
Runtime Programming through
Model-Preserving, Scalable Runtime Patches

Christoph M. Kirsch Lúıs Lopesa Eduardo R. B. Marquesa

Ana Sokolova

aCRACS / INESC-LA, University of Porto

Technical Report 2010-08 December 2010

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series

Runtime Programming through
Model-Preserving, Scalable Runtime Patches

Christoph M. Kirsch1, Luı́s Lopes2, Eduardo R.B. Marques2, and Ana Sokolova1

1 Department of Computer Sciences
University of Salzburg, Austria

Email: {ck,anas}@cs.uni-salzburg.at
2 CRACS / INESC-Porto LA,

Faculdade de Ciências,
Universidade do Porto

Email: {lblopes,edrdo}@cs.uni-salzburg.at

Abstract. We consider a methodology for flexible software design, runtime pro-
gramming, defined by recurrent, incremental software modifications to a pro-
gram at runtime, called runtime patches. The principles we consider for runtime
programming are model preservation, ensuring the model in place for programs
is preserved whilst allowing for runtime patches, and scalability, understanding
how program compilation can appropriately scale in proportion to the change in-
duced by a runtime patch. In accordance, a runtime patch is proposed as a model-
preserving operation, working as a correct instantaneous transition between pro-
grams, and one that can be incrementally compiled for scalability. We put the
formulation in perspective through a case-study instantiation over a language for
distributed hard real-time systems, the Hierarchical Timing Language (HTL).

1 Introduction

We propose a methodology for flexible software design, runtime programming, defined
by recurrent, incremental modifications to a program at runtime. Runtime programming
acknowledges that software designs are often incomplete, and must therefore evolve
over time, but should do so in a well-defined, systematic manner, ideally with little
disruption of service. This type of flexibility is much needed for critical software in
the presence of uncertainty, due to dynamic requirements of composition, service, or
performance – consider for example cloud computing or cyber-physical systems. Run-
time modifications should be allowed intensively, and, thus, be handled as a common
case of system functionality in predictable and efficient manner, with proper under-
standing of inherent functional and non-functional aspects. Related work in many di-
verse research communities – e.g.: programming languages [29]; operating systems [1];
databases [10]; large-scale web servers [4]; real-time control systems [37]; or sensor
networks [27, 25] – and in industry – e.g., the OMG OSGi [32] and IEC 61499 [21]
standards – typically tends to take a partial view of the problem in domain-specific
manner, hence comprehensive and general methodologies are in order.

The runtime programming abstraction is illustrated in Fig. 1. A program (bottom) is
subject at runtime to recurrent incremental modifications, called runtime patches, by an

runtime patcher
(“controller”)

running program
(“plant”)

program
state

runtime
patches

Fig. 1. Runtime programming.

external program, a runtime patcher (top). A runtime patch determines a switch between
two program specifications and states of these programs, by replacing a component in
the source program. Runtime patches are applied by the patcher in congruence with
program state and the (evolving) program does not stop, but instead it “flows” with
any introduced runtime patches. An obvious analogy exists with the “controller-plant”
formulation of Control Theory: the evolving program is the “plant”, the patcher is the
“controller”, and runtime patches define the “control”.

We consider two key principles for runtime programming: model preservation and
scalability.

The model preservation principle is that runtime programming should preserve the
model in place for programs, i.e., the base model used for programming in the first
place. The behavior of a runtime programming system should be explained alone by
the base model, and comply with a correct interpretation of that model. We reason that
there are two major aspects to it. First, it should be ensured in any event that a proper
program is running, and that a corresponding state for that program is observed, rather
than transient “meta-programs” and “meta-behavior” induced by patches. Secondly, a
safe continuous flow should be observed upon patch effect, and correct program op-
eration should be ensured afterwards, rather than a disruptive transition. The runtime
patching operation we propose has these aspects in mind. A runtime patch specifies a
transformation of program specification (syntax), that affects the behaviour of processes
described by the program (semantics) in instantaneous form. The effect of a runtime
patch observes requirements that guarantee quiescent termination of replaced function-
ality, proper activation of the new one, and isolation of effect for other unchanged com-
ponents. Plus, program behavior is required to be correct after patch effect, rather than
deviate from it. The assumption is a simple abstraction of component-based software,
comprised by a modular relation between (the syntax of) components in a program and
(the semantics of) the processes they describe, plus built-in notions of initialization and
quiescence.

The scalability principle is that the complexity of a runtime programming system
should scale with the “size” of runtime patches. The complexity stems from what we
call patch compilation, the set of procedures required to verify and integrate a patch,
such as checking patch correctness, ensuring patch feasibility (conditions for eventual
effect), and other aspects like code generation. If the process does not scale in the gen-
eral case – for instance if a full program re-compilation is required per patch – the
practicality of runtime patching will be compromised. Instead, it is desirable that patch
compilation proceeds incrementally, taking at most a “dependency context” of the por-

tion of the program affected by the patch. With this in mind, we propose a patch com-
pilation framework, that defines how to conduct patch compilation incrementally, and
inherently characterizes its scalability.

Our contribution is a characterization of runtime programming in the terms above.
It comprises three parts: (1) assumptions on a component-based program model, that
serves as base for runtime programming; (2) the definition of runtime programming
over that component-based program model, with runtime patching at its core; and (3), a
characterization of incremental patch compilation. Runtime programming is then put in
perspective with a case-study, taking in context a component-based language for real-
time distributed control systems, the Hierarchical Timing Language (HTL) [17, 15].

The remainder of this paper is structured as follows. Section 2 puts forward our
general formulation of runtime programming, and our HTL case-study instantiates it
in Section 3. Section 4 defines runtime programming in formal terms, generally, and
then specifically with regard to the HTL instantiation. We should note that Section 4
is important for matters of preciseness and detail of formulation, but can otherwise be
skipped for the purpose of understanding the general runtime programming formulation
or the HTL case-study. Related work is discussed in Section 5, and Section 6 concludes.

2 Runtime programming

2.1 Program model assumptions

We take as assumption a simple model for component-based programs with two main
features. The first is a clean modular relation between the specification of a program,
its syntax, and the behavior of that program, its semantics. The other is the existence
of built-in notions for graceful activation and deactivation of functionality, initialization
and quiescence. The point is to define a general design pattern for programs that allows
for incremental modifications at runtime with a well-defined functional effect.

path

component

program

P

C

σ

execution

C
P - C processes

Fig. 2. Program model assumptions – syntax and semantics.

Syntax and semantics. We consider a program is specified by composition of (syntac-
tic) components, and its execution is defined by sets of (semantic) processes. This is
shown in Fig. 2 for program P (left), and corresponding processes (right). We assume
that the inner components in the syntax tree of a given program, or more generally of
any given component, are identified by unique path names. In the figure a path σ is

shown in P, identifying a component C = P[σ]. The paths are an abstraction of hierar-
chical composition at the syntactic level.

We further assume components and processes are modularly related in the sense
that a component of a given program can only affect the relevant behavior of a strict
subset of the processes described by the program. In Fig. 2, C and its sub-components
are only meant to specify the functional behavior of a strict subset of processes of P in
isolated manner, i.e., processes(P) = processes(P−C)∪processes(C). Examples
of relevant functionality may comprise data processing, process interaction, or I/O. The
processes of C and P − C may however interfere and be correlated in non-functional
aspects, e.g., resource consumption such as processor or network usage. Functional
and non-functional aspects should be addressed by program compilation, comprising
program verification and code generation, operating over the syntax of programs, as
discussed later.

Initialization and quiescence. To model graceful activation and deactivation of com-
ponents, we assume that built-in notions termed initialization and quiescence are in
place for process computation. This is illustrated in Fig. 3 for some component C with
three associated processes, p1 to p3. Initial states merely define valid conditions for pro-
cesses to start. Quiescent states reflect the completion of logically indivisible operations
in consistent form, or process idleness with no side effects. Both notions generalize to
the execution of overall components, as shown for C in Fig. 3: initial and quiescent
states of a component’s execution are those such that all corresponding processes are in
an initial state or quiescent state, respectively.

p1
p2

execution

p3

initial
state

quiescent
state

C

overall
quiescence

Fig. 3. Program model assumptions – initialization and quiescence.

