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Abstract. We propose two complementary methods to account for sched-
uler overhead in the schedulability analysis of Variable Bandwidth Servers
(VBS), which control process execution speed by allocating variable CPU
bandwidth to processes. Scheduler overhead in VBS may be accounted
for either by decreasing process execution speed to maintain CPU uti-
lization (called response accounting), or by increasing CPU utilization
to maintain process execution speed (called utilization accounting). Both
methods can be combined by handling an arbitrary fraction of the total
scheduler overhead with one method and the rest with the other. Dis-
tinguishing scheduler overhead due to releasing and due to suspending
processes allows us to further improve our analysis by accounting for
releasing overhead in a separate, virtual VBS process, which increases
CPU utilization less than through regular utilization accounting. The
remaining overhead may then be accounted for in either more increased
CPU utilization, or decreased process execution speed. Our method can
readily be generalized to account for non-constant scheduler overhead,
motivated by our VBS implementation, which can be configured to run
(with increasing space complexity) in quadratic, linear, and constant
time (in the number of processes). Although our analysis is based on the
VBS model, the general idea of response and utilization accounting may
also be applied to other, related scheduling methods.

1 Introduction

We study scheduler overhead accounting in the schedulability analysis of Vari-
able Bandwidth Servers (VBS) [10, 12]. VBS are a generalization of Constant
Bandwidth Servers (CBS) [1]. A CBS allocates a constant fraction of CPU time
to a process (the server bandwidth) at a constant granularity (the server period).
Multiple CBS processes are EDF-scheduled using the server periods as deadlines.
A VBS is similar to a CBS but also allows the process to change its execution
speed at any time, i.e., change both server bandwidth and server period, as long
as the resulting CPU utilization remains under a given bandwidth cap. The por-
tion of process code from a change in speed to the next is called an action. A
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VBS process is therefore a sequence of actions. The total time to execute an
action is explicitly modeled and called the response time of the action. The key
result of VBS is that, for each action of a VBS process, there exist lower and
upper bounds on response times and thus also on jitter that are independent of
any other concurrently executing VBS processes, as long as system utilization
(the sum of all bandwidth caps) is less than or equal to 100% [10, 12] (Section 3).

This paper generalizes the result to include the overhead of scheduler execu-
tion. We first determine an upper bound on the number of scheduler invocations
that may occur during a given amount of time (Section 4). This is possible
because process release and suspend times are known in VBS. We then show
that there are two complementary methods to account for scheduler overhead,
either by decreasing the speed at which processes run to maintain CPU utiliza-
tion (called response accounting), or by increasing CPU utilization to maintain
the speed at which processes run (called utilization accounting). Response ac-
counting decreases the net server bandwidth available to a process by dedicating
some of its bandwidth to the scheduler. Utilization accounting increases the
server bandwidth to maintain the net bandwidth available to a process. In other
words, with utilization accounting, the bounds on response times are maintained
while CPU utilization is increased whereas, with response accounting, the up-
per bounds on response times and thus on jitter are increased while utilization
is maintained. Both methods can be combined by handling an arbitrary frac-
tion of the total scheduler overhead with one method and the rest with the
other. We also show, by example, that the fraction may be chosen within server-
and process-dependent intervals such that CPU utilization decreases while the
response-time bounds and thus the speed at which processes run remain the
same (Section 5).

Next, we observe that there is a natural division of the VBS scheduler over-
head into overhead due to releasing and due to suspending processes. Moreover,
we note that our previously mentioned upper bound on the number of sched-
uler invocations can be improved for the scheduler invocations due to releasing
processes by accounting for them in a separate, virtual VBS process instead of
the given VBS processes (Section 6). The virtual process is then accounted for
in increased CPU utilization yet less than in regular utilization accounting. The
remaining overhead due to suspending processes may then be accounted for in
either more increased CPU utilization, or increased response-time bounds and
thus decreased speed at which processes run. The former method is pure uti-
lization accounting, the latter method is combined accounting. Pure response
accounting does not apply here.

