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Abstract—This paper discusses optimal wavelet packet basis
selection within JPEG2000. Three algorithms for rate distortion
optimal wavelet packet basis selection in JPEG2000 are presented.
The first approach considers the JPEG2000 packet body data in
the rate distortion optimization only, while the other techniques
additionally integrate packet header data. The algorithms are
evaluated on a wide range of highly textured image data. Results
demonstrate that inclusion of header data information into rate
distortion optimization leads to superior compression results. For
the first time the maximum performance gains of custom isotropic
wavelet packets in JPEG2000 can be assessed.

Index Terms—Image compression, JPEG2000, wavelet packet
bases, rate distortion optimization

I. INTRODUCTION

Wavelet packet bases (WPBs) [1] offer to adapt the wavelet
transform to the source signal (image) characteristics and thus
potentially improve the compression performance. WPBs are
an alternative to the classical dyadic wavelet decomposition
(also referred to as pyramidal) and allow to further decompose
all subbands and not just the LL subband, which leads to an
enormous number of possible WPBs. The application of an
adapted wavelet packet basis (WPB) for image compression
purposes has been subject to investigation since the intro-
duction of the first feasible selection technique called “best
basis algorithm” [1]. A brute-force search for the best WPB
is computationally infeasible even for moderate maximum
decomposition depths; for 2-D signals and wavelet decompo-
sition depth 5 there are 5.6 x 107® possible WPBs. In figure 1
examples of WPBs at depth 5 for selected images (see fig. 2)
are shown (isotropic decompositions are considered in this
work, i.e., a subband is always decomposed horizontally and
vertically).

The approach of [1] employs a rate-independent but sub-
optimal basis selection scheme, which is based on various
additive cost functions which only estimate the actual coding
cost. An extension to this approach employing non-additive
cost functions has been developed soon after [2]. Genetic al-
gorithms have been used [3] to assess the degree of optimality
and to further optimize the subband structures found by the
best basis algorithms proposed in earlier work.

The employment of rate-distortion optimization criteria
for WPB selection has been first demonstrated for classical
wavelet-based compression schemes [4]. For certain compres-
sion schemes, a certain source image, and a specific target
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Fig. 1. Best WPBs for specific images and the WSQ-WPB

bitrate, the optimal WPB can be computed in feasible time.
For zero-tree-based compression algorithms, a Markov chain-
based cost function estimating the cost of zero tree coding
has been employed to find well suited WPBs [5]. In recent
work [6], a wavelet block-based compression scheme has
been introduced incorporating the principle of [4] for WPB
selection. Subsequent works [7], [8] propose fast and efficient
basis selection methods with a lower computational complexity
connected with a little loss of rate-distortion performance in
comparison with the original work.

The main application field of WPBs in image compres-
sion are textured data, with many contributions devoted to
fingerprint images. Fingerprint images exhibit characteristic
high energy in certain high frequency bands resulting from the
ridge-valley pattern and other structures. To account for this
property, the WSQ standard for lossy fingerprint compression
as adopted by the FBI a specific wavelet packet subband
structure which emphasizes the important high frequency
bands. Inspired by this algorithm, a few WP-based fingerprint
compression schemes have been developed (e.g. [9], [10],
[11D.

JPEG2000 Part 2 allows the employment of custom WPBs
[12], [13], but WPBs for JPEG2000 have not been subject
to extensive investigations so far. In [14], the variants of
representing WPBs as discussed during the development of
the JPEG2000 Part 2 standard have been assessed with re-
spect to compression performance. For image confidentiality,
it has been proposed to use secret wavelet packet bases as a
means for compression integrated JPEG2000 encryption [15]
(where the impact on compression performance needs to be
controlled). Interestingly, at least to the best of the authors’
knowledge, optimal wavelet packet basis selection in a rate
distortion sense [4] has not been discussed for JPEG2000 so
far.

In this work we show that efficient, best WPB selection is
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Fig. 2. Selected test images

possible in JPEG2000 by an extension of the approach of [4].
We define (and develop an algorithm for) the Lagrangian cost
of a subband in JPEG2000, which enables the determination
of the best WPB in a rate-distortion sense. Thus for the
first time, the maximal performance gains achievable by an
optimal selection of WPBs in JPEG2000 can be assessed.
The influence of header data on rate-distortion optimal WPB
(RDO-WPB) selection is analyzed and evaluated in-depth. Our
focus in this work is on highly textured image data, especially
on fingerprint images, for which a custom WPB has been
proposed. Additionally, the computational complexity of the
best WPB selection algorithms for JPEG2000 is discussed as
compared to the classical dyadic decompostion, as mandatory
in JPEG2000 Part 1.

There are substantial extensions to own previous work
[16], [17] as well: The development, implementation and
evaluation of a concise header cost determination algorithm,
the implementation and evaluation of a lossless coding mode
for our rate-distortion optimal wavelet packet coder, and the
improvement of the evaluation framework, which now ana-
lyzes the compression performance with state-of-the-art quality
metrics. The novel packet header cost determination allows to
precisely assess the actual cost of the packet header portion of
a subband, thus enabling perfect rate-distortion optimization
without the imprecisions of the header cost estimation. Thus
our JPEG2000-based WPB coder achieves always better or
equal results compared to the underlying JPEG2000 Part 1
coder. Furthermore the source code of our coder and evalua-
tions will be made publicly available, making our results easily
reproducible [18].

