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Abstract. Variable-bandwidth servers (VBS) control process execution
speed by allocating variable CPU bandwidth to processes. VBS enables
temporal isolation of EDF-scheduled processes in the sense that the vari-
ance in CPU throughput and latency of each process is bounded inde-
pendently of any other concurrently running processes. In this paper we
aim at reducing CPU power consumption with VBS by CPU voltage and
frequency scaling while maintaining temporal isolation. Scaling to lower
frequencies is possible whenever there is CPU slack in the system. We
first show that, in the presence of CPU slack, frequency scaling of EDF-
scheduled, possibly non-periodic tasks (as they arise with VBS) is safe up
to full CPU utilization and propose a frequency-scaling VBS algorithm
that exploits CPU slack to minimize operating frequencies with maximal
CPU utilization while maintaining temporal isolation. This may lead to
improvements in power consumption while hiding the real-time effects
of frequency scaling. Additional power may be saved by redistributing
computation time of individual processes while still maintaining tempo-
ral isolation if the system has knowledge of future events. We introduce
an offline algorithm as an optimal baseline and an online algorithm that
approximates the baseline. While the offline algorithm works for vari-
ous, possibly complex power consumption models, the online algorithm
may reduce power consumption only for a simplified power consumption
model by reducing the CPU utilization jitter in the system.

1 Introduction

We study methods to reduce CPU power consumption of software processes
scheduled with variable-bandwidth servers (VBS) [8, 7]. A VBS is similar to a
constant-bandwidth server (CBS) [1]. The difference is that while CBS allocates
a constant fraction of CPU time to a process (the server bandwidth) at a constant
granularity (the server period), VBS allows the process to change both server
bandwidth and server period. This enables a VBS process to change its execution
speed at runtime, as long as the resulting CPU utilization remains under a given
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bandwidth cap. Similar to CBS, multiple VBS processes are EDF-scheduled with
deadlines equal to the server periods.

Process code that is executed at a constant speed with VBS is called an
action. A VBS process is therefore a sequence of actions. The response time of
an action is the real time it takes an action to execute from arrival to termina-
tion. For each action of a VBS process, there exist lower and upper bounds on
response times and thus also on response time jitter that are independent of any
other, concurrently running processes, as long as CPU utilization (the sum of
all bandwidth caps) is less than or equal to 100% [8, 7] (Section 3). VBS enables
temporal isolation of processes on the level of individual actions. Temporal iso-
lation allows actions to maintain their response time bounds and jitter even in
the presence of other, concurrently running processes in the system.

Modern processors often support dynamic scaling of CPU voltage and op-
erating frequency, which opens up the general possibility to reduce CPU power
consumption. We first relate our work on CPU voltage and frequency scaling
with VBS to other research in the area of power-aware computing (Section 2).

We then show that, in the presence of CPU slack, frequency scaling of EDF-
scheduled, possibly non-periodically arriving tasks (such as the tasks from the
actions of VBS processes) is safe up to full CPU utilization. We identify the
sources of CPU slack in VBS-scheduled systems and propose a frequency-scaling
VBS algorithm, which exploits CPU slack to minimize operating frequencies
with maximal CPU utilization while maintaining temporal isolation (Section 4).

In a VBS-scheduled system we distinguish two types of slack, static and dy-
namic. Static slack is given by the total sum of bandwidth caps of the VBS
processes. With static slack, the operating frequency is scaled back to the re-
ciprocal of the static slack computed once at boot time and never changed at
runtime. Considering dynamic slack enables further reductions in operating fre-
quency. Dynamic slack may occur at runtime and varies depending on action
parameters. We distinguish two types of dynamic slack, action and termination
slack. Action slack occurs whenever a VBS process switches to an action that
utilizes the CPU below the bandwidth cap of the process. Termination slack
is the result of the so-called VBS termination strategy, which delays the tran-
sition from one action to the next by postponing the actual completion of an
action until its logical termination at the end of the server period in which the
action completed. The termination slack of an action may be used to decrease
CPU utilization by decreasing the action’s server bandwidth such that the action
still completes within its response time bounds. We present methods on how to
exploit both types of dynamic slack, individually and combined.

We consider the problem of reducing power consumption further by giving
the scheduler even more freedom to redistribute computation time of actions
among the server periods during which the actions execute without affecting the
actions’ original response time bounds (Section 5). In order to use this freedom,
the system must have knowledge of future actions. Furthermore, the problem of
reducing power consumption depends on the specific power profile of the CPU
as well as the number of frequency switches performed. We present an optimal



offline algorithm that minimizes a given power-consumption function (that may
incorporate such a power profile and switching overhead) by computing the
best possible configuration of server bandwidths for every server period during
which an action executes. The optimal offline algorithm is a baseline for an
online algorithm that is feasible for real-time systems. Given a simplified power
consumption model, the online algorithm decreases CPU utilization jitter to
approximate the optimal algorithm by steering actual CPU utilization towards
a computed average.

We show in a series of experiments using simulated processes and actions that
by combining the two types of slack more power can be saved than by exploiting
just action slack alone, and additionally that the best power consumption savings
are achieved through the optimal offline algorithm (Section 6).

We conclude the paper and give an outlook on future work in Section 7.

2 Related Work

Reducing the operating frequency of a CPU allows a reduction of its supply volt-
age [5, 16] and may therefore reduce power consumption. The consumed power P
is proportional to the square of the voltage level V . This dependency is typically
expressed as

P ∝ f · V 2,

where f is the clock frequency.
We relate our work to previously published research in the area of power-

aware scheduling algorithms. The main technique used is Dynamic Voltage scal-
ing (DVS), which in the context of real-time systems aims at reducing power
consumption without negatively affecting the timing properties of tasks.