We should note quiescence is a fundamental notion to reason on non-disruptive
runtime programming. It instantiates in several forms in work that considers runtime
modifications to a system, e.g., detecting non-active kernel functions in operating sys-
tems [1], reaching annotated program points in multi-threaded programs [29], or the
dynamic update model for distributed systems in [23].

2.2 Formulation of runtime programming

We define runtime programming over the component-based model assumptions. Recall-
ing the scheme of Fig. 1, runtime programming comprises a runtime patcher inducing
incremental software modifications, runtime patches, over a running program. We now
formulate the two concepts of runtime patch and runtime patcher.

O N

execution

P - O

N

P [σ/N]

σ
O

P

σ

s → s'
σ/N

σ/N

Fig. 4. A runtime patch.

Runtime patch. A runtime patch is illustrated in Fig. 4. A patch σ/N is defined by
a path σ, and a component N. The application of σ/N over a program P defines the
runtime replacement of component O at program path σ in P by N, yielding subsequent
execution of program P [σ/N].

Syntactically, P [σ/N] is a program in which N, the “new component”, has path
σ, and replaces O = P[σ], the “old component”. All other paths (components) outside
the scope of σ are preserved from P to P [σ/N]. The strict addition (resp. removal) of
components is a special instance of this syntactic effect, respectively, when O (resp. N)
is undefined. For a program P, if a program P [σ/N] exists in these conditions, we say
patch σ/N is well-formed for P.

Semantically, the effect of a well-formed patchσ/N over P is an atomic switch s
σ/N−→

s′ between a state s of P, and a state s′ of P [σ/N], that observes the following require-
ments:

– Quiescence – s is a quiescent state for all processes of O, i.e., O is guaranteed to
terminate gracefully.

– Initialization – s′ defines a valid initial state for processes of N, i.e., N initiates
properly.

– Isolation – s′ preserves the state of s with regard to processes associated with the
set of components P − O, i.e., the execution of unchanged components is not affected.

P

P – O

P [σ/N]

O

Q

σ/Ns s'

N

I

Fig. 5. Patch effect – state space of components.

In Fig. 5, semantic patch effect is depicted in terms of the state space of P, P [σ/N],
and projection of that state space for involved components. For patch effect, O must

enter a quiescence zone Q, N must be able to start from a valid initialization zone I,
and the state of unchanged components P − O must remain the same. We say σ/N is
feasible if the execution of P guarantees eventual semantic effect of σ/N, i.e., from
every possible execution state s0 of P, a state s is always eventually reached such that

s
σ/N−→ s′ for some state s′ of P [σ/N].

Runtime patcher. A runtime patcher is considered as an abstract entity that has the
ability to observe (as input) the syntactic structure and the semantic state of a currently
executing program, and define (as output) runtime patches that modify that program
and its state, in adherence to the constraints put forward for patching. With regard to
the nature of a runtime patcher, our intention is to merely reason at this very abstract
level, without considering, so to say, how the patcher comes up with the patches, or its
design. Naturally, however, actual requirements of a runtime programming system can
be elaborate, in the same vein of reconfigurable “live systems” [24, 42].

The notions of runtime patcher and runtime patching define the possible executions
of a runtime programming system, in the form illustrated in Fig. 6. The figure shows
that, starting from an initial configuration where program P1 is active, a patcher P has
the ability of inducing patches σ1/N1, σ2/N2, . . . over program execution. The resulting
program sequence is

P1, P2 = P1 [σ1/N1], P3 = P2 [σ2/N2], . . . ,

and the resulting program state sequence is

s1, . . . , s′1, s2, . . . , s′2, s3, . . . , s′3, . . . ,

such that intermediate state sequences si, . . . , s′i are defined by the semantics of Pi, and

s′i
σi/Ni−→ si+1.

P

execution
s

1
 → s'

1

σ
1
/N

1

σ
1
/N

1

runtime
patcher

P
1

P
2

P
3

P
4

running
program

s
2
 → s'

2

σ
2
/N

2 s
3
 → s'

3

σ
3
/N

3

σ
2
/N

2
σ

3
/N

3

Fig. 6. Runtime patcher and program execution.

Model preservation. The runtime patching operation we propose partially fulfills the
requirements put forward in the introduction for model preservation. A patch defines an
instantaneous switch between two programs, thus its effect can be explained alone by
the programming model in place. Moreover, patch effect defines a safe continuous flow
between programs, by observing proper quiescence, initialization, and isolation, for
functionality that is removed, introduced, or unchanged, respectively. We must however
enforce the additional requirement for model preservation that correct program behavior

is ensured after patch effect. Well-formedness of a patch σ/N over a program P, the fact
that P [σ/N] is a proper program, and patch feasibility conditions, do not guarantee that
to be the case necessarily. The issue is that a runtime patch defines a different (a partial)
initialization of (otherwise a priori correct) P [σ/N], attending only to the immediate
effect of the patch, not to subsequent program behavior, which may potentially deviate
from correctness.

σ/N

R
I

 E

Iprogram
initialization

patch
effect

S

Ψ⊨

R
E

 R
D
⊭ Ψ

Fig. 7. Deviation from correctness after patch effect.

The problem is illustrated in Fig. 7. The state space of a program P [σ/N] is shown,
considering execution starting from overall initial conditions I, or starting through ef-
fect of a patch σ/N from E, as a “continuation” of the execution of P. Patch-induced
program traces, those starting from E, and defining reachable state space RE , may dif-
fer, transiently or even in the long term, from standard program traces, those starting
from I, and defining reachable state space RI . The figure shows that the state space S of
satisfiability of a certain property of correctness ψ, includes all states of standard pro-
gram traces (RI ⊆ S), but that this may not necessarily hold for patch-induced traces.
A model-preserving patch should preclude the existence of deviant behavior RD ⊆ RE ,
shown at bottom in Fig. 7, where ψ does not hold.

This approach does not necessarily require any special relation between patch-
induced traces and program traces, such as, e.g., the condition for valid runtime patches
in [16], requiring convergence of patch-induced traces to standard program operation.
In this sense, though, particularly if liveness properties are at stake, it may be expectable
that patch-induced traces and standard traces converge, or are very closely related. We
should note also that there might be properties of correctness that are difficult or impos-
sible to analyze beforehand, and runtime patching obviously complicates that task. This
problem has been addressed with redundancy and fault isolation methodologies [37,
11, 8], that counter for deviation of correctness after patch effect. We do not consider
this type of methodologies, but their use is not ruled out at the program level by our
component-based model assumptions, e.g., an analytic redundancy relation between
components [37] can be in place.

Patching scope and decomposition. The requirements put forward for runtime patch-
ing can possibly be quite sensitive in terms of possible scope attainable by runtime
patching. After all, for effect of a patch, a possibly delicate synchronization of quies-
cence, valid initialization, and isolation of effect is required for different components.

Moreover, compliance with correctness after patch effect is also required. Consider for
instance large patches that are infeasible, because they replace components that qui-
esce in unsynchronized manner, or that are too complex to verify w.r.t. correctness after
patch effect.

O
1

N
1

execution

P - O

P
σ

O
2

O
1

σ1/N1

O
2

N
2

σ2/N2

P [σ1/N1]
σ

O
2

N
1

P [σ/N]
σ

N
2

N
1

P [σ/N] = P [σ1/N1][σ2/N2]

Fig. 8. Patch decomposition.

It should be the case that the set of model-preserving patches is much smaller than
the set of well-formed patches, those that merely encode a valid syntactic transforma-
tion. This should not be seen as a limitation. The correct perspective is that the runtime
patching operation can work as a sound inductive case to deal with otherwise invalid
program patches. To handle these, we can consider the decomposition in smaller model-
preserving sub-patches that proceed in several sequential steps, such that the overall fi-
nal effect corresponds to the intended transformation. The idea is illustrated in Fig. 8. A
patch σ/N is shown applied to a program P, by decomposition in smaller patches σ1/N1
and σ2/N2. The requirement is that P [σ/N] = P [σ1/N1][σ2/N2], and that σ1/N1 and
σ2/N2 can operate over P and P [σ1/N1], respectively.