Up until this point we have assumed that there is a constant upper bound on
the execution time of any scheduler invocation. The VBS scheduling algorithm
itself is indeed constant-time. Even queue management in VBS can be done in
constant time. However, our VBS implementation features a plugin architecture
for queue management so that other plugins with non-constant-time complexity
(but less space complexity) can be used. In addition to the constant-time plugin,
there are also a list-based, quadratic-time and an array-based, linear-time plugin



(in the number of processes) [10, 12]. We briefly show that our method can readily
be generalized to account for non-constant scheduler overhead (Section 7) and
then conclude the paper (Section 8).

Note that, although our analysis is based on the VBS model, the general idea
of response and utilization accounting may also be applied to CBS as well as to
RBED [4], which is another rate-based scheduler closely related to VBS. More
detailed related work is discussed next.

2 Related Work

We first put Variable Bandwidth Servers (VBS) [10, 12] in the context of earlier
work on scheduling. We then identify examples of response and utilization ac-
counting in related work on scheduler overhead. We also acknowledge previous
work on a wider range of issues dealing with general system overhead.

The Generalized Processor Sharing (GPS) approach introduced an idealized
model of resources for fair scheduling based on the assumption that resource
capacities are infinitely divisible [21]. Proportional-share algorithms (PSA) such
as [13] approximate GPS using quantum-based CPU scheduling techniques. Con-
stant Bandwidth Servers (CBS) [1] are related to PSA [2] but allocate a constant
fraction of CPU time to each process (server bandwidth) at a constant granu-
larity (server period). VBS is a generalization of CBS that allows processes to
change their servers’ bandwidth and period (also called virtual periodic resource,
or resource reservation [22]) at runtime as long as the CPU capacity is not ex-
ceeded.

VBS is closely related to RBED, which is a rate-based scheduler extending re-
source reservations for hard real-time, soft real-time, and best effort processes [4].
Like VBS, RBED uses EDF scheduling and allows dynamic bandwidth and rate
adjustments. While the capabilities are similar, RBED and VBS differ on the
level of abstractions provided. In VBS we model processes as sequences of actions
to quantify the response times of portions of process code, where each transition
from one action to the next marks an adjustment in bandwidth and rate.

Other scheduling techniques related to VBS include elastic scheduling [8],
handling of quality of service [20] and overload scenarios [3], and runtime server
reconfiguration in CBS using benefit functions [25].

Next, we identify examples of response and utilization accounting in related
work dealing with scheduler overhead. In [17], given a set of dynamically sched-
uled periodic interrupts and tasks, interrupt handler overhead is accounted for
in the processor demand of the tasks (related to utilization accounting). In [6],
given a set of periodic tasks, so-called explicit overhead through system calls
invoked by task code is accounted for in the worst-case execution times of tasks
(response accounting) and so-called implicit overhead through scheduler invoca-
tions and interrupts is accounted for in CPU utilization (utilization accounting).
In [5], given a set of periodic tasks, interrupt and fixed-priority scheduling over-
head is accounted for in the response times of the tasks (response accounting).
In [9], given a CBS system, scheduler overhead due to suspending processes is



accounted for in response-time bounds of so-called jobs (response accounting).
The response-time bounds are tighter than ours exploiting the fact that server
parameters cannot be changed and scheduler invocations due to releasing pro-
cesses are not considered.

In a wider context, examples of previous work dealing with general system
overhead are an analysis of event- and time-driven implementations of fixed-
priority scheduling [18], algorithms to compute the number of preemptions in
sets of periodic, DM- and EDF-scheduled tasks [15], and a study of RM and
EDF scheduling that includes a comparison of context-switching overhead [7].
There is also work on reducing context-switching overhead through a modified
fixed-priority scheduler [16] and on reducing the number of preemptions in fixed-
priority scheduling without modifying the scheduler [14]. The effects of cache-
related preemption delays on the execution time of processes are analyzed in [19]
and [23].

3 VBS scheduling

We have introduced VBS scheduling in previous work [10, 12]. Here, we briefly
recall the necessary definitions and results. A variable bandwidth server (VBS)
is an extension of a constant bandwidth server (CBS) where throughput and
latency of process execution can vary in time under certain restrictions. Given
a virtual periodic resource [24], defined as a pair of a period and a limit (with
bandwidth equal to the ratio of limit over period), a CBS executes a single
process no more than the amount of time given by the resource limit in every
time interval given by the resource period. A VBS may vary the virtual periodic
resource (change the resource periods and limits), as long as the bandwidth
does not exceed a predefined bandwidth cap. A process running on a VBS can
initiate a resource switch at any time. The process code from one switch to the
next is called a process action. The execution of a process is thus potentially an
unbounded sequence of actions. In practice each action can be seen as a piece of
sequential code that has a virtual resource associated with it. We implemented a
VBS-based scheduling algorithm [11], with four alternative queue management
plugins based on lists, arrays, matrices, and trees. The plugins allow trading-off
time and space complexity.