Section II gives an overview of JPEG2000, section III
discusses algorithms of Lagrangian rate distortion optimal
wavelet packet basis selection within JPEG2000 and section IV
discusses the computational complexity of the algorithms. Sec-
tion V presents experimental results on fingerprint databases
and other textured data.

II. OVERVIEW OF JPEG2000

JPEG2000 employs a wavelet transform and uses the
EBCOT-algorithm (embedded block coding with optimized
truncation) to encode the wavelet coefficients. The wavelet
coefficients of a subband are grouped in rectangular blocks
(codeblocks), which are coded independently to separate bit-
streams. JPEG2000 Part 2 [19] allows arbitrary WPBs. The
standard [19, p.54] restricts the set of permissible WPBs, every
high-frequency subband may only be decomposed two more
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Packet header formation

times (vertically, horizontally or both). In figure 1, the WSQ-
WPB is in the set of permissible WPBs, while the best bases
for the Artificial and the Barbara image are not. Thus a super-
set of the permissible isotropic WPB of JPEG2000 Part 2 is
considered in this work.

A JPEG2000 file (codestream) consists of a main header
followed by several packets. Each packet increases the decoded
image quality. Each packet belongs to a certain quality layer
and resolution. The number of quality layers can be freely
chosen (for the scope of this work we set the number of
quality layers to one). A packet consists of a packet header
and a packet body. The packet body is solely comprised of
bitstreams (coded codeblock data). The packet header contains
information necessary to interpret and decode packet body
data. The following data is written in the packet header for
each codeblock of the subbands of the packet’s resolution:
leading zero bitplanes, the length of codeblock contribution,
the number of coding passes and the inclusion information.
The packet header formation is illustrated in figure 3. II denotes
inclusion information, i.e., whether the code block contributes
to the packet. LZB denotes leading zero bitplanes of the coeffi-
cients of a codeblock. NCP denotes the number of contributing
coding passes (EBCOT employs three coding passes for a
single bitplane of the coefficients of a codeblock), and CCPL
denotes the length of the coded code block contribution in the
packet body.

A. Rate-Distortion Optimization in JPEG2000

The embedded bitstream of a single codeblock has several
potential truncation points, i.e., each codeblock has a separate
RD function. The goal of an encoder is to arrange the bitstream
data of all codeblocks in an RD optimal manner, i.e. to find
the truncation points which minimize the distortion for a given
rate. The most common algorithm for JPEG2000 is PCRD-
Optimization (post-compression-rate-distortion). A truncation
point of the codeblock B; is denoted by n;, all truncation
points by 77. The embedded bitstream of the codeblock B; can
be truncated to a rate R;* (for a given truncation point n;).
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Fig. 4. Packet header data for different decomposition depths and subbands

The rate constraint is then
#cbs of image

R(7t) = >

i=1

th < Rmam (1)

The distortion of each codeblock B; for a truncation point n;
is given by D;". Given an additive distortion measure, the
distortion D of the compressed image is derived by:

#cbs of image
D@m= >, D )
i=1
An optimal solution (minimizing D) of truncation points 77*
for this constrained problem can be found by solving the
corresponding unconstrained problem (Lagrangian RDO):

7" = argming [D(7) + AR(7)] 3)

Considering D a function of R, a solution is obtained by
setting D'(R) = — A, which yields D;(R) = —\.

III. BEST WAVELET PACKET BASIS

For compression, the best WPB is the one that minimizes
the size of the compressed image at a given level of distortion
(best WPB in a rate-distortion sense). Thus finding the best
solution in a rate-distortion sense depends on the underlying
coding mechanisms and might be computationally complex
and complex to integrate in a compression framework such
as JPEG2000.

Testing every possible WPB soon becomes infeasible, as the
number of possible WPBs is growing tremendously with the

decomposition depth d. The following recursion [20] calculates
(4, the number of possible WPBs at depth j:

Qa=Qi_1+1 )

where Q9 = 1 . At depth two we have 17 possible WPBs,
at depth three 83522, at depth four 4.9 x 109, at depth five
5.6 x 1078, at depth six 9.9 x 103'4, and at depth seven 9.6 x
101259.

There is a more efficient algorithm for the determination
of the “best” WPB (best in the restricted sense of the cost
function only): the best basis algorithm (BBA) [1]. The BBA
first makes a full wavelet packet decomposition at maximum
decomposition depth and starts from the leaves, i.e. the sub-
bands at the deepest decomposition depth. The BBA merges
the children subbands of a parent subband if the sum of the
costs of its children is higher than the parent’s cost.