Patch decomposition can reflect a number of aspects related to the programming
model in place, or design choices for better performance w.r.t. metrics of choice. For
instance, the order of patches in a decomposition can express component dependen-
cies, e.g., in Fig. 8, it can be that σ2/N2 does not proceed first, due to a “dependency”
of N1 by N2. Factors such as promptness, availability, or correctness, may determine the
pattern of progressive software change, e.g, as in mode change protocols for real-time
systems [35], or upgrade protocols in large-scale web servers [4]. Another general use
of decomposition may be to break down a component replacement into a component
removal, followed later, after some downtime at the replacement path, by an addition –
consider N1 = ⊥,N2 = N in Fig. 8, where ⊥ stands for an undefined component. The
downtime may be necessary for several reasons: synchrony of effect with other patches,
matching initialization requirements of the new component, or time consuming state-
transfer from old to new component (e.g., [5, 38]).

2.3 Patch compilation

Patch compilation is the process of verifying and integrating a runtime patch in a run-
time programming system. Verification of a runtime patch over a given program needs
to establish the conditions for model-preservation (well formedness, feasibility, correct-
ness after effect) formulated previously. For these, functional or non-functional prop-
erties of correctness (e.g., deadlock-freedom, resource consumption) are to be taken in
consideration, along with program analysis w.r.t. patch effect. Patch integration may
comprise aspects such as code generation, or relinking. Overall, patch compilation may
make use of an array of specialized techniques, e.g., see [1, 39, 6, 28–30, 27, 2]. Our
interest, though, is not to characterize particular techniques for patch compilation, but
instead to propose a general methodology for their scalable implementation.

The key observation we make is that, in a runtime programming environment, a
patch changes a “previously compiled“ program, hence compilation should be able
to proceed incrementally. To characterize incremental patch compilation, we consider
a base framework originally defined in [17], and generalize it for our abstraction of
component-based software.

P [σ / N]

N

D
ϕ
(P,N,σ)

dependency
context

P |= φ Dφ(P,N, σ) |= ϕφ

P [σ/N] |= φ

Cφ(P,N, σ) = O
(
Dφ(P,N, σ) |= ϕφ

)
I(φ) = (ϕφ,Dφ,Cφ)

Fig. 9. Incremental patch compilation.

The proposal is illustrated in Fig. 9. The idea is that patch compilation should con-
sist of an incremental effort operating over the dependency context of components re-
lated to a patch. Per each compilation aspect φ, say for instance code generation, the
dependency context of a patch σ/N over P, Dφ(P,N, σ), shown left in the figure, iden-
tifies the portion in P [σ/N] that needs to be accounted for to deal with φ incrementally,
taking also, optionally, O = P[σ] in consideration. The incremental effort seeks to es-
tablish a property ϕφ over that dependency context through some algorithm. This is
expressed by the inference rule shown right in the figure: φ is dealt with for P [σ/N] if
ϕφ is considered overDφ(P,N, σ), and also under the assumption that P has been previ-
ously compiled w.r.t. φ. The inherent time complexity of this incremental compilation
effort is in turn expressed by Cφ(P,N, σ) = O

(
Dφ(P,N, σ) |= ϕφ

)
, called the compila-

tion cost – we abuse notation in the sense that the complexity at stake relates to the
algorithm in place to verify ϕφ. We call I(φ) = (ϕφ,Dφ,Cφ) an incremental compilation
strategy for φ.

The formulation above inherently characterizes incremental compilation and its
scalability, in the size (dependency context) and time (compilation cost) dimensions.

Scalability can be broken in one of the dimensions, e.g., if a patch requires the full pro-
gram as context, or if the compilation cost has intractable complexity. A good degree
of scalability corresponds to a small dependency context, and a tractable incremental
compilation effort.

Our methodology is tightly related to matters of modular compilation, component
composition, trade-offs between precision and performance in the compilation of component-
based systems, and in particular the well known state-explosion problem in this con-
text. In this sense we share concerns with [3, 41, 26, 14]. By our formulation in Fig. 9,
P |= φ ∧ Dφ(P,N, σ) |= ϕφ is a sufficiency criteria for P [σ/N] |= φ, hence exact com-
pilation may not be expressed. The dependency context and compilation cost depend
on the choice of ϕφ, which can be seen as a degree of freedom in patch compilation,
representing the balance between precision and effort.

3 Case study

We put our proposal in perspective considering runtime programming over the HTL
language [17, 15]. HTL is a component-based coordination language for real-time dis-
tributed control systems. HTL programs are expressed as the composition of syntactic
components, under constructs for concurrency, choice, and hierarchical refinement. The
execution of components corresponds to the semantical composition of real-time tasks
in a platform, with guarantees of predictable timing behavior. We begin by providing
an overview of the language. We then describe how runtime programming can be de-
fined over it, considering how the language fits our programming model assumptions,
and how runtime patches can be defined and compiled. As an assessment of practical-
ity, even though we have not devised an implementation of runtime programming over
HTL, a running example of a real-world application is discussed throughout the text.

3.1 HTL overview

Example. We consider a running example, concerning an HTL application for a three-
tank system (3TS) [20]. The 3TS, depicted in Fig. 10, consists of three tanks, Tank1,
Tank2, and Tank3. Each tank has an evacuation tap, Tap1 to Tap3, and there are two
tank inter-connecting taps, Tap1,3 and Tap2,3. Two pumps Pump1 and Pump2 control
the flow of water into Tank1 and Tank2, with the aim of maintaining the water level in
the tanks, both in the case of water leaks through the tank’s taps, or in their absence.
For pump control, a proportional (P) controller is used in the absence of leaks, and two
proportional-integrative (PI) controllers are used when there are leaks, one with slow
integration speed for an estimated low control error, the other with faster integration
speed. To control the 3TS system, an HTL program has been implemented [20], and
some videos demonstrating it at work can be found in [19]. In this paper, we consider a
small adaptation of the original 3TS program, by letting P controllers mentioned above
run at 1 Hz, and PI controllers run at 2Hz, rather than a fixed frequency of 2 Hz for all
control in the original program.

In Fig. 11, the syntactic structure of the adapted 3TS program (left) and a possi-
ble execution of it (right) are shown. The 3TS program runs on three hosts. Two hosts

Tap1 Tap3 Tap2

Tap1,3 Tap2,3

Pump1 Pump2Tank1 Tank3 Tank2

Fig. 10. Three-tank system [20].

have direct access to the two pumps, respectively, and the remaining host serves as a
monitoring interface to an operator. Overall, Fig. 11 illustrates that an HTL program
is a hierarchical tree-like structure composed of other components called modules and
modes, which can in turn define inner programs through a relation of hierarchical re-
finement. The top-level program 3TS consists of three concurrently running modules
Pump1, Monitor, and Pump2, each mapped to one of the mentioned hosts. Each mod-
ule is organized in modes, which describe switchable configurations of operation in the
module, with each mode defining the invocation of a set of real-time task invocations
over a time period, some of which can be abstract placeholders for hierarchical refine-
ment. In the example, the pump control modules Pump1 and Pump2 have similar struc-
ture. Each of the modules has two modes, corresponding to P-control and PI-control
modes of the 3TS. The PI-control mode is further refined by a program that defines the
“slow”-PI and “fast”-PI control modes.

0 1 2 3 4 5 6

Pump1
P1

1
PI1

MMode 1Monitor

Slow1

0.5

0.5

Fast1

idle idle

idle

mode period

switch switch

module mode
program

refinement

RM1R1

HTL components real-time tasks

Pump2
P2

PI2

Slow2

0.5

0.5

Fast2

refinement

RM2R2

3TS

0.5

1

0.5

Fig. 11. An HTL program for the 3TS (adaptation from [20]).

