the lossless

case and JPEG 2000 only for applications tolerat-
ing lossy compression.

A significant amount of work exists on using com-
pression schemes in biometric systems. The atten-
tion is almost exclusively focused on lossy tech-
niques since the bit-rate savings are more signifi-
cant as compared to lossless techniques. However,
in the context of lossy compression, the impact of
compression to recognition accuracy needs to be in-
vestigated.

For example, in [16] the impact of JPEG, JPEG
2000, SPIHT, PRVQ, and fractal image compres-
sion on recognition accuracy of selected fingerprint
and face recognition systems has been investigated.
Similarly, [6] also relates JPEG, JPEG 2000, and
(WSQ) compression rates to recognition perfor-
mance of some fingerprint and face recognition sys-
tems. While most work is devoted to lossy finger-
print compression (e.g. [12, 20]), also lossy com-
pression of face [5] and iris [4, 9, 13] image data has
been discussed. Only recently, JPEG XR has been
considered in the context of lossy iris compression
[8].

3 Image Compression in
Iris-Biometric FCS

3.1 Experimental Setup

Experiments are carried out using the CASIA-v3-
Interval iris database1. In experiments only left-eye
images (1332 instances) are evaluated. At prepro-
cessing the iris of a given sample image is detected,
un-wrapped to a rectangular texture of 512 × 64
pixel, and lighting across the texture is normalized
as shown in Figure 3 (a)-(d).

In the feature extraction stage we employ cus-
tom implementations of two different algorithms
used to extract binary iris-codes. The first one
was proposed by Ma et al. [14]. Within this ap-
proach the texture is divided into 10 stripes to ob-
tain 5 one-dimensional signals, each one averaged
from the pixels of 5 adjacent rows, hence, the up-
per 512× 50 pixel of preprocessed iris textures are
analyzed. A dyadic wavelet transform is then per-
formed on each of the resulting 10 signals, and two

1The Center of Biometrics and Security Research, CASIA
Iris Image Database, http://www.idealtest.org
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(a) (b)

(c)

(d)

(e)

(f)

Figure 3: Preprocessing and feature extraction: (a) image of eye
(b) detection of pupil and iris (c) unwrapped and (d) prepro-
cessed iris texture, iris-code of (e) Masek and (f) Ma et al..

fixed subbands are selected from each transform re-
sulting in a total number of 20 subbands. In each
subband all local minima and maxima above a ad-
equate threshold are located, and a bit-code al-
ternating between 0 and 1 at each extreme point
is extracted. Using 512 bits per signal, the final
code is then 512 × 20 = 10240 bit. The second
feature extraction method follows an implementa-
tion by Masek2 in which filters obtained from a
Log-Gabor function are applied. Here a row-wise
convolution with a complex Log-Gabor filter is per-
formed on the texture pixels. The phase angle of
the resulting complex value for each pixel is dis-
cretized into 2 bits. To have a code comparable to
the first algorithm, we use the same texture size
and row-averaging into 10 signals prior to applying
the one-dimensional Log-Gabor filter. The 2 bits
of phase information are used to generate a binary
code, which therefore is again 512×20 = 10240 bit.
Sample iris-codes of both algorithms are shown in
Figure 3 (e)-(f).

2L. Masek: Recognition of Human Iris Patterns for Bio-
metric Identification, Master’s thesis, University of Western
Australia, 2003

3.2 Iris-Biometric FCSs

The applied FCS follows the approach in [7]. For
the applied algorithm of Ma et al. and the Log-
Gabor feature extraction we found that the ap-
plication of Hadamard codewords of 128-bit and a
Reed-Solomon code RS(16, 80) reveals the best ex-
perimental results for the binding of 128-bit crypto-
graphic keys. At key-binding, a 16·8 = 128 bit cryp-
tographic key R is first prepared with a RS(16, 80)
Reed-Solomon code. The Reed-Solomon error cor-
rection code operates on block level and is capable
of correcting (80 – 16)/2 = 32 block errors. Then
the 80 8-bit blocks are Hadamard encoded. In a
Hadamard code codewords of length n are mapped
to codewords of length 2n−1 in which up to 25% of
bit errors can be corrected. Hence, 80 8-bit code-
words are mapped to 80 128-bit codewords result-
ing in a 10240-bit bitstream which is bound with
the iris-code by XORing both. Additionally, a hash
of the original key h(R) is stored as second part of
the commitment. At authentication key retrieval is
performed by XORing an extracted iris-code with
the first part of the commitment. The resulting
bitstream is decoded applying Hadamard decoding
and Reed-Solomon decoding afterwards. The re-
sulting key R′ is then hashed and if h(R′) = h(R)
the correct key R is released. Otherwise an error
message is returned.