A. Best WPBs in a Rate-Distortion Sense

The best solution for an actual compression framework
(JPEG2000) in an RD sense is obtained if the coding costs are
not estimated, but actually determined. The cost of a subband
sb is calculated by the Lagrangian cost function which is
defined as:

J(N)sb = Dspx + ARsp 2 5)
Children subbands are not merged if the following split con-
dition holds:

#children

> T(Nenita (6)

child=1

J()\)pare‘nt 2

In order to obtain a solution for a target bitrate, an efficient
bisection search on the parameter A can be conducted [4].

1) Lagrangian cost function of a subband for JPEG2000:
The essential part of integrating the algorithm for finding
the best WPB in a rate-distortion sense into JPEG2000 is to
appropriately determine the Lagrangian cost of a subband. A
subband consists of several codeblocks, each with a bitstream
with its own rate-distortion statistics, i.e. truncation points and
associated distortions. These data describe a rate-distortion
function with a certain slope at each truncation point and
a corresponding Lagrangian cost. The Lagrangian cost of a
subband is defined as the sum of the Lagrangian costs of its
codeblocks:

#cbs of subband #cbs of subband

INa= > TNa= Y

cb=1 cb=1
N
The actual algorithm to determine the Lagrangian cost of a
subband is given in pseudo-code (see algorithm 1).

This optimization minimizes the overall packet body size,
and also minimizes the overall file size if the cost of coding
the headers is not influenced by the selection of the WPB (we
refer to this algorithm as RDO-WPB).

Dep x+ARep 2



Algorithm 1 Lagrangian cost function of a subband

Param: A\
costs = 0
for (b = 0;b <all code-blocks of the subband; b + +) do
for (slopeldx = 0; slopeldzx <all slopes of
codeblock[b]; slopeldx + +) do
slope = block[b].slopes[slopeldx].slope
if slope < A then
currentSlope = slope
break;
end if
end for
costs += getDistortion(slopeldx) + lambda * getRate(slopeldx)
end for
return costs

2) Considering the Packet Header in the Lagrangian Cost
of a Subband: In figure 4(a) the packet header cost for the LL
subband is analyzed in detail, the cost of the packet headers
is plotted for increasing decomposition depths and varying
rate. The LL suband’s packet header cost is compared to
the other subbands in figure 4(b). The packet header cost
scales well with the overall target bitrate. In the RDO-WPB
algorithm the (packet) header data cost is considered constant
and independent of the decomposition. I.e., the packet header
cost of a subband and a further decomposed subband (the
sum of the packet header costs of its children) are assumed
equal. This simplification has to be paid by sub-optimal
compression performance, as can be seen in figure 5, where
RDO-WPB is clearly outperformed by the algorithm RDOH-
WPB, which takes header data into account. Considering only
the packet body size, RDO-WPB is optimal (see fig. 6). The
performance gains for RDO[H]-WPB for the “Artificial” image
are enormous, and considerable for the “Barbara” image as
well (see figure 7). For both RDOH-WPB outperforms RDO-
WPB. The packet header data is coded per subband, each
subband maintains its own coding states, e.g., in the form of
associated tag trees. The packet header cost for subbands and
further decomposed subbands further depends on the triple:
size of the image (x, y), code-block size (cb;, cby), and wavelet
decomposition depth of the subband under investigation d. If
cby > x/2% or cb, > y/2%, the subband is decomposed into
subbands smaller than the codeblock size and additional entries
for the new codeblocks have to be added to the packet header,
and the packet header length is increased. E.g., for 512x512
images, and d = 5, further decomposing the subbands at depth
3 becomes more expensive in terms of the number code blocks.

The header cost has to be integrated in the Lagrangian cost
of a subband in order to reflect the increased coding cost for a
further decomposition of a subband. In [16] it is proposed to
estimate the actual header cost of a subband by considering the
overall header costs at a full decomposition for a specific depth
d and for the target rate r (A is determined with a bisection
algorithm to match r [4]) and divide it by the numbers of
subbands. The result is the average size of the header data
Rgr of a subband at depth d for a target bit rate of r. The
Lagrangian cost of a subband sb at depth d is computed as
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follows in [16]:
H
J(N)sp = Dspx + M Rspx + Ry ,.)- (3)

We refer to this extended algorithm by RDOH-WPB.
However, this is only an estimation of the header cost of
a subband, which nonetheless is shown to lead to significant
performance advantages compared to the optimization without
the consideration of the header cost (RDO-WPB). Naturally
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the best solution would be achieved by the determination
of the actual coding cost of the header data of a subband,
instead of its estimation. For that end, the coding of the packet
header portion of each subband has to be simulated in order
to determine its length, i.e., the rate of the Lagrangian cost.
More precisely, for each subband and lambda the optimal
truncation points for the coded code block data are determined
and afterwards the packet header portion of the subband is
determined by simulating the coding in dependency of the
packet body RDO, i.e., the obtained truncation points. Thus we
propose to employ the following Lagrangian cost of a subband
sb for a Lagrangian parameter \:

J(A)sb = Dsb,)\ + )\(Rsb,)\ + Rg;ﬁ)\) (9)

We refer to this extended algorithm by RDOH+WPB and
because the estimate of the packet header cost is replaced by
the actual packet header cost, this algorithm achieves the best
possible performance.