HTL components. In more detail, HTL components are defined and relate to each other
as follows:

– A program defines a set of modules that execute concurrently. A top-level (root) pro-
gram can be distributed module-wise across different hosts in a network (as in the 3TS
example), and defines a set of global interaction variables called communicators, de-
scribed below.
– A module is defined by a set of modes, with one mode identified as start mode (e.g., in
Fig. 11, P1 for module Pump1), and some mode switching logic expressed by conditions
over communicator variables. A module executes by activating one mode at a time, be-
ginning with the start mode, and evaluates mode switching logic to define the next mode
to execute in sequence (e.g., in Fig. 11, module Pump1 initiates with mode P1 at time
0, switches to PI1 at time 2, and then back to P1 at time 4).
– A mode defines any number of real-time tasks, and their invocation over a fixed time
period, called the mode’s period (e.g., in Fig. 11, mode periods are 1 or 0.5). Tasks in a
mode are expressed as insulated I/O functional blocks with no internal synchronization,
and computation specified using an external programming language, such as C or Java.
The end of a mode’s period is consistent with graceful termination of all computation
of tasks in the mode, and defines the time for evaluating mode switching at the upper
level of the parent module.
– The hierarchical refinement of a mode by an entire program, called the mode’s re-
finement program, is enabled in case some tasks in a mode are abstract placeholders
with no implementation. Refinement does not add expressiveness to HTL, as it is pos-
sible to transform any hierarchical program into a “flat” program without refinement. It
does however offer the flexibility of hierarchical encapsulation, which in turn can lever-
age the effort in compiling a program. The refinement program must provide concrete
task implementations in modes of equal periods, or even abstract tasks again, if refine-
ment is nested. Other refinement constraints are also enforced, with the general intent
of preserving key properties of the parent mode’s specification, such as schedulability
of computation. Refinement programs are active when their parent mode is also active,
executing concurrently, and in time-synchronized form at mode switching instants. In
Fig. 11, one can see mode PI1 and its refinement R1 activated together in interval (2, 4),
and, likewise, PI2 and R2 in interval (1, 4.5).
– HTL components interact with each other and external software in the runtime envi-

0 30.5 1 1.5 2.52

c1
write

c2

MMode

Pump1P1
PI1

Monitor

read

Fig. 12. HTL communicator interaction.

ronment through communicators. A communicator is a global top-level program vari-
able that has an associated period for access by real-time tasks in a mode, meaning it
can only be logically read or written at times that are multiples of its period. Valid in-
teraction is also defined by the absence of races in communicator writes, i.e., no two

components should write to the same communicator at the same logical time. A com-
municator value persists in between writes, that need not occur at every communicator
period or synchronize with reads, and is broadcasted upon update over the network.
A communicator that is updated externally is called a sensor communicator, and the
values of sensors over time are called the program inputs. Fig. 12 depicts a possible
communicator interaction between the modules Monitor and Pump1 of the 3TS pro-
gram, using communicators c1 and c2 with periods 0.5 and 0.25, respectively. Tasks in
mode MMode within module Monitor read c2, and write to c1. The tasks of modes P1
and PI1 in module Pump1 write to c2, and read from c1.

Time-determinism. The desired key property for correctness of an HTL program is
time-determinism. A program is time-deterministic if for every timed sequence of in-
puts (sensor communicator values over time) the program always yields a unique timed
sequence of outputs (the values of all other communicators over time). Time-determinism
is ensured for a program by the absence of races in communicator updates in the pro-
gram’s specification, plus, attending to the constraints of a given platform, schedula-
bility of task computations per host, and schedulability of network transmissions for
communicator updates. A time-deterministic program can thus guarantee predictable
functionality, and also one that is portable over any given platform with sufficient com-
putational resources. The verification of time-determinism is part of the HTL compila-
tion process, described below.

3.2 Runtime programming over HTL

Program model assumptions. HTL adheres to the program model assumptions of Sec-
tion 2.1 with the following traits:
– HTL syntax and semantics are modularly related, since each component describes an
isolated set of processes in the form of real-time tasks. Moreover, each component is
uniquely named at each syntactic level [17], e.g., all modules in a program have dis-
tinct names within a program, which allows for a trivial definition of a component path
scheme (e.g., the path of P1 in Fig. 10 could be something like 3TS.Pump1.P1).
– A notion of component initialization is also in place. It takes form in two essential
aspects. First, each module must initialize from its start mode. This applies to top-level
modules, when activated from an overall top-level program initial state, and refinement-
level modules, whenever their parent mode becomes active after a period of idleness
(e.g., R1 and PI1 at time 2 in Fig. 11). Secondly, initialization requires that the begin-
ning of a mode’s period is harmonic with the timeline of all communicators it accesses,
or that other modes in the same module do, as illustrated in Fig. 12.
– HTL component quiescence can be seen expressed by intervals of idleness, when a
component’s execution has no side effects (e.g., in Fig. 11, (0, 2) and (4, 6) for PI1 and
all its sub-components) or atomic instants of mode switching in all modes of a compo-
nent (e.g., PI1 again every 0.5 seconds in (2, 4)). Quiescent is a guaranteed eventually
for modes, modules, or refinement level programs. The same does not hold for top-level
programs, as they can perform mode switching in non-synchronized form indefinitely
– e.g., in Fig. 11, after time 3.5, Pump1 and Pump2 start switching at times 4, 5, ..., and
3.5, 4.5, ... , respectively – except in very specific cases – e.g., if all modes in a program

have equal periods, or if every module has just one mode allowing for synchronization
on an hyperperiod.

Runtime programming formulation. We consider runtime patches over HTL pro-
grams with model-preserving instantaneous effect, or through decomposition, by letting
patches proceeding in decomposed form as a sequence of smaller model-preserving
patches.

We let a model-preserving patch define the replacement of modes, modules, and
refinement programs, or the addition or removal of modules. The reason for not con-
sidering mode or refinement program addition is that they are infeasible by definition,
without being subsumed, respectively, by a change on the containing module’s mode
switching logic, and by a patch to the parent mode associated to a refinement program.
We also only consider top-level program patches by decomposition, since quiescence
is not in the general case a guaranteed behavior for top-level programs – hence, little
expressiveness is lost. Additionally, we consider the simplification that a patch does
not affect the communicator set of a program. This avoids a number of technicalities
without loss of expressiveness: a patch that changes communicators can be seen as
equivalent, through communicator “renaming”, to a patch between programs with the
same communicator set.

The design and implementation of an actual runtime patcher are not a core con-
cern in this paper. For illustrative purposes, one can conceive for example that a run-
time patcher is some piece of software interfacing with a distributed HTL runtime sys-
tem [15, 14] that is extended for runtime code instrumentation. In the following discus-
sion, however, the main issue is to highlight possible choices of actuation by a runtime
patcher, specifically with regard to patch decomposition policies and respective trade-
offs.

3TS patch example. To illustrate runtime programming over HTL, we consider a patch
over the 3TS example, depicted in Fig. 13. The figure shows the syntactic changes
defined by the patch (13a), and two possible effects by decomposition (13b and 13c).

The example patch, ε/3TS′, syntactically changes 3TS by replacing top-level modes
MMode (σ1/MMode

′) and PI1 (σ2/P1
′), plus refinement module RM2 (σ3/RM2

′). The
patch over MMode yields new mode MMode′ with a different period (2 rather than 1),
and it is assumed that MMode′ has an initialization constraint due to hypothetical com-
municator access definitions, such that it can only start at time instants multiples of 2.
The patch over RM2 is assumed to replace all component modes and change the mod-
ule’s switching logic. For simplicity, the example is artificial by considering that the
functionality in each 3TS pumps changes differently. A more “natural” patch would
consider the same type of changes on both pump modules.