In [2] it was found that a random permutation of
bits in iris-codes improves key retrieval rates since
a more uniform distribution of error occurrence is
obtained. We consider two types of FCSs, one in
which iris-codes are left unaltered and one in which
a single random permutation is applied to each iris-
code of the entire database, denoted by FCS RP.

3.3 Image Compression

In the proposed case study image compression is
applied prior to feature extraction, i.e. to pre-
processed iris textures. After image compression
feature extraction is applied and resulting iris-
codes are used to retrieve keys from stored com-
mitments, where commitments are generated using
un-compressed iris textures (see Figure 1). In case
image compression is applied to original iris im-
ages (as suggested by NIST) it would not be clear
if incorrect keys result from segmentation errors or
degraded iris textures (in this study the scope is
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(a) JPG-2 (b) JPG-4

(c) JPG-6 (d) JPG-8

(e) J2K-2 (f) J2K-4

(g) J2K-6 (h) J2K-8

(i) JXR-2 (j) JXR-4

(k) JXR-6 (l) JXR-8

Figure 4: Image Compression: (a)-(l) different levels of JPEG (JPG), JPEG 2000 (J2K), and JPEG XR (JXR) compression.

set on the latter, i.e. here we focus on the eventual
degradation of the iris texture with corresponding
effects on the extracted features but not on seg-
mentation errors). That is, the proposed scenario
provides a fair ground truth, i.e. by applying image
compression to segmented iris textures the obtained
key retrieval rates remain comparable.

Different types of image compression standards
are applied to iris-biometric FCSs:

• JPEG (ISO/IEC 10918): the well-established
DCT-based method of compressing images.
Compression ratios can be varied by being
more or less aggressive in the divisors used in
the quantization phase.

• JPEG 2000 (ISO/IEC 15444): a wavelet-based
image compression standard which can operate
at higher compression ratios without generat-
ing the characteristic artifacts of the original
DCT-based JPEG standard.

• JPEG XR (ISO/IEC 29199-2): which, like
JPEG 2000, generally provides better quality

than JPEG but is more efficient than JPEG-
2000, with respect to computational effort.
In the default configuration the Photo Over-
lay/Overlap Transformation (POT) is only ap-
plied to high pass coefficients prior to the
Photo Core Transformation (PCT).

For each standard, eight different compression
levels with fixed bitrate are considered. In Figure 4
examples of these compression levels are illustrated.

3.4 Performance Evaluation

Experimental results for both feature extraction
methods and FCSs according to different compres-
sion levels are summarized in Table 2, including av-
erage peak signal-to-noise ratios (PSNRs) caused
by image compression, resulting filesizes and the
number of corrected block errors after Hadamard
decoding (i.e. error correction capacities may not
handle the optimal amount of occurring errors
within intra-class key retrievals). The FRR of a
FCS defines the percentage of incorrect keys re-
turned to genuine subjects. By analogy, the FAR
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(a) Ma et al.
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(b) Ma et al. RP
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(c) Masek
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(d) Masek RP

Figure 5: Performance rates: (a)-(d) FCSs based on the algorithm of Ma et al. and Masek without applying image compression.

defines the percentage of correct keys retrieved by
non-genuine subjects. Obtained performance rates
for FCSs under various forms of signal degrada-
tion are plotted in Figure 6 (a)-(x). It is assumed
that all subjects are registered under favorable con-
ditions, i.e. commitments constructed using unal-
tered templates are decommited applying degraded
templates (i.e. computed from compressed data).
For the recognition algorithm of Ma et al. and
Masek FRRs of 2.54% and 6.59% are obtained at
a FAR of 0.01% where the Hamming distance is
applied as dis-similarity metric. Focusing on the
feature extraction of Ma et al. FCSs provide FRRs
of 5.90% in the original version and 3.73%, in the
case case a random permutation is applied. FRRs
are lower bounded by error correction capacities,
i.e. bit-level error correction is applied more effec-
tively if errors are distributed rather uniformly (see
Figure 5 (a) and (b)). With respect to the feature
extraction of Masek, applying a random permuta-
tion does not improve the key retrieval rate obtain-
ing FRRs of 8.01% and 9.15%, respectively. Due to
a more uniform distribution of errors Hadamard de-
coding succeeds more often for significant amount
of impostor attempts, causing a decrease of the er-
ror correction threshold (see Fig 5 (c) and (d)).