3) Bitrate Adjustment: A Bisection Search for the La-
grangian \: The actual bitrate of the best basis algorithms in a
JPEG2000 rate-distortion sense is determined by the parameter
A. Thus in order to achieve a certain target bitrate the appro-
priate value of A\ has to be determined. Our implementation
employs a classic bisection method [4], [21]. Starting from a
lower (Ap,i,) and an upper bound (\;,4;) for A, i.e., equation
10 has to be satisfied, a bisection search is performed, as
outlined in algorithm 2.

R(Amzn) S Rbudget S R()\ma:r) (10)

The initial values of A,,;, and \,,,; can be set to the
minimum and maximum slope of the rate distortion functions
of all codeblocks; suitable initial values have been found
experimentally to be 0 and 10.

B. Ad-hoc cost functions

Alternatively to the optimal wavelet packet basis in a rate-
distortion sense with the actual coding bitrate as cost function
it has often been proposed to employ simpler cost functions
for best basis selection (although these may not result in best

Algorithm 2 Bisection search for A

Param: Ry,qget
A= )\mln + (Amax -
Rresult =0
maxSearchSteps = 32
numSearchSteps = 0
e=10"°
while numSearchSteps < maxSearchSteps do
numSearchSteps + +
Reurrent = getRateForLambda ()

if Reurrent == Rbudget then
)\result =A
R'result = Rbudget
break;

end if

if Rcurrent < Rbudget then
if R'rcsult < RcurTent then
>\7'esult =
Rresult = Rcu'rrent
end if
if |Amaz — Al < € then
break;
end if
)\maac =
A= )\mzn + (/\ma;p — Amzn)/z
else if Rcu'r"l'ent > Rbudget then
if [Amin — Al < € then
break;
end if
)\min =
end if
end while
return syt

Amin)/2

bases in a rate-distortion sense). In this section we will present
common cost functions. Let ¢; represent the value of the
coefficients of a subband. The cost functions are calculated
as follows:

o Ll-norm metric: >, |¢;|

o L2-norm metric: ), ¢?

o LogE - log energy metric: Y, In(c?).

¢ EIC - entropy information cost or Shannon metric [1]):

> 012 * l”(czz)

IV. COMPLEXITY

The asymptotic complexity of rate distortion optimal WPB
selection for a maximum decomposition depth d and an V-
element signal is of O(d x N) and also in O(NlogN), because
d is bounded by log/N, which is the maximal decomposition
depth.

In order to assess the concrete complexity of RDO[H]-WPB
(both have similar complexity, as only a constant for the header
cost is added in Lagrangian cost of a subband), we consider the
computationally complex parts of the JPEG2000 compression
pipeline: DWT (and quantization), coding of codeblocks (and
RDO), as well as file I/O (including final bitstream formation).
Depending on the implementation, the compression settings
and source data the shares vary; for JPEG2000 Part 1, overall
0.8 seconds are needed for a 512x512 image with JJ2000



chycby 642 322 162 82 42
No DWT 06s 0.7s 09s 1.5 34s

TABLE I
RUNTIME PERFORMANCE IN SECONDS DEPENDING ON CODEBLOCK SIZE
FOR 512X512 IMAGES AND NO DWT

d 0 1 2 3 4 5 6
cbgchy, 642 642 642 642 322 162 82
FD 0.6s 0.63s 07s 075 09s 1.8s 15s

WPB 0.6s 1.00s 1.1s 130s 1.5s 2.8s 18s

TABLE II
RUNTIME PERFORMANCE IN SECONDS DEPENDING ON DECOMPOSITION
DEPTH d OF FULL DECOMPOSITION (FD) AND RDO[H]-WPB (WPB) FOR
512X512 IMAGES

default settings (all evaluations are performed on an Intel
Core2 6700@2.66GHz and the software described in sect. V).
For the RDO[H]-WPB with a maximum decomposition depth
d a full wavelet decomposition for every depth [ (1 <[ < d)
has to be performed. The coefficients of a full decomposition
at depth [ can be used to compute the coefficients of the
next depth [ + 1. In terms of a DWT at depth 1, W, the
cost of all decompositions is at least d x VW. However, in
practice the runtime complexity is tremendously increased for
decomposition depths greater 5 (see table II). Coding and RDO
has to be done at every depth [ and for no decomposition as
well, which adds up to (d+1) x B, where B is the cost of coding
all coefficients. As long as the subbands are larger than the
codeblocks, their coding and RDO cost remains approximately
constant for all depths.

If the subbands become smaller than the codeblocks,
the runtime performance decreases, however, this effect is
implementation-specific (see table I for JJ2000’s behavior).

The overall cost for RDO[H]-WPB at depth d, R(d), in
terms of a compression at depth 1, C, is approximately R (d) ~
d x C — (d—1) x D, where D represents fixed time, e.g., for
the actual JJ2000 implementation: Java start up time, image
IO, and bitstream IO (approx. 0.3s).

In conclusion, for a reasonable wavelet decomposition depth
of 4 our RDO[H]-WPB implementation only takes less than
twice the default JJ2000 compression time, which is in-line
with our theoretical analysis, which predicts 4 x 0.63s — 3 x
0.3s = 1.62s ~ 1.5s.