The ε/3TS′ patch of Fig. 13a needs to proceed in decomposed form. A possible
decomposition results from considering the strict syntactic changes over paths σ1 to
σ3. But other decompositions can be considered flexibly. As illustrated in Fig. 13a, for
instance, patch σ2/P1

′ can be subsumed by the module replacement σ4/Pump1
′, and

in turn the latter can be decomposed further into a removal of Pump1 (σ4/⊥), followed
by the actual addition of Pump1′ (σ4/Pump1

′). Fig. 13b and Fig. 13c depicts sample se-
mantic effects of the two decompositions. A patcher is assumed to induce patches after
time 3 in the (0, 6) timeline. In Fig. 13b, the patcher proceeds by applying patches on

Pump1
P1

1

MMode 1Monitor

Pump2

Slow2

0.5

0.5

Fast2
RM2R2

3TS

P1' 1
σ

2
/ P1'

Slow2'

0.5

0.5

Fast2'
RM2'

σ
3
/ RM2'

...

...
PI2

σ
4
/ ⊥
⊥

σ
4
/ Pump1'

Pump1'
...

3TS'
Mmode' 2

σ
1
/ MMode'

Pump2' ...

ε

/3TS'

0.5

(a) Syntactic change

0 1 2 3 4 5 6

Mmode MMode'

Pump1
P1
PI1

Pump2

P2
PI2

Monitor

P1'

Slow2
Fast2

Slow2'
Fast2'

PI1

P2
PI2'

Pump1'

Pump2'

Monitor

...

R2

RM2

R1

RM2'
R2'

R1... ...

(b) 3TS′ = 3TS [σ3/RM2
′][σ2/P1

′][σ1/MMode
′]

⊥ P1'

Slow2'
Fast2'

PI1

P2
PI2'

Pump1'

Pump2'

RM2'
R2'

0 1 2 3 4 5 6

Pump1
P1
PI1

Pump2

P2
PI2

Slow2
Fast2

R2

RM2

... R1R1... ...

Mmode MMode'Monitor Monitor

downtime

(c) 3TS′ = 3TS [σ4/⊥][σ1/MMode
′][σ3/RM2

′][σ4/Pump1
′]

Fig. 13. 3TS program patch.

paths σ1 to σ3, opportunistically as soon as possible. The patch over MMode is delayed
until time 4, due to the initialization constraint on MMode′. The patch over P1 is also
delayed until time 3.5, since P1 is not quiescent at time 3. Only the patch over RM2
can proceed at time 3 immediately. In Fig. 13c, for the same execution until time 3,
the patcher proceeds by delaying all components replacements until time 4, and, to ob-
tain synchrony of effect, inducing downtime on program path σ4 in interval (3.5, 4) by
removal of Pump1 .

The effects of the two decompositions in Fig. 13 are representative of asynchronous
and synchronous real-time mode changes [35], as the first (Fig. 13b) expresses an asyn-
chronous mix of “old” and “new tasks” in a transient period, and the second (Fig. 13c)
does not. As such, they represent a trade-off between several competing factors: prompt-
ness in patch effect, downtime in affected program paths, and also of compilation effort,
discussed below.

3.3 HTL Patch compilation

We describe HTL patch compilation as an extension to the work of [17], where a staged
compilation process for HTL has been described, plus associated incremental compi-
lation strategies. The HTL compilation process comprises several compilation aspects,
and precedences between them, in the manner shown in Fig. 14a. The additional aspect
of patch verification is considered in the figure, extending standard compilation. The as-
sociated incremental compilation strategies are summarized in the table of Fig. 14b, in
terms of the the dependency context –Dφ(P,N, σ) – and compilation cost – Cφ(P,N, σ)
– measures of Section 2, considering a patch σ/N over a program P, inducing compo-
nent replacement or addition. The simpler case of component removal is characterized
separately below. A distinction is also made in Fig. 14b for some compilation aspects,
regarding whether N is a top-level component, or a refinement-level component.

Well
formedness

Race
freedom

Transmission
safety

Code
generation

Time
safety

Patch
verification

(a) Compilation aspects.

φ
Dφ(P,N, σ) Cφ(P,N, σ)

top ref. top ref.

Well formedness N Linear

Race freedom

P [σ/N] ∅

Linear

Void
Time Safety Exponential

Transmission safety Linear

Patch verification O and N Linear

Code generation N Linear

(b) Incremental compilation strategies.

Fig. 14. HTL patch compilation (extension of [17]).

As shown in Fig. 14, incremental HTL compilation proceeds first by checking com-
pliance with syntactic constraints (well formedness). Checking for well-formedness re-
quires taking a dependency context of N alone, and has a compilation effort linear to
the size of N. Time-determinism is then ensured by checking the absence of races in
communicator writes (race freedom), schedulability of computation (time safety), and
schedulability of network broadcasts for communicator value propagation (transmis-
sion safety). The later aspects are preserved from P by well formedness of N alone,
if N is a refinement-level component. Otherwise, they need to take the entire program
as dependency context, but generally proceed with a linear effort. The exception is
verification of time safety, that induces an exponential time effort, assuming an EDF
scheduling scheme [17]. At the end of the compilation process, code can be generated
for the “hierarchical” E-machine [14], for N alone and with a linear effort.

Beyond patch verification, discussed below, a few refinements to HTL compilation
should be necessary. Code generation [14] should counter for runtime relinking, but
with the same incremental characterization in principle. Runtime patching also raises
the issue of component removal. Attending to [17], well-formedness of P [σ/⊥] is
verifiable with a linear effort taking O = P[σ] in context, and time-determinism is
preserved from P. Also, no code generation is required for P − O, but unlinking the
code of O should be necessary (in principle, again a linear effort over O).

Patch verification. In line with the formulation of Section 2, the validation of a model-
preserving patch comprises checking for patch well-formedness (validation of syntac-
tic patch effect), patch feasibility (ensuring eventual semantic effect of the patch), and
compliance with correctness (time-determinism) after patch effect.

Patch well-formedness is subsumed by standard incremental compilation of HTL
programs. So is the issue of compliance with time-determinism after patch effect. Po-
tential deviation from time-determinism could result from patch effect, as concurrent
tasks in different modes execute together in a different manner from an execution from
scratch. But the compilation strategies in place for time-determinism (race freedom,
time safety, and transmission safety) already consider an over-approximated state space
defined by all potential mode switching combinations in different modules [17]. Hence
time-determinism can be ensured in all possible executions after patch effect. The rea-
son for the over-approximation is that a precise analysis is not possible, since whether
a particular mode switch will occur or not is undecidable.

Thus, patch verification merely requires checking patch feasibility. For this, we must
deal with the initialization, quiescence, and isolation requirements of runtime patching,
and ensure they eventually hold in the execution of a program P for semantic effect
of a given patch σ/N. As indicated in Fig. 14b for the patch verification aspect, this
takes O = P[σ] and N as context and has a linear time effort, when N is a top-level
component. It is otherwise ensured by well-formedness alone for a refinement-level
component N. The reasons for this are explained in more precise manner in Section 4.4,
but the rationale is as follows. The quiescence requirement always holds, since we re-
strained a priori model-preserving patches from being defined over top-level programs.
So does the isolation requirement, by virtue of isolation of state for HTL components.
The initialization requirement requires that O always quiesces at instants that are con-

sistent startup times for top-level N, something verifiable in linear-time through simple
constraints over the periods of communicators accessed by both components.

Scalability. Overall, scalability in HTL patch compilation is compromised by the ver-
ification of time safety for patches that affect top-level components. This is of course
a serious burden, but a number of established techniques can be in principle used to
overcome the problem, referred to in Section 5.

The 3TS patching example of Fig. 13 illustrates this, along with compilation trade-
offs for choices of patch decomposition. The decomposition of Fig. 13b defines three
programs, respectively resulting from patches at three distinct program paths, and at
separate times (3, 3.5, and 4). The two patches over MMode and P1, operate at the pro-
gram top-level, thus require re-checking the program for all compilation aspects, and in
particular time safety, which induces an unscalable compilation effort. The other patch
over RM2, a refinement-level component, merely requires checking for well-formedness
and generating code in isolation for the component, with a linear effort for both. The
compilation effort in the decomposition of Fig. 13c is also hindered by the top-level
time safety check, but reduced essentially to one program, the “final” 3TS′ resulting
from effect of three simultaneous patches. The module removal (Pump1/⊥) anticipating
those patches can be handled in comparatively lightweight manner, with linear com-
pilation cost. The two decompositions instantiate a known trade-off in real-time mode
changes [35], obtaining higher promptness at the cost of extra checks for correctness in
a period when “old” and “new” tasks mix.

