
Template Protection under Signal
Degradation:

A Case-Study on Iris-Biometric Fuzzy
Commitment Schemes

Christian Rathgeb Andreas Uhl

Technical Report 2011-04 November 2011

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series



Template Protection under Signal Degradation:

A Case-Study on Iris-Biometric Fuzzy Commitment Schemes∗

Christian Rathgeb and Andreas Uhl
Multimedia Signal Processing and Security Lab (WaveLab)

{crathgeb, uhl}@cosy.sbg.ac.at

Abstract

Low intra-class variability at high inter-
class variability is considered a fundamen-
tal premise of biometric template protection,
i.e. biometric traits need to be captured
under favorable conditions in order to pro-
vide practical recognition rates. While per-
formance degradations have been reported
on less constraint datasets detailed stud-
ies based on a certain ground truth have
remained evasive. The fuzzy commitment
scheme, in which chosen keys prepared with
error correction information are bound to
binary biometric feature vectors, represents
one of the most popular template protection
schemes. In this work the impact of blur
and noise to fuzzy commitment schemes is
investigated. Iris textures are successively
blurred and noised in order to measure the
robustness of iris-biometric fuzzy commit-
ment schemes.

1 Introduction

Biometric template protection schemes are de-
signed to meet major requirements of biometric in-
formation protection (ISO/IEC FCD 24745), i.e.
irreversibility (infeasibility of reconstructing orig-
inal biometric templates from the stored refer-
ence data) and unlinkability (infeasibility of cross-
matching different versions of protected templates).
In addition, template protection schemes, which are
commonly categorized as biometric cryptosystems

∗supported by the Autrian Science Fund, under project
no. L554-N15.
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Figure 1: Supposed blur and noise occurrence within an (iris)
biometric recognition system.

(also referred to as helper data-based schemes) and
cancelable biometrics (also referred to as feature
transformation), are desired to maintain recogni-
tion accuracy [5]. Due to the sensitivity of template
protection schemes it is generally conceded that de-
ployments of biometric cryptosystems as well as
cancelable biometrics require a constraint acquisi-
tion of biometric traits, in order to minimize any
sort of signal degradation [3]. However, so far no
studies about the actual impact of signal degra-
dation on the recognition performance of template
protection schemes have been proposed.

Biometric fuzzy commitment schemes (FCSs) [6],
biometric cryptosystems which represent instances
of biometric key-binding, have been proposed for
several modalities (e.g. fingerprints, iris) achieving
practical key retrieval rates at sufficient key sizes.
While it is generally considered that template pro-
tection schemes, such as the FCS, are restricted
to be operated under constraint environment de-
tailed performance analysis in the presence of signal
degradation have remained elusive. The contribu-
tion of this work is the investigation of the impact
of signal degradation on the performance of FCSs.
Two types of conditions, blur and noise, applied in
the order illustrated in Figure 1, are investigated:

• Blur: focusing on image acquisition out of fo-
cus blur represents a frequent distortion.

• Noise: noise represents an undesirable but in-
evitable product of any electronic device.
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Figure 2: The FCS: keys prepared with error correction are XORed with biometric feature vectors in the key-binding process.
biometric features are XORed with the commitment and error correction decoding is applied at key-retrieval. Keys are verified
applying hashes.

Experimental studies are carried out on iris-
biometric data employing different feature extrac-
tion algorithms to construct FCSs. Various com-
binations of different intensities of blur and noise
are applied to simulate signal degradation. It is
demonstrated that, opposed to current opinions,
signal degradation, within a restricted extent, does
not necessarily effect the key retrieval performance
of a template protection scheme, even if this is the
case for original recognition algorithms.

This paper is organized as follows: in Section
2 related work regarding biometric cryptosystems
and FCSs is reviewed. Subsequently, a comprehen-
sive case study on iris-biometric FCS is presented
in Section 3. A conclusion is given in Section 4 .