Most DVS algorithms for real-time systems reclaim the unused bandwidth
of tasks that finish their execution faster than their worst-case execution times
indicate. The VBS process model differs from the standard model in that it as-
sumes constant execution time for an action. Furthermore, we aim at reducing
CPU power consumption while maintaining temporal isolation on the level of
actions rather than tasks. In [12, 11], periodic processes with deadlines equal to
periods are considered. There are two phases, an offline phase, which calculates
the voltage level such that, if all processes run for their worst-case execution
times, the timing requirements are still met, and an online phase which tries to
reclaim unused execution time. In addition to the two phases, the work in [16]
presents a look-ahead mechanism that tries to reduce power consumption be-
yond the conservative approaches by determining future computation needs of
processes. A static optimal solution assuming worst-case workload, online speed
reduction considering actual workload, and an online speculative speed adjust-
ment to anticipate early completions are presented in [2]. Other studies use sim-
ilar approaches by relaxing the periodicity assumption on the process model [17,
19]. Similar to our algorithm, the work in [17] modifies the frequency of EDF-
scheduled systems at runtime according to the current utilization of released
tasks.



Another class of algorithms, called intra-task DVS [3], make use of the exe-
cution characteristics of processes and require compiler support to reduce power
consumption. Such methods allow CPU voltage and frequency scaling within the
process boundary, by calculating the slack of executed segments to reduce the
voltage for further segments. One important issue is how to divide a program
into segments since more frequent changes in voltage result in more efficient use
of slack but also imply more power and time overhead.

VBS is related to resource reservation scheduling mechanisms like CBS [1],
elastic scheduling [6] and RBED [4]. Reduced power consumption for systems em-
ploying resource reservation techniques is presented in [18]. The algorithm, called
GRUB-PA, reclaims unused processor capacity and uses it to slow down the pro-
cessor without affecting the timing properties of processes. Elastic scheduling is
combined with DVS [14] to either improve performance or power consumption
for real-time systems. In [13] power management is integrated with the RBED
scheduling framework by exploiting unused computation time generated by the
early completion of processes. Additionally, a more exact power model and a fre-
quency switching overhead analysis are also considered. Our method is different
in that it does not rely on early completion of processes for minimizing power
consumption and it maintains the relevant temporal properties on the level of
actions rather than tasks.

3 VBS Scheduling

We briefly recall the necessary definitions and results of VBS scheduling which
was introduced in previous work [8, 7]. A variable-bandwidth server (VBS) is
uniquely determined by a utilization u that represents an upper bound band-
width cap. A VBS process may allocate a fraction of CPU time over a time
interval as long as this fraction stays below the given bandwidth cap. VBS is an
extension of a constant-bandwidth server (CBS) [1]. While CBS allocates a con-
stant fraction of CPU time to a process (the server bandwidth) over a constant
time interval (the server period), VBS allows the process to change both server
bandwidth and server period, as long as the bandwidth remains under the given
bandwidth cap. This enables a VBS process to change its execution speed at any
time. VBS employs virtual periodic resources [20], defined as a pair of a period
and a limit (with bandwidth equal to the ratio of limit over period). A VBS can
change its execution speed by changing the virtual periodic resource. A process
running on a VBS can initiate a resource switch at any time. The portion of
process code from a change in speed to the next change is called an action. A
VBS process is therefore a sequence of actions. Note that the execution of a pro-
cess can be an unbounded sequence of actions but the available virtual periodic
resources are finite, which results in a finite schedulability condition. The time
it takes to execute an action is explicitly modeled and called the response time
of the action. The key result of VBS is that, for each action of a VBS process,
there exist lower and upper bounds on response times and thus also on jitter
that are independent of any other concurrently executing VBS processes, as long



as system utilization (the sum of all bandwidth caps) is less than or equal to
100% [8, 7]. This property enables temporal isolation.

More formally, a process P (u) corresponding to a VBS with utilization u is
a finite or infinite sequence of actions,

P (u) = α0α1α2 . . .

for αi ∈ Act, where Act = N×R, with R being the finite set of virtual periodic
resources explained below. An action α ∈ Act is a pair α = (l, R). The load l
of an action is the exact amount of time the action needs to execute on R. The
virtual periodic resource R is a pair R = (λ, π) of natural numbers with λ ≤ π,
where λ denotes the limit and π the period of the resource. The limit λ specifies
the maximum amount of time the process P can execute on the virtual periodic
resource within the period π, while performing the action α. The utilization of
R is uR = λ

π ≤ u.

3.1 Schedulability Analysis

Let P = {Pi(ui) | 1 ≤ i ≤ n} be a finite set of n processes with corresponding
actions αi,j = (li,j , Ri,j) for j ≥ 0. Each Pi(ui) = αi,0αi,1 . . . corresponds to a
VBS with utilization ui. Let Ri,j = (λi,j , πi,j) be the virtual periodic resource
associated with the action αi,j with li,j , λi,j , and πi,j being the load, the limit,
and the period for the action αi,j .

Proposition 1 ([7, 8]). Given a set of VBS processes P, if∑
i∈I

ui ≤ 1,

then the set of processes P is schedulable within the upper and lower response-
time bounds, bui,j and bli,j, explained below.