For all of the applied image compression stan-
dards a continuous significant degradation of recog-
nition accuracy with respect to applied levels of
compression is observed for both of the original iris
recognition algorithms (see Table 2, column “Origi-
nal HD”). For the highest compression levels FRRs
of 5.55%, 4.55%, and 5.18% are obtained at FARs
less than 0.01% for the JPEG, JPEG 2000, and
JPEG XR compression standard for the algorithm
of Ma et al.. For the feature extraction of Masek
FRRs of 10.93%, 10.43%, and 11.60% are achieved
at FARs less than 0.01% for the highest compres-
sion levels, i.e. recognition accuracy is significantly
effected for high compression levels, while low com-

pression levels almost maintain recognition accu-
racy of the schemes applied without any compres-
sion (e.g. JPG-1, J2K-1, and JXR-1). In contrast,
while FCSs based on both feature extraction meth-
ods suffer from degradation in key retrieval rates,
too, performance improves for average compression
levels. It is found that incorporating image com-
pression, at certain compression levels, improves
key retrieval rates obtaining FRRs of ∼ 4.50% and
10.00% (RP), since, on average, extracted iris-codes
are even more alike, i.e. image compression tends to
blur iris textures (see Figure 4) which is equivalent
to denoising (detailed information is not encoded at
feature extraction). FCSs RP based on both fea-
ture extraction methods partially outperform the
original recognition algorithms at higher compres-
sion levels. For both feature extraction methods
and both types of FCSs characteristics of FRRs
and FARs remain almost unaltered in case image
compression is applied (see rates within columns of
Figure 6), i.e. all types of investigated fuzzy com-
mitment schemes appear rather robust to a certain
extent of image compression.

As expected, the JPEG 2000 and JPEG XR com-
pression standards provide higher image quality at
certain file sizes with respect to PSNRs. However,
higher quality according to PSNR values does not
coincide with obtained recognition rates nor with
key retrieval rates achieved by the applied FCSs,
especially at higher compression levels (e.g. JPG-8
compression leads to better performance than J2K-
8 or JXR-8 for the FCS RP of Ma et al., even if
JPG-8 provides lower quality in terms of PSNR).

Uncompressed preprocessed iris textures exhibit
a file size of 32.4 kB. According to the ISO/IEC
19794-6 standard (Information technology – Bio-
metric data interchange formats – Part 6: Iris im-
age data) compressed iris images should reveal a
file size of 25-30 kB in “rectilinear” format (and
2 kB in “polar” format as suggested in the older
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(a) JPG-4 Ma et al.
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(b) JPG-4 Ma et al. RP
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(c) JPG-4 Masek
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(d) JPG-4 Masek RP
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(e) JPG-8 Ma et al.
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(f) JPG-8 Ma et al. RP
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(g) JPG-8 Masek
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(h) JPG-8 Masek RP
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(i) J2K-4 Ma et al.
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(j) J2K-4 Ma et al. RP
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(k) J2K-4 Masek
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(l) J2K-4 Masek RP
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(m) J2K-8 Ma et al.
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(n) J2K-8 Ma et al. RP
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(q) JXR-4 Ma et al.
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(r) JXR-4 Ma et al. RP
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Figure 6: Performance rates: (a)-(x) FCSs based on the algorithm of Ma et al. and Masek applying differnt levels of image
compression.
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Ma et al. Masek
HD FCS FCS RP HD FCS FCS RP

FRR at FRR at Corr. FRR at Corr. FRR at FRR at Corr. FRR at Corr.
Comp. ∅ PSNR ∅ Size FAR≤0.01 FAR≤0.01 Blocks FAR≤0.01 Blocks FAR≤0.01 FAR≤0.01 Blocks FAR≤0.01 Blocks
None – 1.00 2.54 % 5.90 % 32 3.72 % 31 6.59 % 8.01 % 28 9.15 % 17