2 Related Work

In past year numerous template protection schemes
have been proposed (a review can be found in [3]
and in [5]). In 1999, Juels and Wattenberg [6] pro-
posed the FCS, a bit commitment scheme resilient
to noise. A FCS is formally defined as a function
F , applied to commit a codeword c ∈ C with a
witness x ∈ {0, 1}n where C is a set of error cor-
recting codewords of length n. The witness x rep-
resents a binary biometric feature vector which can
be uniquely expressed in terms of the codeword c
along with an offset δ ∈ {0, 1}n, where δ = x − c.
Given a biometric feature vector x expressed in this
way, c is concealed applying a conventional hash
function (e.g. SHA-3), while leaving δ as it is. The
stored helper data is defined as,

F (c, x) =
(
h(x), x− c

)
. (1)

In order to achieve resilience to small corruptions
in x, any x′ sufficiently “close” to x according to
an appropriate metric (e.g. Hamming distance),
should be able to reconstruct c using the difference
vector δ to translate x′ in the direction of x. In case
‖x − x′‖ ≤ t, where t is a defined threshold lower
bounded by the according error correction capacity,
x′ yields a successful decommitment of F (c, x) for
any c. Otherwise, h(c) 6= h(c′) for the decoded
codeword c′ and a failure message is returned. In
Figure 2 the basic operation mode of the FCS is
illustrated.

Key approaches to FCSs with respect to applied
biometric modalities, performance rates in terms of
false rejection rate (FRR) and false acceptance rate
(FAR), extracted key sizes, and applied data sets
are summarized in Table 1. The FCS was applied
to iris-codes in [4]. In the scheme 2048-bit iris-
codes are applied to bind and retrieve 140-bit cryp-
tographic keys prepared with Hadamard and Reed-
Solomon error correction codes. Hadamard codes
are applied to eliminate bit errors originating from
the natural biometric variance and Reed-Solomon
codes are applied to correct burst errors resulting
from distortions. In order to provide an error cor-
rection decoding in an iris-based FCS, which gets
close to a theoretical bound, two-dimensional it-
erative min-sum decoding is introduced in [2]. A
matrix formed by two different binary Reed-Muller
codes enables a more efficient decoding. Different
techniques to improve the accuracy of iris-based
FCSs have been proposed in [11, 15]. In [9] a binary
fixed-length minutiae representation obtained by
quantizing the Fourier phase spectrum of a minutia
set is applied in a FCS where alignment is achieved
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Ref. Modality FRR/ FAR Key Bits Test Set Remarks

Hao et al. [4]
Iris

0.47/ 0 140 70 subjects ideal images
Bringer [2] 5.62/ 0 42 ICE 2005 short key

Rathgeb and Uhl [11] 4.64/ 0 128 CASIAv3 –

Teoh and Kim [13]
Fingerprint

0.9/ 0 296 FVC 2002 user-specific tokens
Nandakumar [9] 12.6/ 0 327 FVC 2002 –

Van der Veen et al. [14]
Face

3.5/ 0.11 58 FERET/ Caltech >1 enroll. sam.
Ao and Li [1] 7.99/ 0.11 >4000 294 subjects user-specific tokens

Maiorana and Campisi [8] Online Sig. EER >9 >100 MCYT >1 enroll. sam.

Sutcu et al. [12] Fingerprint & Face 0.92/ 0.01 – NIST DB 27/ Face94 –

Nandakumar and Jain [10] Fingerprint & Iris 1.8/ 0.01 224 MSU/ CASIAv1 use of fuzzy vault

Table 1: Experimental results of proposed FCSs in literature according to applied biometric modalities, obtained performance
rates, number of bound key bits, and used test sets.

through focal points of high curvature regions. In
[13] a randomized dynamic quantization transfor-
mation is applied to binarize fingerprint features
extracted from a multichannel Gabor filter. Sub-
sequently, Reed-Solomon codes are applied to con-
struct the FCS incorporating a non-invertible pro-
jection based on a user-specific token. A similar
FCS based on a face features is presented in [1]. A
FCS based on face biometrics is presented in [14]
in which real-valued face features are binarized by
simple thresholding followed by a reliable bit se-
lection to detect most discriminative features. In
[8] a FCS for on-line signatures is presented. In
[12, 10] multi-biometric FCSs are proposed. It
has been found that FCSs (template protection
schemes in general) reveal worse performance on
non-ideal data sets (e.g. in [2]), however, this is
the case for underlying recognition algorithms, too.
To our knowledge, so far, no detailed investigations
about the impact of signal degradation based on a
certain ground truth have been proposed.

3 A Case Study on Iris-FCSs

3.1 Experimental Setup

Experiments are carried out using the CASIA-v3-
Interval iris database1. In experiments only left-eye
images (1332 instances) are evaluated. At prepro-
cessing the iris of a given sample image is detected,
un-wrapped to a rectangular texture of 512 × 64
pixel, and lighting across the texture is normalized
as shown in Figure 3 (a)-(d).