The complexity of RDOH+ is increased by the coding
of the packet header portions of a subband, which becomes
significant for higher decomposition depths as the number
of subbands ng, grows exponentially with the decomposition
depth d of a full wavelet packet decomposition (ng = 4%).
At a decompostion depth of 5 a single RDOH+ compression
takes about double the time of the RDOH version with the
packet header estimate. Thus for higher decomposition depths
estimating the packet header cost is the method of choice.

V. EXPERIMENTAL RESULTS

The results have been produced with a custom implementa-
tion, which is based on the JJ2000 reference implementation.
The correctness of our implementation of RDO[H]-WPB has
been experimentally verified on the entire FVC2004 database
(32000 images) for depth 2 by testing every possible WPB. For
single test images verification has been conducted for depth
3 as well. The default settings of the JJ2000 implementation
have been employed, e.g., 9-7 irreversible filter for lossy
compression and the 5-3 reversible filer for lossless, and 64x64
codeblocks. A maximum decomposition depth of 5 has been
employed (if not explicitly stated otherwise) and only one
quality layer is employed. Additionally to the well-known
PSNR we present results for state-of-the-art quality metrics
[22], such as the VIF, MSSIM, and SSIM. The matlab package
metrix_mux has been employed for quality evaluation.

We present results for highly textured data (Brodatz
database) and for fingerprint data (FVC2004 database). For
natural images, e.g., the “Lena” image, RDO[H]-WPB can not
achieve significant performance improvements (tested on 1000
natural images), as the best bases are very similar to the dyadic
wavelet decompostion, i.e., the best WPB basis is the standard
WPB basis of JPEG2000 Part 1. Also, we tested several well-
known cost functions, such as the L1-norm, the L2-norm, the
log energy metric, and the entropy information cost [1]; our
evaluations revealed that these do not work reliably for best
WPB selection in JPEG2000.

A. Lossless compression

JPEG2000 also offers a lossless compression pipeline. In
this context RDO WPB selection is actually a rate optimal
WPB selection. In tables IILIV,V, and VI the results for
the test images, Artificial, Barbara, and Lena are given. In
the first column the achieved size of the dyadic wavelet
decomposition is given, the next column gives the reduction of
the compressed size compared to the dyadic decomposition for
RDO and the next column for RDOH+ (the results for RDOH
are in general in between and omitted). For a decompostion
depth of 5 compression efficiency is already improved for
both algorithms RDO and RDOH+, which yield the same
result. Further increasing the decomposition depth reveals
the difference between RDO and RDOH+, the compression
efficiency of RDO is decreased with increasing depth (as trend
also followed by the dyadic decomposition) while RDOH+ can
still remain its compression efficiency and even improve it. The
improvement of compression efficiency is most pronounced for
the Artificial and least significant for the natural Lena image.

Considering texture data, especially a well-performing sub-
set of the Brodatz database, we see that highly textured data
is well-suited for wavelet packet compression, almost 7KB
are saved compared to the dyadic decomposition (see tables
VILVIIL, IX, and X). For lower decomposition depths RDO-
WPB performs quite well, only at higher decomposition depths
RDOH+ can achieve performance improvements.

For fingerprint data performance gains can also be achieved,
but they are less pronounced (see table XI for an overview).



Image Dyadic Reduc. RDO  FEreduc. RDOH+

artificial512 78108 19847 0

barbara 156758 209 0

lena 153511 0 0

Avg. 129459.00 6685.33 0.00
TABLE III

SELECTED TEST IMAGES WITH MAX. DECOMP. 4

Image Dyadic  Reduc. RDO  Freduc. RDOH+

artificial512 77953 20744 0

barbara 156784 235 0

lena 153529 18 0

Avg. 129422.00 6999.00 0.00
TABLE IV

SELECTED TEST IMAGES WITH MAX. DECOMP. 5

B. Lossy Compression

The RD performance of our algorithms has been evaluated
with the objective quality metrics PSNR, VIF, MSSIM, and
SSIM, which all support the conclusion from the PSNR
analysis. Additional to the PSNR results, we give the result of
the most sophisticated quality metric VIF, which shows better
correlation with human subjective quality perception than the
PSNR [22].

At higher decomposition depths RDOH+ is superior to
RDO, i.e., the consideration of header data leads to perfor-
mance improvements. For the Artificial image concise PSNR
and VIF results are summarized in the tables XII and XIII.
Enormous PSNR improvements are achieved for RDO and
RDOH+ (over 7dB), the RDOH+ algorithm works reliable
for all quality ranges and outperforms RDO significantly,
especially in lower quality range. The VIF results report a
similar objective quality behavior. For the Barbara image