3.1 Process Model

A process P (u) corresponding to a VBS with utilization u is a finite or infinite
sequence of actions,

P (u) = α0α1α2 . . .

for αi ∈ Act, where Act = N×R, with R being the finite set of virtual periodic
resources [24], explained below. An action α ∈ Act is a pair α = (l, R) where l
standing for load is a natural number which denotes the exact amount of time
the process will perform the action on the virtual periodic resource R. The load
of an action can be understood as the worst-case execution time of the piece



of code that constitutes the action. The virtual periodic resource R is a pair
R = (λ, π) of natural numbers with λ ≤ π, where λ denotes the limit and π
the period of the resource. The limit λ specifies the maximum amount of time
the process P can execute on the virtual periodic resource within the period π,
while performing the action α. The utilization of R is uR = λ

π ≤ u.

3.2 Schedulability analysis without overhead

Let P be a finite set of processes. A schedule for P is a partial function

σ : N ↪→ P
from the time domain to the set of processes. The function σ assigns to each
moment in time a process that is running in the time interval [t, t + 1). If no
process runs in the interval [t, t + 1) then σ(t) is undefined. Any scheduler σ
of VBS processes determines a unique function σR : N ↪→ P ×R that specifies
which virtual periodic resource is used by the running process.

We are only interested in well-behaved schedules with the property that for
any process P ∈ P, any resource R ∈ R with R = (λ, π), and any natural
number k ∈ N

|{t ∈ [kπ, (k + 1)π) | σR(t) = (P,R)}| ≤ λ.

Hence, in such a well-behaved schedule, the process P uses the resource R at
most λ units of time per period of time π. Our scheduling algorithm produces
well-behaved schedules.
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Fig. 1. Scheduling an action αi with both release strategies, where λi = 2 and πi = 4

For each process action αi we denote the following absolute moments in time,
which are also depicted in Figure 1:

– Arrival time ai of the action αi is the time instant at which the previous
action of the same process has finished. The first action of a process has zero
arrival time.

– Completion time ci of the action αi is the time at which the action completes
its execution. It is calculated as

ci = min {c ∈ N | li = |{t ∈ [ai, c) | σ(t) = P}|} .



– Termination or finishing time fi of the action αi is the time at which the
action terminates or finishes its execution, fi ≥ ci. We adopt the following
termination strategy: The termination time is at the end of the period within
which the action has completed.

– Release time ri is the earliest time when αi can be scheduled, ri ≥ ai. As
shown in Figure 1, we consider two release strategies. In the early release
strategy ri = ai, i.e., the process is released immediately upon arrival with a
fraction of its limit computed for the remaining interval until the period ends.
The late release strategy delays the release of an action until the beginning
of the next period. The early release strategy may improve average response
times.

The scheduled response time si of the action αi under the scheduler σ is the
difference between the finishing time and the arrival time, i.e., si = fi − ai.

We digress at this point for a brief elaboration on the type of tasks that are
generated by VBS processes, which are used to prove the VBS schedulability
result.

Let τ = (r, e, d) be an aperiodic task with release time r, execution duration
e, and deadline d. We say that τ has type (λ, π) where λ and π are natural
numbers, λ ≤ π, if the following conditions hold:

– d = (n+ 1)π for a natural number n such that r ∈ [nπ, (n+ 1)π), and
– e ≤ (d− r)λπ .

The task type (λ, π) represents a virtual periodic task which we use in order
to impose a bound on the aperiodic task τ . If the release of τ is at time nπ,
the execution duration e is limited by λ. Otherwise, if the release is not at an
instance of the period π, the execution duration is adjusted so that the task τ
has utilization factor at most λ

π over the interval [r, d].
Let S be a finite set of task types. Let I be a finite index set, and consider

a set of tasks
{τi,j = (ri,j , ei,j , di,j) | i ∈ I, j ≥ 0}

with the properties:

– Each τi,j has a type in S. We will write (λi,j , πi,j) for the type of τi,j .
– The tasks with the same first index are released in a sequence, i.e., ri,j+1 ≥
di,j and ri,0 = 0.