1The Center of Biometrics and Security Research, CASIA
Iris Image Database, http://www.idealtest.org

(a) (b)

(c)

(d)

(e)

(f)

Figure 3: Preprocessing and feature extraction: (a) image of eye
(b) detection of pupil and iris (c) unwrapped and (d) prepro-
cessed iris texture, iris-code of (e) Masek and (f) Ma et al..

In the feature extraction stage we employ cus-
tom implementations of two different algorithms
used to extract binary iris-codes. The first one
was proposed by Ma et al. [7]. Within this ap-
proach the texture is divided into 10 stripes to ob-
tain 5 one-dimensional signals, each one averaged
from the pixels of 5 adjacent rows, hence, the up-
per 512× 50 pixel of preprocessed iris textures are
analyzed. A dyadic wavelet transform is then per-
formed on each of the resulting 10 signals, and two
fixed subbands are selected from each transform re-
sulting in a total number of 20 subbands. In each
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subband all local minima and maxima above a ad-
equate threshold are located, and a bit-code al-
ternating between 0 and 1 at each extreme point
is extracted. Using 512 bits per signal, the final
code is then 512 × 20 = 10240 bit. The second
feature extraction method follows an implementa-
tion by Masek2 in which filters obtained from a
Log-Gabor function are applied. Here a row-wise
convolution with a complex Log-Gabor filter is per-
formed on the texture pixels. The phase angle of
the resulting complex value for each pixel is dis-
cretized into 2 bits. To have a code comparable to
the first algorithm, we use the same texture size
and row-averaging into 10 signals prior to applying
the one-dimensional Log-Gabor filter. The 2 bits
of phase information are used to generate a binary
code, which therefore is again 512×20 = 10240 bit.
Sample iris-codes of both algorithms are shown in
Figure 3 (e)-(f).

3.2 Iris-Biometric FCSs

The applied fuzzy commitment scheme follows the
approach in [4]. For the applied algorithm of Ma
et al. and the Log-Gabor feature extraction we
found that the application of Hadamard codewords
of 128-bit and a Reed-Solomon code RS(16, 80) re-
veals the best experimental results for the binding
of 128-bit cryptographic keys. At key-binding, a
16·8 = 128 bit cryptographic key R is first pre-
pared with a RS(16, 80) Reed-Solomon code. The
Reed-Solomon error correction code operates on
block level and is capable of correcting (80 – 16)/2
= 32 block errors. Then the 80 8-bit blocks are
Hadamard encoded. In a Hadamard code code-
words of length n are mapped to codewords of
length 2n−1 in which up to 25% of bit errors can be
corrected. Hence, 80 8-bit codewords are mapped
to 80 128-bit codewords resulting in a 10240-bit
bitstream which is bound with the iris-code by
XORing both. Additionally, a hash of the original
key h(R) is stored as second part of the commit-
ment. At authentication key retrieval is performed
by XORing an extracted iris-code with the first
part of the commitment. The resulting bitstream
is decoded applying Hadamard decoding and Reed-
Solomon decoding afterwards. The resulting key R′

2L. Masek: Recognition of Human Iris Patterns for Bio-
metric Identification, Master’s thesis, University of Western
Australia, 2003

Blur Noise
Abbrev. Description Abbrev. Description

B-0 no blur N-0 no noise
B-1 σ = 0.6 N-1 σ = 10
B-2 σ = 1.0 N-2 σ = 20
B-3 σ = 1.2 N-3 σ = 30

Table 2: Blur and noise conditions considered for signal degra-
dation (different denotations of σ are defined in 3.3.1 and 3.3.2).

is then hashed and if h(R′) = h(R) the correct key
R is released. Otherwise an error message is re-
turned.

In [2] it was found that a random permutation of
bits in iris-codes improves key retrieval rates since
a more uniform distribution of error occurrence is
obtained. We consider two types of FCSs, one in
which iris-codes are left unaltered and one in which
a single random permutation is applied to each iris-
code of the entire database, denoted by FCS RP.