Image Dyadic Reduc. RDO  FEreduc. RDOH+

artificial512 77931 20561 196

barbara 156804 255 0

lena 153547 36 0

Avg. 129427.33 6950.66 65.33
TABLE V

SELECTED TEST IMAGES WITH MAX. DECOMP. 6

Image Dyadic  Reduc. RDO  FEreduc. RDOH+

artificial512 77937 20560 203

barbara 156820 271 0

lena 153562 51 0

Avg. 129439.66 6960.66 67.66
TABLE VI

SELECTED TEST IMAGES WITH MAX. DECOMP. 7

Image Dyadic  Reduc. RDO  Freduc. RDOH+
D101 295537 7218 0
D102 288975 13819 0
D103 345204 2839 0
D105 346258 6871 0
D106 356648 6912 0
D107 324075 6904 0
D109 333892 19790 0
D16 390590 14555 32
D21 362414 12108 6
D49 251011 14049 0
D53 319139 4702 6
D6 293547 5250 0
Do4 275410 237 0
D67 317191 8607 0
D68 286131 1259 0
D76 327516 160 1
D77 365771 5247 0
D78 347081 2648 0
D79 334866 2105 4
D82 346783 42 36
D83 340027 2694 30
Avg. 326098.38 6572.19 5.48
TABLE VII

SELECTED IMAGES FROM THE BRODATZ DATABASE WITH MAX. DECOMP. 4

Image Dyadic  Reduc. RDO  Freduc. RDOH+
D101 295436 7117 0
D102 288898 13742 0
D103 345236 2871 0
D105 346221 6897 14
D106 356627 6891 41
D107 324110 6939 0
D109 333924 19822 0
D16 390561 14524 73
D21 362293 12675 321
D49 250951 14784 2
D53 319108 4987 114
D6 293454 5900 91
D64 275417 236 8
D67 317239 8655 0
D68 286124 1258 0
D76 327510 152 8
D77 365733 5391 46
D78 347068 2628 24
D79 334867 2093 16
D82 346751 41 0
D83 340033 2669 61
Avg. 326074.33 6679.62 39.00
TABLE VIII

SELECTED IMAGES FROM THE BRODATZ DATABASE WITH MAX. DECOMP. 5

improvements of about 1dB are achieved with RDOH+, which
outperforms RDO (see table XIV). The VIF shows a similar
behavior, although smaller PSNR differences are no longer
distinguishable with two digits precision. Thus at higher max-
imum decompostion depths the consideration of the header
data is recommended.

On the Brodatz database RDO wavelet packet bases perform
well, especially on a subset consisting of 20% of the Brodatz
images: RDO[H+]-WPB achieves impressive compression per-



Image Dyadic  Reduc. RDO  FEreduc. RDOH+
D101 295440 7121 0
D102 288904 13748 0
D103 345252 2887 0
D105 346225 6898 17
D106 356641 6894 52
D107 324135 6964 0
D109 333945 19843 0
Dl6 390574 14470 140
D21 362281 12263 885
D49 250956 14725 86
D53 319116 4764 348
D6 293437 5808 183
Do64 275440 249 18
D67 317252 8668 0
D68 286137 1271 0
D76 327522 153 19
D77 365739 5370 73
D78 347078 2628 0
D79 334871 2093 20
D82 346772 62 0
D83 340030 2678 54
Avg. 326083.19 6645.57 90.24
TABLE IX

SELECTED IMAGES FROM THE BRODATZ DATABASE WITH MAX. DECOMP. 6

Image Dyadic  Reduc. RDO  Freduc. RDOH+
D101 295454 7135 0
D102 288913 13757 0
D103 345271 2906 0
D105 346234 6898 26
D106 356654 6907 52
D107 324153 6982 0
D109 333959 19857 0
D16 390582 14457 161
D21 362292 12193 966
D49 250968 14670 153
D53 319127 4739 384
D6 293450 5798 206
D64 275456 265 18
D67 317268 8684 0
D68 286151 1285 0
D76 327536 167 19
D77 365754 5385 73
D78 347092 2642 34
D79 334883 2105 20
D82 346786 76 0
D83 340046 2683 65
Avg. 326096.62 6647.19 103.67
TABLE X

SELECTED IMAGES FROM THE BRODATZ DATABASE WITH MAX. DECOMP. 7

formance gains (see figures 9 and 10). RDO[H+] performs also
good on the entire Brodatz database (see figures 11 and 12).
Thus for textured data, best basis selection in a JPEG2000
RDO sense can be recommended. The header data has a
negligible influence at a decomposition depth of 5 (visually
indistinguishable) and thus is omitted in the figures.

On fingerprint data RDO WPB selection also achieves a
significantly improved performance; interestingly, the perfor-
mance gains are more significant in the higher quality region

Max. decomp. Dyadic  Reduc. RDO  Freduc. RDOH+

4 59743.93 296.70 0.00

5 59691.11 288.11 0.00

6 59690.60 288.66 1.86

7 59703.36 299.36 3.94
TABLE XI

AN OVERVIEW FOR THE FVC2004 DB1 (B) DATABASE FOR A MAX.
DECOMP. 4 TO 7

Dyadic RDO RDOH+
PSNR  PSNR Inc. PSNR Finc.
16.07 221 6.39
18.64 5.76 224
21.06 6.70 1.43
23.33 6.81 1.37
2543 6.60 1.03
26.94 6.71 0.75
28.11 6.78 0.56
29.29 6.51 0.53
30.48 6.28 0.54
31.60 6.33 0.39
33.04 5.88 0.35
33.54 6.10 0.40
34.30 6.27 0.39
34.98 6.62 0.37
35.89 6.84 0.34
36.96 6.78 0.27
38.17 6.43 0.26
38.77 6.66 0.25
TABLE XII