4 Formalization

In this section we provide a definition of runtime programming in formal terms. The
formalization addresses matters of detail and preciseness in regard to the characteriza-
tion in Section 2, but otherwise expresses the same concepts. Also as in Section 2, we
proceed by characterizing the program model assumptions, the formulation of runtime
programming, and incremental patch compilation, in this order. We also illustrate the
HTL instantiation of the formalization, in connection to the HTL syntax and semantics
of [17].

4.1 Program model assumptions

Syntax. We assume a syntax for programs, expressed by: a domain of components Components;
a domain of programs Programs ⊆ Components; a set Σ of path symbols; and a map-
ping

[] : Components × Σ∗ → Components ∪ {⊥},
called the path function.

A path is a sequence of symbols σ = α1...αn ∈ Σ∗, n ≥ 0, with the empty sequence
(defined for n = 0) denoted ε. We let σ1σ2 denote the concatenation of paths σ1 and
σ2, and σ1 � σ2 denote that path σ1 prefixes or equals σ2. When σ1 � σ2, we say σ2 is
in the scope of σ1. If two paths σ1 and σ2 do not prefix one another – σ1 � σ2, σ2 � σ1
– we say they are concurrent paths, and write σ1 ‖ σ2.

For a component C, we write C[σ] = C0 if [](C, σ) = C0. If C0 , ⊥, we write
σ ∈ paths(C), and we say that component C0 is declared in path σ. If C0 = ⊥ we say
that path σ is undefined in C. We denote C − C0 to be the set of components in C with
paths concurrent to the path of a sub-component C0 of C. We impose three constraints
on the relation between paths and components, in line with the intuition in Fig. 2. For
every C ∈ Components we require that:

C[ε] = C (1)
∀σ1 ∈ paths(C), σ2 ∈ Σ∗,C[σ1σ2] = C[σ1][σ2] (2)
∀σ1, σ2 : σ1 ‖ σ2,@σ : C[σ1σ] = C[σ2σ] , ⊥ (3)

That is, the empty path always identifies the root-level component in context (1), paths
compose (2), and components in concurrent paths are distinct (3).

Semantics. We assume a domain of processes Processes, and a mapping of compo-
nents to sets of processes

processes : Components→ 2Processes,

such that for all components C, and σ1, σ2 ∈ paths(C):

σ1 � σ2 ⇒ processes(C[σ1]) ⊇ processes(C[σ2]) (4)
σ1 ‖ σ2 ⇒ processes(C[σ1]) ∩ processes(C[σ2]) = ∅ (5)

The constraints mean that processes of a component must include those of their sub-
components (4), and that components in concurrent paths have disjoint process sets (5),
as illustrated previously in Fig. 2.

Per component C, we take the semantics of processes(C) to be expressed by a
tuple

(states(C), init(C),
C−→, q(C))

where: states(C) is a set of states; init(C) ⊆ states(C) is a non-empty subset of ini-

tial states;
C−→ is a left-total binary relation on states(C) called the successor relation;

and q(C) is a subset of states(C)×processes(C), called the quiescence relation. The
formulation of component semantics is basically a kind of Kripke structure, of common
use to model abstract semantics (e.g., see [7] for reference).

We say state s of component C is a quiescent state for process p if (s, p) ∈ q(C) ,
and that s is overall quiescent for C if it is quiescent for all processes in processes(C),

denoted by s ∈ qstates(C). For (s, s′) ∈ C−→, we write s
C−→ s′, and say s′ is a

successor of s. A trace of C is defined as a sequence of states of the form

s0, s1, s2, . . . : s0 ∈ init(C) ∧ ∀i ≥ 0, si
C−→ si+1. (6)

We wish to enforce that the semantics of a component expresses the composition of
any sub-components it contains, by some simple semantics-preserving constraints over
a notion of state projection. If a component C contains a sub-component C0, a notion of
projection in C0 is required to be in place, for every state s of C, sbC0c ∈ states(C0),
such that:

s ∈ init(C)⇒ sbC0c ∈ init(C0) (7)p ∈ processes(C0)
∧

(s, p) ∈ q(C)

⇒ (sbC0c, p) ∈ q(C0) (8)

s
C−→ s′ ⇒

[
sbC0c = s′bC0c ∨ sbC0c C0−→ s′bC0c

]
(9)

Thus, a projection is required to preserve initialization (7), quiescence (8), and succes-
sor relation (9). Note that by (9), a successor of a state in C either maintains the projec-
tion within a sub-component, or corresponds to a successor of the projection, which is a
general abstraction for any type of process composition, e.g., forms of interleaving, syn-
chronization, etc. Under these constraints, a trace of C in the form of (6) always projects
onto a trace of a sub-component C0 of C, defined by sn0bC0c, sn1bC0c, sn2bC0c, . . ., where

n0 = 0 and, for i ≥ 0, ni+1 = min{k > ni : sni

C−→ sk}.
Finally, to reason on program correctness, we assume a set Ψ defining correctness

properties to which programs comply. A correctness property is a logical predicate over
program traces. We require for ψ ∈ Ψ that ψ holds for every trace of a program.

4.2 Runtime programming formulation

Runtime patching. A patch is a pair (σ,N), denoted σ/N, where σ is a path, and N is
a component or an undefined value ⊥.

Let P be program, σ/N be a patch, and O = P[σ].
We say σ/N is well-formed for P, if there is a program, denoted P [σ/N], such that:

P [σ/N] [σ] = N (10)
∀σ0 : σ0 ‖ σ, P [σ/N] [σ0] = P[σ0] (11)

The above conditions expresses the syntactic effect of a patch, which is to replace O
by N in P (10), while preserving all other paths (11). The patch is called a component
removal if N = ⊥, a component addition if O = ⊥, and a component replacement
otherwise (O,N , ⊥).

We say σ/N has a defined semantic effect s
σ/N−→ s′ between s ∈ states(P) and s′ ∈

states(P [σ/N]) under the following conditions:

O , ⊥ ⇒ sbOc ∈ qstates(O) (12)
N , ⊥ ⇒ s′bNc ∈ init(N) (13)

C ∈ P − O⇒ sbCc = s′bCc (14)

Thus, semantic effect requires that: state s is quiescent for the processes of O (12),
except if O is undefined (the component addition sub-case); state s′ defines a valid
initial state for N (13), except if N is undefined (component removal); and state s′
preserves the state of processes of components in P − O from s (14).

We say a well-formed patch σ/N over P is feasible over P, if the execution of P
always eventually leads to conditions for semantic effect of σ/N i.e., more formally,

∀s0 ∈ States(P), ∃s : s0
P−→ . . .

P−→ s ∧ s
σ/N−→ · (15)

Finally, we say a feasible patch σ/N over P is model-preserving, and write σ/N ∈
patches(P), if every sequence of the form

s0, s1, s2, . . . : · σ/N−→ s0 ∧ ∀i ≥ 0, si
P [σ/N]−→ si+1

called a patch-induced trace for σ/N over P, verifies the properties of correctness Ψ in
place for program traces, i.e., for ψ ∈ Ψ , ψ must also hold for patch-induced traces.

The notion of patch decomposition can be subsequently formalized as follows.
Given patch σ/N over program P, we say σ/N is decomposable, and write σ/N ∈
dpatches(P), if there are patches σ1/N1 and σ2/N2, such that (in line with Fig. 8):

P [σ1/N1][σ2/N2] = P [σ/N] (16)
σ1/N1 ∈ patches(P) ∪ dpatches(P) (17)

σ2/N2 ∈ patches(P [σ1/N1]) (18)
σ1 ‖ σ2 ∨ (σ1 = σ2 = σ ∧ N1 = ⊥) (19)

That is, σ1/N1 and σ2/N2, applied in this order: yield the same syntactic effect of
P[σ/N] (16); are decomposable or model-preserving (17) and model-preserving respec-
tively (18); and affect concurrent program paths (19), unless the decomposition reflects
a component replacement broken-down in the component’s removal followed by its ad-
dition (N1 = σ/⊥ over P, N2 = σ/N over P [σ/⊥]). Note that conditions (16) (18), (19)
imply a finite recursion over (17).