Given a schedule for P, for each process Pi ∈ P and each action αi,j =
(li,j , Ri,j) that appears in Pi we distinguish four absolute moments in time:

– Arrival time is the time instant at which αi,j arrives. The first action has
zero arrival time while for all others the arrival is the time instant at which
the previous action of the same process has been terminated.

– Completion time of αi,j is the time at which the action finishes executing its
load.

– Termination time of αi is the time at which the action is terminated. There
is a difference between completion and termination. Termination is set to be
at the end of the period within which the action has completed. The process
can only invoke its next action if the previous one has been terminated.

– Release time is the earliest time when αi can be scheduled. In VBS there are
two release strategies which determine if the action is released immediately
upon arrival (early strategy) or delayed until the next period instance (late
strategy).



Given that the set P of VBS processes is schedulable, its schedule is obtained
using EDF for the set of tasks resulting from each action. Namely, each action
can be seen as a sequence of EDF tasks with release times at period instances
(only the first task in the early strategy has release time equal to the arrival
time), computation times equal to the limit (except for the last task in both
strategies and for the first task in case of early release, which may have smaller
computation time), and deadlines equal to the next period instance.

The upper bound for the response time of action αi,j is given by

bui,j = πi,j − 1 +
⌈
li,j
λi,j

⌉
πi,j .

The lower response-time bound varies depending on the strategy used, namely

bli,j =


⌈
li,j

λi,j

⌉
πi,j , for late release

⌊
li,j

λi,j

⌋
πi,j , for early release.

Using these bounds, we can compute the response-time jitter of an action αi,j ,
i.e., the difference between the upper and lower bound on the response time. We
differentiate between the logical response time jitter, which is the time from
arrival until termination, and the actual response time jitter given by the time
from arrival to completion. For both strategies the logical response time jitter is
at most πi,j−1 while the actual is bounded by 2(πi,j−1). This differentiation is
based on the time at which an action effect takes place, i.e., whether the effect of
the action is at termination and not before, or whether the action has an effect
on the system at completion.

3.2 VBS Utilization Slack

We minimize operating frequency of the processor by maximizing system uti-
lization which may result in lower power consumption. In order to achieve this,
we must identify the sources of slack in the system. This slack can be then used
to scale down the maximum frequency fmax to a new frequency fnew such that
all actions still respect their response time bounds. Let

η =
fnew
fmax

be the frequency-scaling factor, the ratio between the new processor frequency
and the maximum frequency. If the processor has been scaled with the factor η,
a load of 1 time units will take 1

η time units.
Consider a set of two VBS processes with one action each, namely P1(0.25)

with action α1,1 = (5, (1, 4)) and P2(0.25) with action α2,1 = (6, (3, 12)). Sched-
uled with VBS, the system would be idle for 50% of the time. We can use this
idle time to reduce the frequency of the processor such that the actions still meet



their response time bounds. In this simple example, the system behaves like an
ordinary periodic EDF-scheduled system due to no action switches. For EDF,
computing the minimum speed at which the processes still meet their deadlines
is straightforward. For a system of n periodic EDF-processes with utilization

U =
n∑
i=1

Ci
Ti
,

where Ci is the computation time and Ti is the period of process Pi, the mini-
mum frequency at which the processes still meet their deadline is given by the
frequency-scaling factor η = U [21]. Since in this example the two VBS processes
are periodic EDF processes, we can scale the frequency of the processor to 50%
such that the actions become α1,1 = (10, (2, 4)) and α2,1 = (12, (6, 12)). The
response time bounds of the actions are the same even when running at this
lower frequency.

In general the VBS process model differs from the periodic EDF process
model so we cannot use this metric straightforwardly due to the changing and
interleaving of the actions. We also cannot use traditional slack estimation tech-
niques that take advantage of the WCET of processes because we assume that
the load of an action is fixed. A VBS system has two types of slack, static and
dynamic. The static slack results from the total system utilization, i.e. the sum
of the bandwidth caps. This static slack provides a reference frequency for our
system of VBS processes.

The dynamic slack results from the property of VBS that actions may have
utilization lower than the bandwidth cap and from the termination strategy. In
the following section we will describe the static and dynamic slack and use the
dynamic slack to reduce the frequency even further than the reference frequency
while still allowing all actions to finish their execution within their response time
bounds.

4 Frequency-scaling VBS

4.1 EDF frequency scaling

Before we proceed with frequency-scaling VBS, we present a general result for
frequency scaling of EDF tasks, on which all our other results rely.

Lemma 1. An EDF-schedulable set of tasks with release times, computation
times, and deadlines, is still schedulable if the processor frequency in between
any two release times is set to at least Uc · fmax, with Uc being the current total
utilization of all released tasks in the considered interval of time between two
releases.

Proof. We are first going to prove the following auxiliary statement. Let T =
{τi | τi = (Ci, Ti) for 1 ≤ i ≤ n} be an EDF-schedulable set of tasks released
at time 0, with task τi having computation time Ci and deadline Ti. Moreover,



without loss of generality we may assume that T is ordered by the deadlines,
that is Ti ≤ Tj for i ≤ j. Let r be the first time instant at which a new task is
released. Then scaling the frequency by the total utilization in the time interval
[0, r) is safe. More precisely, the utilization of all tasks remaining at time r,
having scaled the frequency in [0, r), is not larger than the original utilization of
the tasks in T .

The utilization of task τi is the ratio ui = Ci

Ti
. The total utilization of the set

T is therefore
U =

∑
i≤n

Ci
Ti
.