ARTIFICIAL, MAX. DECOMP. 7

starting a PSNR of 34dB (see figure 13). The VIF evaluation
supports the good performance for fingerprint data (see figure
14). Additionally to our best WPB selection algorithms for
JPEG2000 we evaluated the compression performance of the
WSQ-WPB on the FVC2004 database, which led to even worse
results than the standard dyadic decomposition.
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Fig. 9. A 20% subset of the Brodatz database: PSNR evaluation




Dyadic RDO RDOH+
VIF VIF Inc.  VIF Finc.
0.13 -0.07 0.18
0.21 0.17 0.10
0.28 0.24 0.04
0.34 0.24 0.05
0.39 0.25 0.01
0.45 0.22 0.02
0.49 0.23 0.02
0.51 0.23 0.01
0.53 0.23 0.01
0.56 0.22 0.01
0.64 0.18 0.01
0.66 0.17 0.01
0.68 0.18 0.00
0.69 0.19 0.01
0.71 0.19 0.01
0.74 0.17 0.01
0.80 0.13 0.00
0.82 0.12 0.00
TABLE XIII

ARTIFICIAL, MAX. DECOMP. 7

Dyadic RDO RDOH+
PSNR  PSNR Inc. PSNR Finc.
2278 -3.77 3.87
24.67 -0.24 1.14
25.85 0.39 0.83
27.17 0.45 0.54
28.37 0.10 0.83
29.21 0.32 0.66
30.09 0.53 0.40
30.83 0.57 0.26
3151 0.55 0.36
32.28 0.66 0.22
32.82 0.70 0.19
33.37 0.67 0.20
33.89 0.71 0.20
34.43 0.67 0.13
34.87 0.69 0.09
3533 0.70 0.08
35.70 0.79 0.12
36.30 0.71 0.11
TABLE XIV

BARBARA, MAX. DECOMP. 7

VI. CONCLUSION

Rate distortion optimal (RDO) wavelet packet basis (WPB)
selection for JPEG2000 has been presented. In this work, the
RDOH+WPB algorithm has been presented and discussed; this
algorithm enables the concise selection of the best WPB in the
JPEG2000 coding framework. Thus we are are able to report
the upper bound of performance improvements achievable with
custom isotropic wavelet packet bases in JPEG2000.

In terms of compression performance our results show that
for highly textured data, RDO wavelet packet bases perform
significantly better than the dyadic decompostion. Even in the
lossless case compression performance improvements can be
reported. For higher decomposition depths the consideration of
the header cost in JPEG2000 WPB optimization is favorable.

Dyadic RDO RDOH+
VIF VIF Inc.  VIF Finc.
0.11 -0.08 0.09
0.16 -0.02 0.04
0.21 0.00 0.03
0.25 0.02 0.02
0.31 -0.01 0.03
0.35 -0.01 0.03
0.38 0.01 0.01
0.40 0.03 0.01
0.45 0.03 0.01
0.50 0.02 0.00
0.51 0.03 0.01
0.54 0.03 0.01
0.57 0.02 0.01
0.59 0.02 0.01
0.60 0.05 0.00
0.62 0.07 0.00
0.65 0.06 0.00
0.70 0.03 0.00
TABLE XV

BARBARA, MAX. DECOMP. 7
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Fig. 10. A 20% subset of the Brodatz database: VIF evaluation

The improved PSNR performance of RDO[H+] WPB also
leads to improvements in terms of state-of-the-art objective
image quality assessment. For highly textured image data
significant compression performance improvements are shown.

REFERENCES

[1] R.R. Coifman and M.V. Wickerhauser, “Entropy based methods for best
basis selection,” IEEE Transactions on Information Theory, vol. 38, no.
2, pp. 719-746, 1992.

[2] C. Taswell, “Satisficing search algorithms for selecting near-best bases
in adaptive tree-structured wavelet transforms,” IEEE Transactions on
Signal Processing, vol. 44, no. 10, pp. 2423-2438, Oct. 1996.

[3] T. Schell and A. Uhl, “Optimization and assessment of wavelet packet
decompositions with evolutionary computation,” EURASIP Journal on
Applied Signal Processing, vol. 2003, no. 8, pp. 806-813, 2003.

[4] K. Ramchandran and M. Vetterli, “Best wavelet packet bases in a rate-
distortion sense,” IEEE Transactions on Image Processing, vol. 2, no.
2, pp. 160-175, 1993.

[S] N. M. Rajpoot, R. G. Wilson, Francois G. Meyer, and R. R. Coifman,
“Adaptive wavelet packet basis selection for zerotree image coding,”
IEEE Transactions on Image Processing, vol. 12, no. 12, pp. 1460-1472,
2003.



Fig.

Fig.