Runtime patcher. A runtime patcher P is a tuple

(states(P), init(P),
P−→, P=⇒)

defined by: a state domain states(P); an initial state domain init(P) ⊆ states(P);
a labelled successor relation

ŝ
P−→
P,s

ŝ′

that can be defined for ŝ, ŝ′ ∈ states(P), P ∈ Programs, and s ∈ states(P), indicat-
ing ŝ′ is a successor of ŝ by observation of state s of program P; and a patching relation

s
P

=⇒
P,σ/N,ŝ

s′

that can be defined for ŝ ∈ states(P), P ∈ Programs, σ/N ∈ patches(P), and

s, s′ : s
σ/N−→ s′, indicating patcher state ŝ can induce the stated patch effect over program

P.

Runtime programming system. We express the execution of a runtime programming
system, through the notions of runtime programming state and runtime programming
trace, as follows.

A runtime programming state has the form r = (P, s, ŝ), where P is a program, s is
a state of P, and ŝ is a state of a patcher P. A runtime programming trace is defined
as a sequence of runtime programming states r0, r1, r2, . . . where r0 ∈ Programs ×

init(P0) × init(P), and for all i ≥ 0 ri
rp−→ ri+1. The

rp−→ transition relation is defined
over runtime programming states by the following operational semantics rules:

s
P−→ s′

(P, s, ŝ)
rp−→ (P, s′, ŝ)

(20)
ŝ
P−→
P,s

ŝ′

(P, s, ŝ)
rp−→ (P, s, ŝ′)

(21)

s
P

=⇒
P,σ/N,ŝ

s′ ŝ
P−→

P [σ/N],s′
ŝ′

(P, s, ŝ)
rp−→ (P [σ/N], s′, ŝ′)

(22)

Progress is thus expressed in a runtime programming trace in one of three ways: a tran-
sition of the running program (20), a transition of the patcher (21), or a synchronization
between patcher and program, whereby the program is modified in accordance to a
patch induced by the patcher (22). The execution of a patcher and a running program
are interleaved, except for synchronized patch effect. This in line with the scheme of
Fig. 6.

4.3 Patch compilation

We consider patch compilation comprises a set of assertions or actions Aspects, called
compilation aspects, that relate to the notion of model-preserving patch as follows:

∀φ ∈ Aspects, P [σ/N] |= φ =⇒ σ/N ∈ patches(P).
That is, if all compilation aspects are established for P [σ/N], then σ/N is a model-
preserving patch for P. An implication, rather than an equivalence above, acknowledges
that patch compilation may be approximate, i.e., not recognize all model-preserving
patches.

Per each φ ∈ Aspects, an incremental compilation strategy is defined as a tuple
I(φ) = (ϕφ,Dφ,Cφ),

such that: ϕφ is a logical predicate over components called the incremental effort;Dφ is
a function of the form

Dφ : Programs × Components × Σ∗ → 2Components,
called the dependency context, such that given P, N and σ, Dφ(P,N, σ) is a set of
components in P [σ/N], and may also include O = P[σ]; Cφ is a function with the same
arguments as Dφ, called the compilation cost, that characterizes the time complexity
for some algorithm that asserts ϕφ over Dφ(P,N, σ), i.e., abusing notation as in Fig. 9,
Cφ(P,N, σ) = O

(
Dφ(P,N, σ) |= ϕφ

)
; and φ, ϕφ and Dφ are related by the following

logical inference (again the same as in Fig. 9):
P |= φ Dφ(P,N, σ) |= ϕφ

P [σ/N] |= φ

That is, if P is a program for which φ holds, and ϕφ holds for Dφ(P,N, σ), then φ also
holds for P[σ/N]. Note that we may have thatDφ(P,N, σ) = ∅, meaning no incremental
compilation is required. This special case may occur when a patch preserves φ from P,
or φ is implied by some other compilation aspects that operate in precedence in the
context of compilation (e.g., as in Section 3 for refinement-level HTL components).

4.4 HTL instantiation

We provide next a description of the basic aspects of formal instantiation of runtime
programming over HTL, in relation to the formal HTL syntax and semantics of [17].

Syntax. Every HTL component has an unique name at each level of scope, allowing
for a trivial definition of component paths that conform to (1)–(3). The mapping of
components to processes under constraints (4)–(5) holds by considering the processes
of a component C to be processes(C) =

⋃
m∈Modes∗(C) Tasks(m), where Modes∗(C) is

the set of all modes defined recursively by C (including C if C is a mode), and Tasks(m)
is an unique set of tasks defined for a mode m, cf. [17].

Semantics. With regard to HTL semantics, the instantiation traits are as follows:
– The execution state of a component C, (t, v, A) ∈ states(C) is defined by: t ∈ Q≥0,
the execution time; a valuation v of task variables defined by C or parent components
of C, plus communicators accessed by C; an an activation state A. The activation state A
may be ⊥ meaning the component is idle. Otherwise A is called an activation, and
defined as follows: for a program P, A is a set of activations 〈M, AM〉, one per module
M in the program; for a module M, A = 〈m, Am〉, where m is a mode in M, and Am is
an activation of m; for a mode m, A = 〈a, AR〉, defined by a ∈ Q+

0 , the start time of the
current period of m, and an activation AR of the refinement R of m, if one is defined,
otherwise AR = ⊥.
– Initial states s = (t, v, A) ∈ init(C) for a component C are all those with: a time t that
is is harmonic with communicator periods accessed by C; an initialization of all task
variables in C (cf. [17]); and s.t. every activation AM of a module M within A has the
form AM = 〈m0, · 〉, where m0 is the start mode of module M.
– Quiescent states (t, v, A) ∈ qstates(C) are defined if A = ⊥ (C is idle); or, if A , ⊥,
then sbC0c ∈ qstates(C0) for all sub-components C0 of C, and, additionally in case C
is a mode m, t = a + ∆ for A = 〈a, · 〉 where ∆ is the period of m (t is a mode switching
instant for m).
– In [17], transitions

C−→ for a component C are defined in line with component activa-
tions. Conditions (7)–(9) can be shown to hold, considering those component transitions
and a notion of state projection as follows. We take sbC0c = (t, vbC0c, AbC0c) for a sub-
component C0 of a component C and a state s = (t, v, A) of C, where AbC0c is the
activation state of C0 within A, and vbC0c is a restriction of v for the variables of C0.

Time determinism. Time-determinism is expressed over HTL traces as follows. Let
Comms(P) and Sensors(P) to be the sets of all communicators and sensor commu-
nicators in a top-level program P, respectively. For two HTL traces (ti, vi, Ai)i≥0 and
(t′i , v

′
i , A
′
i)i≥0 of a time-deterministic program P, such that for every cs ∈ Sensors(P)

we have vi(cs) = v′j(cs) when ti = t′j (the traces express the same timed sequence of
inputs), it must be also that vi(co) = v′j(co) for co ∈ Comms(P) − Sensors(P) (the traces
express the same timed sequence of outputs).

Runtime patches. All conditions for syntactic and semantic effect of a patch, (10)–(11)
and (12)–(14) – are instantiated through the notions of component paths, initialization,
quiescence, and state projection, and time-determinism defines the criterium for com-

pliance with correctness after patch effect. Thus, the set of model-preserving patches
for a program P, patches(P), is well defined.