Since the set T is EDF schedulable, we have that U ≤ 1, and therefore it allows
for frequency scaling by factor η = U . Assume there is a frequency scaling by
U in the interval [0, r). This means that the actual amount of work done in this
interval is (at most) r · U , but this work takes time (at most) r.

Let k be the largest task index such that

r −
∑
i<k

1
U
· Ci ≥ 0,

meaning that r − ∑i≤k
1
U · Ci < 0. If no such index exists, then all tasks,

even though scaled, can finish their computation up to time r, so the statement
trivially holds. Note that it is also possible that k = 1.

The crucial fact now is that in the interval of time (0, r) no task is released.
Therefore, using that the tasks were ordered by deadlines, the schedule after
scaling looks like this: Task τ1 runs first having the earliest deadline for 1

U · C1

time units (if k > 1), then task τ2 runs for 1
U · C2 time units (if k > 2), and so

on, task τk−1 runs for 1
U ·Ck−1 time units, and finally task τk runs for whatever

remains until time r. It is important to notice that∑
i≤m

1
U
· Ci ≤ Tm

for all m ≤ n since ∑
i≤m

Ci
Tm
≤
∑
i≤m

Ci
Ti
≤ U.

As a result, also Tk > r.
By this, the tasks up to τk−1 finish their computation up to time r, whereas

part of the work of τk remains, and the tasks τk+1, . . . , τn have not even been
scheduled yet, i.e., all their computation work remains to be done after time r.
Note that the actual work (scaled down to original frequency) done by τk up to
time r can be computed as the difference from all the actual work done up to r
and the work done by all tasks with smaller index (earlier deadline):

r · U −
∑
i<k

Ci.



Therefore, the remaining computation work of τk is then

Ck −
(
r · U −

∑
i<k

Ci

)
.

and hence the “remaining utilization” of τk or rather the utilization of the k-th
task after time r is

Ck −
(
r · U −∑i<k Ci

)
Tk − r =

∑
i≤k Ci − r · U
Tk − r

=
∑
i≤k

Ci
Tk − r −

r ·∑i≤n
Ci

Ti

Tk − r .

Furthermore, the “remaining utilization” of τi for i > k is

Ci
Ti − r .

No other tasks remain in the system. We need to show that the total utilization
of the remaining tasks does not exceed the original remaining utilization at time
r which consists of the utilization of all original tasks with deadlines after r. Let
m be the largest index such that Tm ≤ r. We have that m < k.

Hence, we need to show that

∑
i≤k

Ci
Tk − r −

r ·∑i≤n
Ci

Ti

Tk − r +
∑
i>k

Ci
Ti − r ≤

n∑
i=m+1

Ci
Ti
. (1)

Inequality (1) is equivalent to

∑
i≤k

Ci
Tk − r +

∑
i>k

Ci
Ti − r ≤

n∑
i=m+1

Ci
Ti

+
r ·∑i≤n

Ci

Ti

Tk − r

which, after multiplying by Tk − r and some rearranging, becomes

∑
i≤k

Ci + (Tk − r) ·
∑
i>k

Ci
Ti − r ≤ Tk ·

n∑
i=m+1

Ci
Ti

+ r ·
∑
i≤m

Ci
Ti
.

Having that ∑
i≤m

Ci ≤ r ·
∑
i≤m

Ci
Tm
≤ r ·

∑
i≤m

Ci
Ti

it would suffice to prove that

k∑
i=m+1

Ci
Tk

+
Tk − r
Tk

·
∑
i>k

Ci
Ti − r ≤

n∑
i=m+1

Ci
Ti
. (2)



We have Ci

Tk
≤ Ci

Ti
for i ≤ k since then Ti ≤ Tk and hence

k∑
i=m+1

Ci
Tk
≤

k∑
i=m+1

Ci
Ti
.

For the rest, if i > k, we first notice that

Tk − r
Tk

· Ci
Ti − r =

Ci
Ti
· (Tk − r) · Ti
Tk · (Ti − r) .

Hence, it would suffice to prove that

(Tk − r) · Ti ≤ Tk · (Ti − r) for i > k

which holds using the following arguments. For i > k, we have Ti ≥ Tk and
hence (Tk − r) · Ti = Tk · Ti − r · Ti ≤ Tk · Ti − r · Tk = Tk · (Ti − r). As a result,
we have that for i > k,

Tk − r
Tk

· Ci
Ti − r ≤

Ci
Ti

which proves the inequality (2), completes the proof of inequality (1), and com-
pletes the proof of the auxiliary statement.

Finally, the same arguments apply between any two consecutive releases.

4.2 Static Slack

In the VBS process model, each process Pi has a bandwidth cap ui which repre-
sents the maximum utilization that any of its actions may have. As a consequence
of Lemma 1, if the sum of all bandwidth caps is less than 1, we can safely scale
down the processor frequency by a frequency-scaling factor equal to the sum of
the bandwidth caps.

Proposition 2. A set of processes P = {Pi(ui) | 1 ≤ i ≤ n}, with a total system
utilization

U =
∑
i∈I

ui,

is schedulable within the response-time bounds if the processor frequency is at
least fref = U · fmax.
We call fref the reference frequency. If used, this reference frequency is set once
and never changed at run-time.

4.3 Dynamic Slack

Dynamically, at runtime, the operating frequency can sometimes be reduced
further than the reference frequency. As stated before, dynamic slack arises out
of two VBS properties, hence we distinguish two types of dynamic slack.