[6]

[7

—

[8

[t}

[9

—

[10]

(11]

[12]

[13]

[14]

32

RDOH+ —+—

/D
Dyadic ---&--- B

30
28

26

PSNR

22

L L L L
40000 50000 60000 70000

Filesize[bytes]

11. The Brodatz database: PSNR evaluation

A L L
0 10000 20000 30000 80000

[RDOH+ —+—
Dyadic ---E--
0.8 1
"
e
&
0.6 - 7 i
//a//a
ey
w
s o
04 4
02 —
0 I I I I I I I
0 10000 20000 30000 40000 50000 60000 70000 80000
Filesize[bytes]

12. The Brodatz database: VIF evaluation

Yongming Yang and Chao Xu, “A wavelet packet based block-
partitioning image coding algorithm with rate-distortion optimization,” in
Proceedings of the IEEE International Conference on Image Processing
(ICIP’05). 2005, vol. III, pp. 201-204, IEEE.

Yongming Yang and Chao Xu, “Fast and efficient basis selection methods
for embedded wavelet packet image coding,” in Proceedings of Third
International Conference of Image Analysis and Recognition, ICIAR’06.
Sept. 2006, vol. 4141 of Lecture Notes in Computer Science, pp. 480—
492, Springer-Verlag.

Yongming Yang and Chao Xu, “Fast wavelet packet basis selection for
block-partitioning image coding,” in Proceedings of IEEE International
Symposium on Circuits and Systems (ISCAS 2006), Sept. 2006, p. 4
pages.

S. Kasaei, M. Deriche, and B. Boashash, “A novel fingerprint image
compression technique using wavelet packets and pyramid lattice vector
quantization,” IEEE Transactions on Image Processing, vol. 12, no. 11,
pp. 1365-1378, 2002.

P. Saeedian and B. Shirazi, “A novel fingerprint image compression
technique using adaptive subband image coding,” in Proceedings of the
2004 Picture Coding Symposium PCS’04, 2004.

G.A. Khuwaja, “Best parameter based compression of fingerprints with
wavelet packets,” International Journal of Computer Applications in
Technology, vol. 19, no. 1, pp. 51-62, 2004.

D. Taubman and M.W. Marcellin, JPEG2000 — Image Compression
Fundamentals, Standards and Practice, Kluwer Academic Publishers,
2002.

ISO/IEC 15444-2, “Information technology — JPEG2000 image coding
system, Part 2: Extensions,” May 2004.

M. Reisecker and A. Uhl, “Wavelet-packet subband structures in the
evolution of the JPEG2000 standard,” in CD-ROM Proceedings of the

Fig.

Fig.

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

42

RDOH+ —+—
Dyadic ---8---

38 -

36 -

34 -

PSNR

32

28 -

26 -

24

L L
10000 15000

Filesize[bytes]

13.  FVC2004 DB4B: PSNR evaluation

L
0 5000 20000

RDOH+ —+—
Dyadic --&--- _—

0.6 -

VIF

0.4 -

0 L L L
0 5000 10000 15000

Filesize[bytes]

14.  FVC2004 DB4B: VIF evaluation

20000

6th IEEE Nordic Signal Processing Symposium (NORSIG 2004), Espoo,
Finland, June 2004, IEEE Norway Section.

Dominik Engel and Andreas Uhl, “Secret wavelet packet decompositions
for JPEG2000 lightweight encryption,” in Proceedings of 31st Interna-
tional Conference on Acoustics, Speech, and Signal Processing, ICASSP
’06, Toulouse, France, May 2006, vol. V, pp. 465-468, IEEE.

Thomas Stiitz, Bernhard Miihlbacher, and Andreas Uhl, “Best wavelet
packet bases in a JPEG2000 rate-distortion sense: The impact of header
data,” in Proceedings of the IEEE International Conference on Multi-
media & Expo, ICME ’10, Singapore, July 2010, pp. 19-24, IEEE.

B. Miihlbacher, T. Stiitz, and A. Uhl, “JPEG2000 Part 2 wavelet packet
subband structures in fingerprint recognition,” in Visual Communications
and Image Processing 2010 (VCIP’10), P. Frossard, H. Li, F. Wu,
B. Girod, S. Li, and G. Wei, Eds., Huang Shan, China, July 2010, number
7744 in Proceedings of SPIE, pp. 77442C-1 — 77442C-10, SPIE.

P. Vandewalle, J. Kovacevic, and M. Vetterli, “Reproducible research
in signal processing - What, why, and how,” IEEE Signal Processing
Magazine, vol. 26, no. 3, pp. 37-47, Mar. 2009.

ITU-T T.801, “Information technology — JPEG2000 image coding
system, Part 2: Extensions,” Feb. 2002.

D. Xu and M. N. Do, “Anisotropic 2-D wavelet packets and rectangular
tiling: Theory and algorithms,” in Proc. of SPIE Conf. on Wavelets X,
vol. 19, pp. 619-630, 2003.

William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Vetterling, Numerical Recipes in C : The Art of Scientific Computing,
Cambridge University Press, October 1992.

H. R. Sheikh and A. C. Bovik, “Image information and visual quality,”
IEEE Transactions on Image Processing, vol. 15, no. 2, pp. 430-444,
May 2006.