3.3 Signal Degradation

Signal degradation is simulated by means of blur
and noise where blur is applied prior to noise (out
of focus blur is caused before noise occurs). For
different intensities (including absence) of blur and
noise, which are summarized in Table 2, are consid-
ered, and combinations of these. In order to avoid
segmentation errors blur and noise is incorporated
after preprocessing (deformation of blur and noise
caused by an unwrapping of the iris is ignored, how-
ever, signal degradation still decreases recognition
accuracy of the applied algorithms). Examples of
adding according signal degradation to a sample iris
texture are shown in Figure 4 (a)-(p). is Blur and
noise conditions are described in detail as follows:

3.3.1 Blur Conditions

Out of focus blur represents a frequent distortion in
image acquisition mainly caused by an inappropri-
ate distance of the camera to the eye (another type
of blur is motion blur caused by rapid movement
which is not considered in this work). We simulate
the point spread function of the blur as a Gaussian

f(x, y) =
1

2πσ2
e−

x2+y2

2σ2 , (2)

which is then convoluted with the specific image.
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(a) B-0 | N-0 (b) B-1 | N-0

(c) B-2 | N-0 (d) B-3 | N-0

(e) B-0 | N-1 (f) B-1 | N-1

(g) B-2 | N-1 (h) B-3 | N-1

(i) B-0 | N-2 (j) B-1 | N-2

(k) B-2 | N-2 (l) B-3 | N-2

(m) B-0 | N-3 (n) B-1 | N-3

(o) B-2 | N-3 (p) B-3 | N-3

Figure 4: Signal degradation: (a)-(p) different intensities of blur and noise applied to a sample iris texture.

3.3.2 Noise Conditions

Amplifier noise is primarily caused by thermal
noise. Due to signal amplification in dark (or un-
derexposed) areas of an image, thermal noise has
a high impact on these areas. Additional sources
contribute to the noise in a digital image such as
shot noise, quantization noise and others. These
additional noise sources however, only make up a
negligible part of the noise and are therefore ig-
nored during this work.

Let P be the set of all pixels in image I ∈ N2, ω =
(ωp)p∈P , be a collection of independent identically
distributed real-valued random variables following
a Gaussian distribution with mean m and variance
σ2. We simulate thermal noise as additive Gaussian
noise with m = 0, variance σ2 for pixel p at x, y as

N(x, y) = I(x, y) + ωp, p ∈ P, (3)

with N being the noisy image, for an original I.

3.4 Performance Evaluation

Experimental results for both feature extraction
methods and FCSs according to different intensities
of blur and noise are summarized in Table 3, includ-
ing average peak signal-to-noise ratios (PSNRs)
caused by signal degradation and the number of
corrected block errors after Hadamard decoding
(i.e. error correction capacities may not handle the
optimal amount of occurring errors within intra-
class key retrievals). The FRR of a FCS defines
the percentage of incorrect keys returned to genuine

5
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(a) B-0 | N-0 Ma et al.
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(b) B-0 | N-0 Ma et al. RP
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(c) B-0 | N-0 Masek

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20  24  28  32  36  40  44  48  52  56  60  64  68  72  76  80

P
ro

b
ab

il
it

y
 D

en
si

ty
 (

%
)

Number of Block Errors

 

False Rejection Rate
False Acceptance Rate

Threshold: FAR<0.01 (MAX=32)

(d) B-0 | N-0 Masek RP
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(e) B-3 | N-0 Ma et al.
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(f) B-3 | N-0 Ma et al. RP
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(g) B-3 | N-0 Masek
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(h) B-3 | N-0 Masek RP
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(i) B-0 | N-3 Ma et al.
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(j) B-0 | N-3 Ma et al. RP
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(k) B-0 | N-3 Masek
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(l) B-0 | N-3 Masek RP
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(m) B-3 | N-3 Ma et al.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  4  8  12  16  20  24  28  32  36  40  44  48  52  56  60  64  68  72  76  80

P
ro

b
ab

il
it

y
 D

en
si

ty
 (

%
)

Number of Block Errors

 

False Rejection Rate
False Acceptance Rate

Threshold: FAR<0.01 (MAX=32)

(n) B-3 | N-3 Ma et al. RP
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(o) B-3 | N-3 Masek
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Figure 5: Performance rates: (a)-(p) FCSs based on the algorithm of Ma et al. and Masek under various signal degradation
conditions.

subjects. By analogy, the FAR defines the percent-
age of correct keys retrieved by non-genuine sub-
jects. Obtained performance rates for FCSs under
various forms of signal degradation are plotted in
Figure 5 (a)-(p). It is assumed that all subjects are
registered under favorable conditions, i.e. commit-
ments constructed using unaltered templates are
decommited applying degraded templates. For the
recognition algorithm of Ma et al. and Masek
FRRs of 2.54% and 6.59% are obtained at a FAR
of 0.01% where the Hamming distance is applied as
dis-similarity metric. Focusing on the feature ex-
traction of Ma et al. FCSs provide FRRs of 5.90%
and 3.73%, in the case case a random permuta-
tion is applied. FRRs are lower bounded by error

correction capacities, i.e. bit-level error correction
is applied more effectively if errors are distributed
rather uniformly (see Figure 5 (a) and (b)). With
respect to the feature extraction of Masek, apply-
ing a random permutation does not improve the key
retrieval rate obtaining FRRs of 8.01% and 9.15%,
respectively. Due to a more uniform distribution of
errors Hadamard decoding succeeds more often for
significant amount of impostor attempts, causing a
decrease of the error correction threshold (see Fig
5 (c) and (d)).