We refer to such a set as a typed set of tasks.

Lemma 1 ([12]). Let {τi,j | i ∈ I, j ≥ 0} be a set of tasks as defined above. If∑
i∈I

max
j≥0

λi,j
πi,j
≤ 1,

then this set of tasks is schedulable using the EDF strategy at any point of time,
so that each task meets its deadline. �



The proof of Lemma 1 follows the standard periodic EDF proof of sufficiency
with the addition that the periods of the tasks may change in time. The full proof
can be found in our previous work on VBS [12]. The same result in a different
formulation has also been shown in [4].

Using the definition of VBS processes and actions we can give both response-
time bounds for an action and a constant-time schedulability test for an ideal
system, i.e., a system without overhead.

Let P = {Pi(ui) | 1 ≤ i ≤ n} be a finite set of n processes with corresponding
actions αi,j = (li,j , Ri,j) for j ≥ 0. Each Pi(ui) = αi,0αi,1 . . . corresponds to a
VBS with utilization ui. Let Ri,j = (λi,j , πi,j) be the virtual periodic resource
associated with the action αi,j with li,j , λi,j , and πi,j being the load, the limit,
and the period for the action αi,j . The upper bound for the response time of
action αi,j is

bui,j =
⌈
li,j
λi,j

⌉
πi,j + πi,j − 1.

The lower response-time bound varies depending on the strategy used, namely

bli,j =


⌈
li,j

λi,j

⌉
πi,j , for late release

⌊
li,j

λi,j

⌋
πi,j , for early release.

Note that the lower bound in the early release strategy is achieved only if λi,j
divides li,j , in which case

⌊
li,j

λi,j

⌋
=
⌈
li,j

λi,j

⌉
. From these bounds we can derive that

the response-time jitter, i.e., the difference between the upper and lower bound
on the response time, is at most πi,j−1 for the late release strategy and at most
2πi,j − 1 for the early release strategy. It is possible to give more precise bounds
for the early strategy (using (2) and (3) below) and show that also in that case
the jitter is at most πi,j − 1.

We say that the set of VBS processes is schedulable with respect to the
response-time bounds bui,j and bli,j if there exists a well-behaved schedule σ such
that for every action αi,j the scheduled response time si,j satisfies bli,j ≤ si,j ≤
bui,j .

It is important to note that each action αi,j of a process produces a sequence
of tasks with type (λi,j , πi,j) that are released at period instances of the vir-
tual periodic resource used by the action. Scheduling VBS processes therefore
amounts to scheduling typed sets of tasks. We call the release of such a task an
activation of the action.

Proposition 1 ([10, 12]). Given a set of VBS processes P = {Pi(ui) | 1 ≤ i ≤
n}, if ∑

i∈I
ui ≤ 1,

then the set of processes P is schedulable with respect to the response-time bounds
bui,j and bli,j.



Proof. As mentioned above, each process Pi provides a typed set of tasks since
each action αi,j of the process is split into several tasks that all have the type
(λi,j , πi,j). The tasks are released in a sequence, i.e. the release time of the next
task is always equal or greater than the deadline of the current task (also due to
the termination strategy). We can thus apply Lemma 1 and conclude that the
set of tasks is schedulable. To check the bounds, we distinguish a case for the
early release strategy and one for the late release strategy in terms of the first
task of an action. The details can be found in [12]. We present the proof for the
lower bounds which is not discussed in [12]. For each action αi,j , according to
the termination strategy and the late release strategy, we have

fi,j = ri,j +
⌈
li,j
λi,j

⌉
πi,j (1)

where the release times are given by ri,j = njπi,j for some natural number nj
such that the arrival times are ai,j = fi,j−1 ∈ ((nj − 1)πi,j , njπi,j ]. Therefore,
for the late strategy we have

si,j = fi,j − ai,j (1)
=
⌈
li,j
λi,j

⌉
πi,j + ri,j − ai,j

≥
⌈
li,j
λi,j

⌉
πi,j

= bli,j , for late release.