– Termination slack, resulting from the VBS termination strategy.
– Action slack, generated by an action having utilization less than the band-

width cap of the process.

The termination strategy ensures that if an action finishes its load at some
time within a period, the termination is postponed until the end of that period.
We compute at every arrival of a new action the termination slack of the action
and assign a new limit for the action that represents the minimum time per
period that does not cause the action to exceed its upper response time bound.

For example, an action α = (55, (30, 100)) could run for 28 time units every
period and still meet its response time bound 200, therefore the virtual peri-
odic resource for this action can be changed from (30, 100) to (28, 100) and the
resulting slack of 2 time units per period can be used to scale down the processor.

At every time instant t when an action has an arrival the scheduler computes
the new limit considering the termination slack for the arriving action as

λ∗i,j =
⌈
li,j
ni,j

⌉
,

where ni,j =
⌈
li,j
λi,j

⌉
is the number of periods needed for the action αi,j to finish

its load. Note that the new limit never exceeds the old limit (λ∗i,j ≤ λi,j), so this
change does not influence schedulability. The action αi,j will thus be transformed
into an action α∗i,j = (li,j , (λ∗i,j , πi,j)).

The action slack arises from newly arriving actions. If the utilization of the
new action is lower than the bandwidth cap for the process, dynamic slack is
introduced in the system. The scaling factor is computed as the sum of remaining
utilizations of the active actions (the current actions of each VBS process). The
algorithm is invoked at the time instants when an action has a release. The
correctness of the algorithm is ensured by the following corollary of Lemma 1,
which holds since between two action releases, even though there are more task
releases, the total utilization remains constant.

Proposition 3. Let P = {Pi(ui) | 1 ≤ i ≤ n} be a schedulable set of VBS
processes, with a total utilization cap U =

∑
i∈I ui ≤ 1, where αi,j with a virtual

periodic resource (λi,j , πi,j), for j ≥ 0 are the actions of process Pi. This set of
processes is schedulable within the response-time bounds if in between two action
releases the processor frequency is at least fnew = Uc·fmax where Uc =

∑n
i=1

λi,ji

πi,ji

is the total utilization of all released actions αi,ji in the considered interval of
time between two action releases.

Note that the two types of slack can be exploited separately or together.
Using only the termination slack may reduce the actual response time jitter of
the action, while using just the action slack does not modify the original limit of
the action. It is only when used together that the minimum possible operating
frequency is achieved and CPU utilization is maximized.



4.4 FS-VBS Algorithm

We present the algorithm that computes the minimum frequency at which the
processor can run such that all actions meet their response time bounds. The
two types of dynamic slack can be used separately or together, we present the
combined algorithm in Listing 1.

Algorithm 1 FS-VBS(t)
Require: t
1: AA = ARRIVAL[t]
2: for all αi,j ∈ AA do

3: ni,j =

‰
li,j
λi,j

ı
4: λi,j =

‰
li,j
ni,j

ı
5: end for
6: RA = RELEASED[t]
7: for all αi,j ∈ RA do

8: Uc = Uc +
λi,j
πi,j

9: end for
10: return fnew = Uc · fmax

The algorithm is invoked at every time instant t given by the release or arrival
of an action. The first part of the algorithm (line 1−5) adjusts the limit of every
action taking advantage of the termination slack while the second part (line 6−9)
computes the utilization of all released actions. For the termination slack, we
compute the minimum limit per period for all actions that have an arrival at time
t such that all actions will still respect their response time bounds. For the action
slack, we consider all actions that are released in the system at time t, i.e. the
current actions of the processes at time t. In the end, the algorithm computes the
minimum operating frequency in relation to the maximum frequency available.
We can now safely scale down the processor to fnew since we know that the
system of VBS-scheduled actions will meet their response time bounds.

5 Look-ahead FS-VBS

Up to this point we maximize CPU utilization by switching to the lowest pos-
sible operating frequency such that all actions still respect their response time
bounds. This may lead to improvements in power consumption. However, our
assumptions are based on a simple power model and disregarded the switching
cost (both in power and time). The power consumption of a system is typically
non-linear and depends largely on the platform and workload [22]. Switching to
the lowest possible frequency by exploiting the static and dynamic slack of VBS
processes may not lead to the best possible power savings due to the complex



power profile of the system as well as the overhead introduced by the frequency
switches [15].

In general, in terms of power consumption, we have to consider the active
energy (Ea) consumed by the CPU at different frequencies and the energy usage
introduced by the switching of frequencies (Es) over a time interval ∆t, i.e.

E = (Ea + Es) ·∆t.

In most studies, it is assumed, for simplicity, that the active energy consump-
tion Ea is proportional to V 2. More accurate models can be found in [23, 24].
The time overhead generated by the switches could be readily incorporated into
the schedulability analysis by accounting for it using an overhead accounting
framework, cf [9].

Our analysis now aims at improving power consumption beyond what has
been presented in Section 4. Depending on the system model, more energy can
be saved by allowing an action more freedom on how the load is executed within
the periods, i.e., an action may assign a different limit for every period of its
execution as long as the original response time bounds are met. In order to use
this freedom, an action must have knowledge of the future.

In the remainder of the paper we concentrate on describing more advanced
methods to reduce CPU power consumption while maintaining response times,
using future knowledge. First, we present an optimal offline method that com-
putes limits for all period instances of the actions that will result in the best
power savings. The energy consumption function can be plugged in depending
on the specific power profile of the system. We consider a simple power model in
which energy consumption depends on frequency but also on the number of fre-
quency switches and present the optimal offline algorithm for it. We then present
an online algorithm that approximates the offline algorithm for that particular
power model.