Simulating signal degradation, recognition accu-
racy is significantly effected for both recognition
algorithms leading to FRRs above 4% and 10% at
a FAR of 0.01%, respectively. In contrast, FCSs

6



Ma et al. Masek
HD FCS FCS RP HD FCS FCS RP

FRR at FRR at Corr. FRR at Corr. FRR at FRR at Corr. FRR at Corr.
Blur Noise ∅ PSNR FAR≤0.01 FAR≤0.01 Blocks FAR≤0.01 Blocks FAR≤0.01 FAR≤0.01 Blocks FAR≤0.01 Blocks
B-0 N-0 – 2.54 % 5.90 % 32 3.72 % 31 6.59 % 8.01 % 28 9.15 % 17
B-1 N-0 26.47 dB 3.82 % 5.69 % 32 3.66 % 32 9.92 % 7.86 % 28 9.29 % 17
B-2 N-0 21.04 dB 3.75 % 4.88 % 32 3.32 % 32 10.62 % 7.59 % 26 10.78 % 15
B-3 N-0 19.62 dB 4.36 % 5.22 % 32 3.93 % 28 10.94 % 8.61 % 27 11.32 % 14
B-0 N-1 28.32 dB 4.25 % 5.94 % 32 3.79 % 32 9.51 % 8.75 % 27 9.32 % 19
B-1 N-1 24.27 dB 3.36 % 5.76 % 32 3.86 % 32 10.15 % 9.02 % 27 9.15 % 18
B-2 N-1 20.21 dB 3.84 % 5.56 % 32 3.25 % 32 10.80 % 8.95 % 27 9.56 % 17
B-3 N-1 19.07 dB 4.15 % 6.30 % 31 4.54 % 29 10.69 % 8.88 % 27 10.51 % 15
B-0 N-2 22.54 dB 4.88 % 6.51 % 32 3.93 % 32 9.92 % 9.22 % 27 9.39 % 18
B-1 N-2 20.99 dB 4.09 % 5.76 % 32 3.59 % 32 10.62 % 9.17 % 28 9.83 % 18
B-2 N-2 18.58 dB 3.86 % 5.76 % 32 3.66 % 32 9.97 % 9.02 % 27 12.00 % 14
B-3 N-2 17.70 dB 4.27 % 5.83 % 32 3.73 % 31 10.69 % 10.44 % 26 10.85 % 15
B-0 N-3 19.14 dB 4.36 % 6.44 % 32 4.20 % 32 10.33 % 9.86 % 28 9.97 % 17
B-1 N-3 18.28 dB 4.43 % 6.37 % 32 4.07 % 32 10.49 % 10.37 % 26 9.97 % 17
B-2 N-3 16.82 dB 4.56 % 6.24 % 32 4.32 % 32 10.96 % 9.43 % 27 9.76 % 18
B-3 N-3 16.19 dB 4.27 % 6.58 % 32 4.40 % 32 9.54 % 9.29 % 27 10.04 % 17

Table 3: Summarized experiments for both feature extraction methods and FCSs under various signal degradation conditions.

based on both feature extraction methods appear
rather robust to signal degradation. Focusing on
FCSs based on the algorithm of Ma et al. FRRs do
not significantly increase, for drastic signal degra-
dation FRRs of ∼ 6.50% and ∼ 4.00% (RP) are
obtained compared to a FRR of 5.90% and 3.72%
(RP) without signal degradation. It is found that
incorporating a certain amount of blur even im-
proves key retrieval rates obtaining FRRs of ∼
5.00% and 3.50% (RP), since, on average, extracted
iris-codes are even more alike (iris-codes extracted
from blurred textures do not encode detailed fea-
tures), i.e. slight blurring is equivalent to denoising.
Focusing on the algorithm of Masek a more pre-
dominant decrease in key retrieval rates is observed,
however, results are still comparable to those ob-
tained in the absence of blur and noise. In case of
drastic signal degradation FRRs of ∼ 10.00% (orig-
inal and RP) are obtained (partially outperform-
ing the original recognition algorithm), compared
to 8.01% and 9.15% (RP) without signal degrada-
tion. Again, in case of a slight blur performance is
improved or retained.