Patch compilation. As discussed in Section 3.3, standard incremental HTL compila-
tion subsumes all necessary aspects of patch compilation, except that of patch feasi-
bility (15), equivalent to asserting eventual verification of (12)–(14) in the flow of a
program P for a patch σ/N. Quiescence (12) will always eventually hold (as discussed
in Section 3.2, top-level program patches are only considered through decomposition).
So will (14), due to strict insulation of components P−O from N in terms of activation
state and task variables. The initialization requirement (13) will only hold if there is a
guaranteed time of quiescence of O, that is also harmonic to the periods of all commu-
nicators accessed by N (in line with Fig. 12). This will hold by mere progress of time
when we are adding N (O = ⊥), or by well-formedness for refinement-level N (mode
periods will not change from O to N). For top-level N replacing O, possible linear-time
checks comprise a relation between hN and hO, taking hX as the hyperperiod of com-
municators accessed by X. A sufficiency condition is that hO/hN ∈ N, or, in inverse
manner, that hN/hO ∈ N, for the special case where O only contains modes of equal
periods (as in the MMode patch of Fig. 13a).

5 Related work

Models for runtime software change have long been considered. Influential work can be
found in [23, 8, 42, 16]. Even if these proposals have an high degree of generality, they
still take into account elaborate notions of component interaction and specification,
e.g., dependencies, communication, or specific traits for quiescence of components.
This work draws inspiration from them, particularly [23] w.r.t. considering an abstract
notion of quiescence, but defines comparatively simple abstract notions of component
composition, initialization and quiescence.

The problem of verifying and integrating runtime software changes has led to a
wide range of specialized compilation techniques, e.g., automatic derivation of patches
from source code repositories [1], verified code generation [39, 6, 28], type safety in-
ference for patches [29, 27, 2], or inference of “contextual side-effects” in concurrent
programs [29, 30]. Our interest was to put forward a framework such that these tech-
niques can in principle be characterized in incremental form. We find that other prin-
cipled abstractions can also be important for scalable runtime programming, such as
proof-carrying code for runtime certified compilation [31], or modular frameworks for
component-based systems [3, 41].

There is active interest in forms of runtime patching for real-time systems at large
e.g., see [36, 40, 13, 33, 34]. Earlier influential work can be found in [37], with regard to
assurances of dependability, and in [38], for a characterization of component design and
timing issues in component re-configuration [38]. Mode change protocols [35] are also
highly relevant, as discussed for HTL runtime patching, by providing a formulation to
reason on aspects such as schedulability for a runtime switch in a real-time system. As-
serting schedulability of a real-time program can be an unscalable process, as in HTL.
Paths for scalable schedulability analysis include incremental verification [12], runtime
certification through schedule-carrying code [18], and temporal isolation schemes [9].

In [22], some of the ideas in this paper and HTL runtime patching were discussed in
preliminary short form, and considering only the particular context of real-time systems
and HTL. The general formulation here is far more elaborate, not restricted to real-time
systems, and HTL is strictly a case-study instantiation.

6 Conclusion

We proposed runtime programming, a methodology for flexible software design defined
by recurrent runtime patches to a program. The presentation comprised a formulation
of concepts, its corresponding formalization, and a case-study instantiation for the HTL
language. The core concepts were that of model-preserving runtime patches, and an
incremental patch compilation methodology for scalability. We also reasoned this foun-
dation could be used to handle a wider context of runtime patches, by the notion of patch
decomposition. The HTL case-study demonstrated applicability of all these aspects.

References

1. A, J., K, M. Ksplice: Automatic rebootless kernel updates. In EuroSys
(2009).

2. B, G., P, M., N, J. UpgradeJ: Incremental Typechecking for Class
Upgrades. In ECOOP (2008).

3. B, M., S, V., S, J. Modelling synchronous systems in BIP. In EMSOFT
(2009).

4. B, E. Lessons from Giant-Scale Services. IEEE Internet Computing (2001).
5. B, U., S, E., P, F. Dynamic real-time reconfiguration in

distributed systems: timing issues and solutions. In ISORC (2005).
6. C, H., S, Z., V, A. Certified Self-Modifying Code. In PLDI (2007).
7. C, E., G, O., P, D. Model Checking. MIT Press, 1999.
8. C, J., D, J. Highly reliable upgrading of components. In ICSE (1999).
9. C, S., K, C., P, H., R̈, H., S, A. Programmable Temporal

Isolation through Variable-Bandwidth Servers. In IEEE SIES (2009).
10. C, C., M, H., H, M., Z, C. The PRISM Workwench: database schema

evolution without tears. In IEEE ICDE (2009).
11. Ḑ, T., N, P. Why do upgrades fail and what can we do about it?: to-

ward dependable, online upgrades in enterprise systems. In ACM/IFIP/USENIX Middleware
(2009).

12. E, A., S, I., S, O., L, I. Incremental schedulability analysis of
hierarchical real-time components. In EMSOFT (2006).

13. E-A, I., Gı-V, M., T, D., A, L., A, P., B-
V, P. Solutions for Supporting Composition of Service-Based Real-Time Applications. In
ISORC (2008).

14. G, A., I, D., K, C., H, T., S-V, A. Separate
Compilation of Hierarchical Real-Time Programs into Linear-Bounded Embedded Machine
Code. In APGES (2007).

15. G, A., K, C., H, T., I, D., S-V, A. A hier-
archical coordination language for interacting real-time tasks. In EMSOFT (2006).

16. G, D., J, P., B, G. A formal framework for on-line software version
change. IEEE TSE (1996).

17. H, T., K, C., M, E., S, A. Distributed, Modular HTL. In
IEEE RTSS (2009).

18. H, T., K, C., M, S. Schedule-carrying code. In EMSOFT (2003).
19. Three-tank system videos. http://htl.cs.uni-salzburg.at/examples.html.
20. I, D. Contributions to the Development of Real-Time Programming Techniques and

Technologies. PhD thesis, Politehnica University of Timisoara, 2008.
21. I E C. IEC 61499: Function blocks for industrial-process

measurement and control systems, 2005.
22. K, C., L, L., M, E. Semantics-Preserving, Incremental Runtime Patching

of Real-Time Programs. In APRES (2008).
23. K, J., M, J. The evolving philosophers problem: Dynamic change manage-

ment. IEEE TSE (1990).
24. K, J., M, J. Self-managed systems: an architectural challenge. In IEEE FSE

(2007).
25. L, J., J, J., P, E., Z, M., H, K., K, C., S,

R. CSL: A Language to Specify and Re-specify Mobile Sensor Network Behaviors. In IEEE
RTAS (2009).

26. L, R., S, C., T, S. Modular Code Generation from Synchronous
Block Diagrams — Modularity vs. Code Size. In POPL (2009).

27. M, F., L, L. Towards Safe Programming of Wireless Sensor Networks. Else-
vier EPTCS (2010).

28. M, M. Verified Just-In-Time Compiler on x86. In POPL (2007).
29. N, I., H, M. Safe and timely updates to multi-threaded programs. In PLDI

(2009).
30. N, I., H, M., F, J., P, P. Contextual effects for version-

consistent dynamic software updating and safe concurrent programming. In POPL (2008).
31. N, G. Proof-carrying code. In POPL (1997).
32. OSG A. OSGi Service Platform Core Specification, Version 4, Release 4.1, 2007.
33. P, M., U, T. Dynamic real-time reconfiguration on a multithreaded Java-

microcontroller. In ISORC (2004).
34. R, A., P, A. Dynamic reconfiguration of component-based real-time software.

In WORDS (2005).
35. R, J., C, A. Mode change protocols for real-time systems: A survey and a new

proposal. Real-Time Systems (2004).
36. R, T., W, A., D, J., Dı́, M. Providing Temporal Isolation in the

OSGi Framework. In JTRES (2009).
37. S, L. Dependable System Upgrade. In RTSS (1998).
38. S, D., V, R., K, P. Design of dynamically reconfigurable real-time

software using port-based objects. IEEE TSE (1997).
39. S, G., H, M., B, G., S, P., N, I. Mutatis mutandis: safe and

predictable dynamic software updating. POPL (2005).
40. T, K., Z, A. Real-time Java in control and automation: a model driven

development approach. In ETFA (2005).
41. T, S., L, B., H, T., L, E. On relational interfaces. In EMSOFT

(2009).
42. W, M. Towards a chemical model for software architecture reconfiguration. In

CDS (1998).