5.1 Optimal Offline FS-VBS

We start from the ideal case, where the sequence of action changes is fully known.
Since a process can run for an infinite amount of time, yet the changes of actions
are known, we assume that action changes are periodic, i.e., the process can be
seen as a finite loop that executes infinitely often.

For any process Pi(ui) let ρi : N → R be a function that keeps trace of the
resources used. That is ρi(j) = Ri,j if and only if αi,j = (li,j , Ri,j), i.e., Ri,j is
the resource used by the action αi,j . A process Pi(ui) is a loop if there exists a
number si ∈ N such that ρi(j + si) = ρi(j),∀j ∈ N. This may seem as a serious
restriction, but actually it is only used in Equation (3) and (4). Moreover, it is
common that processes are actually loops.

Considering an action αi,j that runs (normally, in the standard VBS algo-

rithm) for ni,j =
⌈
li,j
λi,j

⌉
periods, we aim at finding values λi,j,k for k = 1, . . . , ni,j

such that if the action runs for time λi,j,k in the k-th period instance of αi,j



then the power consumption, given a certain power model, is minimal. This
amounts to a constrained optimization problem for minimizing power consump-
tion. Namely, we look for values λi,j,k minimizing the power consumption func-
tion which we denote by

F (λi,j,k | i ∈ I, j ≥ 0, 1 ≤ k ≤ ni,j).

Note that if we consider Π = {πi,j | i ∈ I, j ≥ 0}} then any interval [n ·
gcd(Π), (n + 1) · gcd(Π)] for n ∈ N is contained in a single period instance of
each active action. This means that in such an interval, the total utilization of
the system is calculated as ∑

i∈I

λi,j,kn

πi,j
,

where λi,j,kn is the new limit for the period instance πi,j that contains the
mentioned interval of the active action αi,j .

The total power consumption is the sum of the power consumption in each
interval [n · gcd(Π), (n+ 1) · gcd(Π)] for n ∈ N, thus we can write that

F (λi,j,k | i ∈ I, j ≥ 0, 1 ≤ k ≤ ni,j) =

gcd(Π)
∑
n∈N

Fn(λi,j,kn | i ∈ I, j ≥ 0).

As in the general model, we can write

Fn(λi,j,kn
) = Ea,n(λi,j,kn

) + Es,n(λi,j,kn
).

By plugging particular power-consumption functions Ea,n and Es,n, one gets
the global power consumption function. We minimize F (λi,j,k) subject to the
following constraints imposed by the semantics of VBS. For all λi,j,k,

ni,j∑
k=1

λi,j,k ≤
⌈
li,j
λi,j

⌉
λi,j ,

expressing that the sum of λi,j,k for an action αi,j does not exceed the amount
of work the action could do in its periods in the standard VBS execution. Next,

ni,j∑
k=1

λi,j,k ≥ li,j ,

expressing that the action αi,j will execute its entire load li,j . It may be that in
a period instance an action does not execute any of its load, yet the new limits
can not be negative, λi,j,k ≥ 0. In order to respect the response-time jitter, we
have to ensure that the action will not finish earlier than its lower response time
bound. Therefore, in the last period instance, the action must execute for at least



1 time unit and additionally, the action must not complete its entire load in the
previous period instances. We express this through the following two constraints

ni,j−1∑
k=1

λi,j,k < li,j ,

λi,j,ni,j ≥ 1.

Next, for every interval [n · gcd(Π), (n+ 1) · gcd(Π)], n ∈ N, the system may not
be over-utilized, namely ∑

i∈I

λi,j,kn

πi,j
≤ 1,

where kn is as before.
As an instantiation, we consider the simplified model in which the active

energy consumed is proportional to the square of the voltage and the number of
frequency switches. In this model, we reduce the power consumption by reducing
the CPU utilization jitter. CPU utilization jitter is the difference between the
system utilization at a certain time and a computed average system utilization
over the whole life-time of the system.

In order to compute Ea and Es, we start by computing the upper response-
time bound for a loop iteration of process Pi now assumed to be a loop, as

bui =
si∑
j=1

bui,j . (3)

The average utilization uavgi of process Pi is therefore

uavgi =

∑si

j=1

(⌈
li,j

λi,j

⌉
λi,j

)
bui

. (4)

Next, we compute the average utilization of a system of n processes {P1, . . . , Pn}
as the sum of average process utilizations, i.e.,

uavg =
n∑
i=1

uavgi .

The active energy consumption in the interval [n · gcd(Π), (n+ 1) · gcd(Π)],
for n ∈ N, is proportional to the square of the voltage, thus we try to minimize

Ea,n =

(
uavg −

∑
i∈I

λi,j,kn

πi,j

)2

.

Recall that the number of frequency switches over any such interval is at most 1.
Hence, the energy consumed by a frequency switch is a constant γ. The function
to be minimized is therefore

F (λi,j,k) = gcd(Π)
∑
n∈N

(uavg −∑
i∈I

λi,j,kn

πi,j

)2

+ γ

 . (5)



In real-time systems this solution may not be feasible due to the large num-
ber of variables that need to be stored (one for each period instance of each
action) and due to the computational complexity of finding the optimal val-
ues. We therefore elaborate on an online algorithm that approximates the offline
algorithm under the same power-consumption model.