JPG-1 42.51 dB 0.63 3.16 % 6.94 % 32 5.01 % 31 8.75 % 10.27 % 27 10.81 % 17
JPG-2 37.21 dB 0.49 3.37 % 6.79 % 32 4.40 % 32 9.11 % 10.11 % 27 10.57 % 17
JPG-3 31.30 dB 0.32 3.57 % 6.75 % 32 4.47 % 32 9.95 % 10.17 % 27 10.11 % 18
JPG-4 28.92 dB 0.26 3.62 % 7.25 % 32 4.41 % 32 9.42 % 10.19 % 27 10.03 % 18
JPG-5 25.83 dB 0.17 3.81 % 6.94 % 32 4.09 % 32 9.83 % 10.89 % 27 9.80 % 19
JPG-6 24.35 dB 0.13 4.50 % 7.56 % 32 4.71 % 32 9.80 % 10.42 % 27 10.73 % 17
JPG-7 22.19 dB 0.08 4.65 % 7.72 % 32 4.63 % 32 9.54 % 10.50 % 27 10.03 % 18
JPG-8 20.21 dB 0.05 5.55 % 8.18 % 32 4.86 % 32 10.93 % 11.58 % 27 11.35 % 18
J2K-1 43.12 dB 0.63 2.94 % 7.43 % 32 4.67 % 32 8.65 % 11.28 % 26 10.25 % 17
J2K-2 39.61 dB 0.49 3.04 % 7.42 % 32 4.27 % 32 8.89 % 9.83 % 27 9.12 % 18
J2K-3 34.62 dB 0.32 3.32 % 6.97 % 32 4.04 % 31 9.29 % 8.77 % 28 8.62 % 20
J2K-4 30.71 dB 0.26 3.71 % 7.02 % 32 4.32 % 32 9.47 % 9.19 % 28 9.59 % 19
J2K-5 28.45 dB 0.17 3.88 % 6.51 % 32 4.36 % 32 9.58 % 10.43 % 27 9.13 % 19
J2K-6 24.98 dB 0.13 3.96 % 7.39 % 32 4.02 % 32 9.94 % 12.41 % 26 9.84 % 20
J2K-7 23.18 dB 0.08 4.21 % 7.28 % 32 4.66 % 32 10.05 % 11.95 % 26 10.02 % 18
J2K-8 21.92 dB 0.05 4.55 % 7.49 % 32 5.21 % 32 10.43 % 10.23 % 27 10.33 % 17
JXR-1 44.32 dB 0.63 2.72 % 6.82 % 32 4.23 % 32 9.75 % 9.83 % 27 9.13 % 18
JXR-2 40.94 dB 0.49 3.09 % 6.95 % 32 3.78 % 32 9.92 % 9.97 % 27 9.64 % 17
JXR-3 34.14 dB 0.32 3.83 % 6.22 % 32 4.12 % 32 10.05 % 10.85 % 26 10.09 % 18
JXR-4 32.92 dB 0.26 4.79 % 6.95 % 32 4.34 % 32 10.13 % 9.55 % 27 9.11 % 19
JXR-5 28.56 dB 0.17 4.92 % 7.58 % 32 4.65 % 32 10.61 % 9.02 % 28 9.08 % 19
JXR-6 25.19 dB 0.13 5.03 % 7.04 % 32 4.70 % 32 10.74 % 11.98 % 26 10.88 % 17
JXR-7 21.75 dB 0.08 5.12 % 8.16 % 32 4.92 % 32 11.48 % 10.44 % 27 10.76 % 18
JXR-8 22.91 dB 0.05 5.18 % 9.44 % 32 5.79 % 32 11.60 % 14.92 % 26 11.96 % 18

Table 2: Summarized experiments for both feature extraction methods and FCSs under various signal degradation conditions.

standard version, respectively). For the proposed
FCSs acceptable key retrieval rates are achieved for
transfered iris textures of less than 2 kB (see Ta-
ble 2), e.g. for the JPEG 2000 image compression
standard at FARs less than 0.01% FRRs of 5.21%
and 10.33 % are obtained for FCSs RP, applying
the algorithm of Ma et al. and Masek, where com-
pressed iris textures exhibit a filesize of 32.4 × 0.05
= 1.62 kB (J2K–7).

4 Conclusion

In this work the impact of well established im-
age compression standards (JPEG, JPEG 2000,
and JPEG XR) on the recognition performance of
template protection systems, in particular to iris-
biometric FCSs, is investigated. In a comprehen-
sive experimental evaluation based on different fea-
ture extraction methods it is demonstrated that for
practical compression rates FCSs do not necessar-
ily suffer from drastic performance degradation in
contrast to the common opinion that template pro-
tection schemes are highly sensitive to any form of

signal degradation.

In future work we will conduct additional inves-
tigations in how far segmentation algorithms are
affected by the artifacts resulting from compres-
sion and will study the respective impact on FCSs
performance.
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