For both feature extraction methods and both
types of FCSs characteristics of FRRs and FARs re-
main almost unaltered in presence of signal degra-
dation (see rates within columns of Figure 5), i.e.
all types of investigated fuzzy commitment schemes
appear rather robust to a certain extent of signal
degradation based on blur and noise.

4 Conclusion

In this paper we investigate the impact of signal
degradation on the performance of template protec-
tion schemes, in particular, the effect of blur and
noise to FCSs based on iris. Based on different
feature extraction methods FCSs are constructed
and a significant amount of blur and noise is added
successively to iris biometric data to simulate out
of focus blur and thermal noise. It is found that,
opposed to current opinions, FCSs appear rather
resilient to a certain amount of signal degradation
within biometric data obtaining key retrieval rates
comparable to those achieved in the absence of sig-
nal degradation, even if this is not the case for un-
derlying recognition algorithms. Future work will
comprise studies on the impact of image compres-
sion to template protection.

References

[1] M. Ao and S. Z. Li. Near infrared face based bio-
metric key binding. In Proc. of the 3rd Int. Conf.
on Biometrics 2009 (ICB’09) LNCS: 5558, pages
376–385, 2009.

[2] J. Bringer, H. Chabanne, G. Cohen, B. Kindarji,
and G. Zémor. Theoretical and practical bound-
aries of binary secure sketches. IEEE Trans. on In-
formation Forensics and Security, 3:673–683, 2008.

[3] A. Cavoukian and A. Stoianov. Biometric encryp-
tion: The new breed of untraceable biometrics.

7



In Biometrics: fundamentals, theory, and systems.
Wiley, 2009.

[4] F. Hao, R. Anderson, and J. Daugman. Combining
Cryptography with Biometrics Effectively. IEEE
Trans. on Computers, 55(9):1081–1088, 2006.

[5] A. K. Jain, K. Nandakumar, and A. Nagar. Bio-
metric template security. EURASIP J. Adv. Signal
Process, 2008:1–17, 2008.

[6] A. Juels and M. Wattenberg. A fuzzy commitment
scheme. Sixth ACM Conference on Computer and
Communications Security, pages 28–36, 1999.

[7] L. Ma, T. Tan, Y. Wang, and D. Zhang. Effi-
cient Iris Recogntion by Characterizing Key Lo-
cal Variations. IEEE Trans. on Image Processing,
13(6):739–750, 2004.

[8] E. Maiorana and P. Campisi. Fuzzy commitment
for function based signature template protection.
IEEE Signal Processing Letters, 17:249–252, 2010.

[9] K. Nandakumar. A fingerprint cryptosystem based
on minutiae phase spectrum. In Proc. of IEEE
Workshop on Information Forensics and Security
(WIFS), 2010.

[10] K. Nandakumar and A. K. Jain. Multibiometric
template security using fuzzy vault. In IEEE 2nd
International Conference on Biometrics: Theory,

Applications, and Systems, BTAS ’08, pages 1–6,
2008.

[11] C. Rathgeb and A. Uhl. Adaptive fuzzy commit-
ment scheme based on iris-code error analysis. In
Proc. of the 2nd European Workshop on Visual
Information Processing (EUVIP’10), pages 41–44,
2010.

[12] Y. Sutcu, Q. Li, and N. Memon. Secure biomet-
ric templates from fingerprint-face features. In
IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR ’07, pages 1–6, 2007.

[13] A. Teoh and J. Kim. Secure biometric template
protection in fuzzy commitment scheme. IEICE
Electron. Express, 4(23):724–730, 2007.

[14] M. Van der Veen, T. Kevenaar, G.-J. Schrijen,
T. H. Akkermans, and F. Zuo. Face biometrics
with renewable templates. In SPIE Proc. on Se-
curity, Steganography, and Watermarking of Mul-
timedia Contents, volume 6072, pages 205–216,
2006.

[15] L. Zhang, Z. Sun, T. Tan, and S. Hu. Robust bio-
metric key extraction based on iris cryptosystem.
In Proc. of the 3rd Int. Conf. on Biometrics 2009
(ICB’09) LNCS: 5558, pages 1060–1070, 2009.

8