Fig. 1. Utilization jitter with fixed limits for every period of α (standard VBS seman-
tics).

5.2 Look-ahead Online FS-VBS

Consider the example in Figure 1. We only look at one action α of one process
with period 100 and utilization 30% (uα). The action needs 5 periods to finish its
load of 148. The actions of other processes in the system that run concurrently
generate a changing system utilization, uP in Figure 1, resulting in a total CPU
utilization uS . We only look at one action at a time and we will henceforth refer
to it simply as α, dropping the indices i, j, in order to simplify the notation. At
time t, when the action α arrives, we calculate the utilization over every interval
where the actions of the other processes in the system change, starting from
t until the time of termination of α. For the example in Figure 1 we have the
intervals of changing CPU utilizations in the system shown in Table 1, where uα,
uP , and uS are as before. The total system utilization uS is given by uP + uα.

The algorithm computes the average system utilization over each period in-
stance of action α. Additionally, we also compute the total average system uti-
lization uavg as in Section 5.1. In the k-th period instance of α, let uek denote
the utilization error, which is the difference between the average utilization in



Fig. 2. Reduced utilization jitter with modified limits for each period of α.

Interval uα uP uS

[0, 60) 30% 60% 90%

[60, 160) 30% 20% 50%

[160, 220) 30% 40% 70%

[220, 300) 30% 70% 100%

[300, 500) 30% 20% 50%
Table 1. Utilization of α, concurrently running processes and total CPU utilization in
subintervals of [0, 500].

the k-th period instance and the total average system utilization uavg. The new
utilization for the k-the period instance of α is computed as

uα∗k = uα − uek.
In the example, the first period instance of α is the interval [0, 100). In this
interval the system utilization is 90% from time 0 to 60, and 50% from time 60
to 100. Therefore the average system utilization for this period instance is 74%.
Since the uavg = 65%, the utilization error for this period instance is 9%.

Table 2 shows the resulting utilization error and new utilization for every
period instance of α.

Ideally, if action α would be modified to have the utilization in each period
instance equal to the computed new utilization, the utilization jitter would be
minimal. However, there are two issues to be addressed before the action can be
changed. One issue is that the response-time bounds of α should not change. By
modifying the utilization in each period instance, the limit of the action for each
period changes. In the example, the new limits will be 21, 37, 1, 45, and 45 for



k Interval uek uα∗k
0 [0, 100) 9% 21%

1 [100, 200) −7% 37%

2 [200, 300) 29% 1%

3 [300, 400) −15% 45%

4 [400, 500) −15% 45%
Table 2. Utilization error and new utilization for α in different period instances.

each of the 5 period instances respectively. We have to make sure that the load
of the action, which is in this case 148, can be executed with the new limits in
the same number of period instances as in the standard VBS algorithm.

We introduce the notion of positive and negative utilization bound. The
positive utilization bound δ+ denotes the maximum amount of utilization that
can be added to the action without affecting the lower response-time bound.
The negative utilization bound δ− denotes the maximum amount of utilization
that can be subtracted from the action without affecting the upper response-
time bound. Thus, the utilization bounds give the amount of error in utilization
that can be compensated for without violating the response-time bounds. The
utilization bounds are computed as follows, with l, λ, and π being the load, the
limit, and the period of the considered action α,

δ+ =
d lλeλ− l

π
,

δ− =
b lλcλ− l

π
.

Note that if d lλe = b lλc then δ− = 1−λ
π . In the example we have δ− = −0.28 and

δ+ = 0.02.
The utilization bounds can offer a trade-off between performance of the al-

gorithm and temporal isolation of the action. If the utilization bound is set to
larger values then the action may be faster than the lower response time bounds
or slower than the upper response time bound, increasing the response time jitter
by one or more periods, but it can result in overall lower utilization jitter.

We compute the sum of the utilization error over the whole execution time
of the action, i.e. uα,e =

∑
k u

e
k. In the above example uα,e = 1%, which means

that if we were to modify the utilization of the action in each period instance
according to the table, we would have an error in the overall utilization of the
action of 1% which will be reflected in the response time of the action.

Another issue is that in each period instance, the total system utilization
must be lower than or equal to 100%. A change in utilization can occur at any
time during a period instance of an action but there is only one limit we can set
for a period instance. We address this issue in the algorithm by adding a flag
that specifies if at every time instant of every period instance the system is not
over-utilized. Only if this is the case, the limits of every period instance of α can
be changed according to the computed new utilization.



The look-ahead online algorithm is presented in Listing 2.

Algorithm 2 Look-ahead FS-VBS(t)
Require: t
1: AA = ARRIVAL[t]
2: for all α ∈ AA do
3: n = d l

λ
e

4: cα = true
5: for k = 0 to n do

6: uek =

P(k+1)π
i=kπ uS(i)

π
− uavg

7: uα,e = uα,e + uek
8: for i = kπ to (k + 1)π do
9: if uek < uS(i)− 1 or λ

π
− uek > 0 then

10: cα = false
11: end if
12: end for
13: end for
14: if δ− < uα,e ≤ δ+ and cα then
15: for k = 0 to n do
16: λ∗k = λk − uekπ
17: end for
18: end if
19: end for

For every action α that has an arrival at time t the algorithm starts by
calculating total number of period instances (n) the action needs to finish its
load (line 3). The flag cα denotes whether the limits of action α can be changed.
In the beginning we set it to true (line 4). Next, for each period instance of the
action, we compute the utilization error uek for the k-th instance (line 6) and
the total utilization error uα,e (line 7). Here, uS(i) refers to the total system
utilization at time i. We check that for each time instant of the k-th period
instance the new utilization λ

π − uek will not be negative or over-utilize the CPU
(line 9). If this is the case for any time instant then we set the flag cα to false
signaling that the action cannot be changed (line 10). If the total utilization
error uα,e is within the computed utilization bounds and the flag is true (line
14) we can compute the new limits λ∗k for the action (line 16).