For the early release strategy we distinguish two cases depending on whether
the following inequality holds⌊

m
λi,j
πi,j

⌋
≥ li,j −

⌊
li,j
λi,j

⌋
λi,j (2)

where m = njπi,j − ri,j and ri,j = ai,j = fi,j−1 ∈ ((nj − 1)πi,j , njπi,j ]. The
finishing time for the action αi,j is

fi,j =


ai,j +

⌊
li,j

λi,j

⌋
πi,j +m , if (2) holds

ai,j +
⌈
li,j

λi,j

⌉
πi,j +m , otherwise

(3)

In both cases fi,j ≥
⌊
li,j

λi,j

⌋
πi,j + ai,j , so

si,j = fi,j − ai,j
≥
⌊
li,j
λi,j

⌋
πi,j

= bli,j , for early release.

�



In the following sections we analyze VBS schedulability in the presence of
scheduler overhead. In particular, we define an upper bound on the number of
scheduler invocations that occur within a period of an action, and perform an
analysis of the changes in the response-time bounds and utilization due to the
scheduler overhead.

4 VBS scheduling with overhead

Our first aim is to bound the number of scheduler invocations over a time in-
terval. In particular, we need the worst-case number of preemptions, and hence
scheduler invocations, that an action of a VBS process experiences during a pe-
riod. Hence, by overhead we mean the overhead due to scheduler invocations
(and not interrupts or other types of system overhead).

Typically the duration of a scheduler invocation is several orders of magnitude
lower than a unit execution of an action. Therefore, we assume that all periods
belong to the set of discrete time instants M = {c · n | n ≥ 0} ⊂ N, for a
constant value c ∈ N, c > 1. Hence, for any action αi,j with its associated virtual
periodic resource Ri,j = (λi,j , πi,j) we have that πi,j = c · π′i,j with π′i,j ∈ N. We
call c the scale of the system. Intuitively we can say that there are two different
timelines, the “fine-grained timeline” given by the set of natural numbers and
the “coarse-grained timeline” given by the set M . Resource periods are defined
on the “coarse-grained timeline”, while the execution time of the scheduler is
defined on the “fine-grained timeline”.

In VBS scheduling, a process Pi is preempted at a time instant t if and only
if one of the following situations occurs:

1. Completion. Pi has completed the entire work related to its current action
αi,j = (li,j , Ri,j).

2. Limit. Pi uses up all resource limit λi,j of the current resource Ri,j .
3. Release. A task of an action is released at time t, i.e., an action of another

process is activated. Note that all preemptions due to release occur at time
instants on the “coarse-grained timeline”, the set M .

Example 1. Consider the first action of three processes P1, P2, and P3, with
corresponding virtual periodic resources R1,0 = (λ1,0, π1,0) = (10, 40), R2,0 =
(λ2,0, π2,0) = (10, 60), and R3,0 = (λ3,0, π3,0) = (50, 100), and loads 30, 20, and
100, respectively. Figure 2 shows an example schedule of the three actions up
to time 120 and the time instants at which preemptions occur. Preemptions
that occur because of the release of an action instance (action activation) are
labeled with R, preemptions that occur because an action has finished its limit
are labeled with L, and preemptions that are due to an action finishing its entire
load have the label C. At time 0, 40, 60, 80, and 100 preemptions occur due to an
activation of one of the three actions, while at time 10, 20, 50, and 80 preemptions
occur because an action has used all its limit for the current period. At times
90 and 100 preemptions occur due to completion of an action. At certain time
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Fig. 2. Example schedule for processes P1, P2, and P3

instants such as 80 and 100 there is more than one reason for preemption. In
this example the scale c of the system is 10.

Let us first consider preemptions due to release, i.e., activation of an action.
Each activation happens when a new period of the used virtual periodic resource
starts. Hence, an action αi,j with a virtual periodic resource (λi,j , πi,j) will only
be activated at time instants k · πi,j with k ∈ N. Therefore, in the worst-case
scenario, the preemptions caused by action activations of all processes in the
system occur at all time instants in the set {k ·gcd({πi,j | i ∈ I, j ≥ 0}) | k ∈ N}.
Note that, because the periods of all actions in the system are on the “coarse-
grained timeline”, gcd({πi,j | i ∈ I, j ≥ 0}) ≥ c.