This method is conservative in that it relies on other actions to reduce the
utilization jitter if the current action cannot be changed. More accurate methods
to reduce the utilization jitter are subject of future work.

In the example, since at no point the CPU becomes under- or over-utilized
and also the total utilization error is within the positive and negative utilization
bounds, we can change the limits of the period instances for the action according
to Table 2. In Figure 2 the solution is shown where the controlled process from the
example modifies its utilization to compensate for the changing CPU utilization
thereby reducing the utilization jitter.



Both the optimal offline and the online FS-VBS methods compute values for
the limits for each period instance of the actions in the system. At each point in
time where the resulting CPU utilization changes we switch to a new frequency
given by the frequency scaling factor equal to the sum of the utilizations for the
current period instances of the released actions, in accordance to Lemma 1.

6 Experiments

We have conducted a series of experiments, using different simulated processes
and actions, that show the effects on the power consumption of exploiting action
and termination slack with the FS-VBS algorithm and also using the optimal
offline method. We use a simulated DVS-capable platform that has a continuous
set of available frequencies and a linear power consumption model, i.e., the re-
lation between the frequency and the corresponding voltage level is linear. The
power consumed is proportional to the square of the voltage.
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Fig. 3. Normalized power consumption for a system of 10 processes with increasing
utilization.

For the first experiment we run 10 processes with two actions each. The
first action of each process has a load of 400 and uses the resource (100, 1000).
The period of the resource used by the second action is also 1000. We vary the
limit and load of the second action as follows: the limit λ is chosen from the set
{5, 25, 50, 75, 85, 90, 95, 100} and the load l is chosen to be 3λ + 1. This results
in an increasing utilization (x-axis) for the second action. In Figure 3 we show
the normalized power consumption (y-axis) using just action slack and using
both action and termination slack in relation to the power consumption of an
unscaled system.

In the second experiment (Figure 4) we show the normalized power consump-
tion (left y-axis) for 10 sets of random processes and actions. The right y-axis
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Fig. 4. Normalized power consumption for 10 sets of random processes.

shows the CPU idle percentage when using just action slack and then both ac-
tion and termination slack. As expected, there is a correlation between CPU idle
time and power consumption, i.e., the higher the CPU idle time the lower the
power consumption. Compared to using just the action slack, more CPU idle
time is generated by exploiting also the termination slack thus reducing power
consumption even further.
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Fig. 5. Normalized power consumption for a system of 2 processes with increasing
utilization.

The third experiment (Figure 5) shows the normalized power consump-
tion (y-axis) using the optimal offline method compared to an unscaled sys-
tem, a scaled system using action slack, and a scaled system using both ac-



tion and termination slack. There are two processes in the system, process
P1(30%) has one action α1,1 = (2600, (300, 1000)) and process P2(70%) has
three actions, namely: α2,1 = (1500, (1500, 3000)), α2,2 = (2100, (2100, 3000)),
and α2,3 = (l2,3, (λ2,3, 3000)). The limit of α2,3, λ2,3, is chosen from the set
{300, 600, 900, 1200, 1500, 1800, 2100} which results in an increasing utilization
for the action (x-axis). The load of the action is equal to its limit, i.e., l2,3 = λ2,3,
such that the action executes for only one period. We used AMPL/CPLEX [10]
to find the optimal configuration of the limits of action α1,1 such that the objec-
tive function described in Equation (5) is minimized. Note that using the online
algorithm for this experiment results in the same limits for the period instances
of action α1,1 and therefore the same power savings as with the optimal offline
algorithm.

7 Conclusion and Future Work

We presented methods that may reduce CPU power consumption with variable-
bandwidth servers while maintaining temporal isolation of concurrently running
processes. We have shown that, in the presence of CPU slack, frequency scaling of
EDF-scheduled, possibly non-periodically arriving tasks (such as the tasks from
the actions of VBS processes) is safe up to full CPU utilization and proposed a
frequency-scaling VBS algorithm that exploits CPU slack to minimize operating
frequencies with maximal CPU utilization while maintaining temporal isolation.
Furthermore, we have shown that, given knowledge of future events, further
reductions in CPU power consumption may be possible by allowing the scheduler
to redistribute computation time of process actions among the server periods
during which the actions execute without affecting the actions’ original response
time bounds. We presented an optimal offline algorithm that minimizes a given
power-consumption function and an online algorithm that is feasible for real-
time systems and approximates the offline algorithm with a simplified CPU
power profile.

As future work we aim at improving and implementing the online algorithm
in a real system and comparing it to the optimal offline algorithm using real
and simulated workloads. An issue that also needs to be addressed is the change
in response time bounds in a real system with discrete frequency levels. As
discussed before, our analysis so far relies on a theoretical model where there
are infinitely many available frequency levels. Switching to the nearest frequency
(either smaller or greater) will potentially result in being faster or slower than
the lower or upper response time bounds, respectively. We therefore plan to
extend the existing schedulability analysis with response time bounds that take
into account discrete frequency levels.
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