We compute the scheduler overhead for each action using an upper bound
on the number of preemptions during one period of the respective action.

Lemma 2. Let P = {Pi(ui) | 1 ≤ i ≤ n} be a set of VBS processes with actions
αi,j and corresponding virtual periodic resources (λi,j , πi,j). There are at most

Ni,j = NR
i,j +NL

i,j

scheduler invocations every period πi,j for the action αi,j, where

NR
i,j =

⌈
πi,j

gcd({πm,n | m ∈ I, n ≥ 0,m 6= i})
⌉

(4)

and NL
i,j = 1.

Proof. As discussed above, there are scheduler invocations at most at every
k · gcd({πm,n | m ∈ I, n ≥ 0}), k ∈ N due to release. For an action αi,j with
period πi,j , belonging to a process Pi(u), the number of preemptions due to
release of other processes does not depend on its own period nor on the periods
of the other actions of the same process. Hence, there can be at most NR

i,j

preemptions due to release over a period of the considered action. By design of
the scheduling algorithm, there is exactly one more scheduler invocation due to
the action using all its limit or completing its entire load in each period, i.e.,
NL
i,j = 1. �



This is a pessimistic approximation which could be improved by running a run-
time analysis that considers only the periods of the active actions at a specific
time. Nevertheless, we take the pessimistic approach in order to be able to ana-
lyze the system off-line.

Another bound on the number of preemptions due to release for sets of pe-
riodic tasks has been given in [6]. For an action αi,j , it calculates the number
of period instances from other actions that occur during the period πi,j . The
worst-case number of scheduler invocations for a period πi,j of an action due to
release is thus ∑

k∈I

k 6=i

∑
l>0

⌈
πi,j
πk,l

⌉
. (5)

Depending on the periods in the system one of the two given bounds approxi-
mates the worst-case number better than the other. Consider for example a case
where the periods in the system are 3, 5, and 7. In this case (5) approximates
the number of preemptions better than (4). In another example, if the periods
in the system are 2, 4, and 6, then (4) provides a more accurate bound than
(5). We choose to consider (4) for a bound on the number of preemptions due
to release, for reasons that will be explained in Section 6.

Case Overhead distribution Load

RA δbi,j = δi,j , δ
u
i,j = 0 l∗i,j = li,j +

l
li,j

λi,j−δi,j

m
δi,j

UA δbi,j = 0, δui,j = δi,j l∗i,j = li,j +
l
li,j

λi,j

m
δi,j

RUA δbi,j , δ
u
i,j > 0 l′i,j = li,j +

‰
li,j

λi,j−δb
i,j

ı
δbi,j , l

∗
i,j = l′i,j +

l
l′i,j

λi,j

m
δui,j

Case Utilization Schedulability test

RA
λi,j
πi,j

P
i∈I maxj≥0

λi,j
πi,j

≤ 1

UA
λi,j + δi,j

πi,j

P
i∈I maxj≥0

λi,j + δi,j
πi,j

≤ 1

RUA
λi,j + δui,j

πi,j

P
i∈I maxj≥0

λi,j + δui,j
πi,j

≤ 1

Table 1. Scheduler overhead accounting

5 Schedulability analysis with overhead

In a real system the scheduler overhead manifests itself as additional load which
must be accounted for within the execution of a process in order not to invalidate
the schedule of the system. Let ξ denote the duration of a single scheduler



invocation. The total scheduler overhead for one period of action αi,j is therefore

δi,j = Ni,j · ξ.
Hence, the total overhead is made up of Ni,j pieces of ξ workload. An impor-
tant aspect in the analysis is that a scheduler invocation with overhead ξ is
nonpreemptable.

Accounting for the overhead can be done in two ways. One way is to allow
an action to execute for less time than its actual limit within one period and
use the remaining time to account for the scheduler overhead. The other way
is to increase the limit such that the action will be able to execute its original
limit and the time spent on scheduler invocations within one period. Intuitively,
the first method increases the response-time bounds, and the second increases
the utilization of an action. We recognize a fundamental trade-off between an in-
crease in response time versus utilization by distributing the amount of scheduler
overhead. Namely, we write that the overhead is

δi,j = δbi,j + δui,j ,

where δbi,j is the overhead that extends the response-time bounds of the respective
action and δui,j increases the utilization. Note that no scheduler invocation is
divisible, i.e., both δbi,j and δui,j are multiples of ξ.

There are three cases:

– Response accounting (RA), δi,j = δbi,j , when the entire overhead is executing
within the limit of the action, keeping both the limit and period (and thus the
utilization) of the actions constant but increasing the response-time bounds.

– Utilization accounting (UA), δi,j = δui,j , when the entire overhead increases
the limit of the action, and thus the utilization, but the response-time bounds
remain the same.

– Combined accounting (RUA), with δi,j = δbi,j + δui,j , δ
b
i,j > 0, and δui,j > 0,

which offers the possibility to trade-off utilization for response time, for each
action, in the presence of scheduler overhead.

jitter

response time

bl∗i,j bu∗i,j

bli,j bui,j

Fig. 3. Bounds and jitter with and without overhead

For an action αi,j , in the presence of overhead, we denote the new load by
l∗i,j , the new limit by λ∗i,j , and the new utilization by u∗i,j . Using these new



parameters for an action we determine the new upper and lower response-time
bounds which we denote with bu∗i,j and bl∗i,j , respectively. The upper response-time
bound bu∗i,j for action αi,j is

bu∗i,j =

⌈
l∗i,j
λ∗i,j

⌉
πi,j + πi,j − 1. (6)

The lower response-time bound bl∗i,j for αi,j using the late release strategy is

bl∗i,j =

⌈
l∗i,j
λ∗i,j

⌉
πi,j , (7)

whereas using the early release strategy is

bl∗i,j =

⌊
l∗i,j
λ∗i,j

⌋
πi,j . (8)

In the previous section we have given an upper bound on the number of
preemptions that an action will experience during one period. This number is
used to compute the scheduler overhead and hence the new response-time bounds
for the respective action. As shown in Figure 3 and discussed in the remainder
of this section, both the upper and the lower bounds increase if we assume that
the worst-case number of preemptions actually occurs. However, our analysis
does not provide information on the actual number of scheduler invocations
during one period. Hence, when determining the upper bound on response-time
jitter, the assumption that an action always experiences the worst-case number
of preemptions is invalid. Therefore, the jitter is at most the difference between
the new upper response-time bound bu∗i,j and the ideal lower response-time bound
bli,j , as shown in Figure 3.

Table 1 summarizes the three cases which we discuss in detail in the re-
mainder of this section. We elaborate on the change in response-time bounds,
utilization, and jitter for each case.

5.1 Response Accounting

In the response accounting case each action executes for less time than its actual
limit so that enough time remains for the scheduler execution. As a result, the
action will not execute more than its limit even when scheduler overhead is
considered. In this way the utilization of the action remains the same but its
response-time bounds increase. We have that δi,j = δbi,j .

Example 2. Consider the same processes as in Example 1. The schedule in Fig-
ure 4 shows how the scheduler overhead can be accounted for. At each scheduler
invocation due to release (labeled with R), the process that is scheduled to run
accounts for the overhead. Note that in our analysis, unlike in this example



0 40 80 120

0 60 120

0 100

P

P

P

1

2

3

R L R,L R L R R,L L R,L

Fig. 4. Example of response accounting of scheduler overhead

schedule, we account for an over-approximation of the number of scheduler in-
vocations due to release. In the case of preemptions due to limit or completion
(labeled with L or C) the preempted process accounts for the overhead. This
implies that in case of preemptions due to limit, the action has to be preempted
before the limit is exhausted so that there is time for the scheduler to execute
within the limit.

The response-time bounds for each action differ from the ones given in Sec-
tion 3.2 due to the fact that each action can execute less of its own load in the
presence of scheduler overhead. We compute the new load of the action αi,j as

l∗i,j = li,j +
⌈

li,j
λi,j − δi,j

⌉
δi,j .

An obvious condition for the system to be feasible is δi,j < λi,j . Intuitively, if
δi,j = λi,j , the action αi,j would make no progress within one period as it will
just be executing the scheduler, and hence it will never complete its load. If
δi,j > λi,j , given that the execution of the scheduler is nonpreemptable, αi,j will
exceed its limit λi,j , which may result in process actions missing their deadlines
or processes not being schedulable anymore. The new limit and utilization of the
action are the same as without overhead, i.e. λ∗i,j = λi,j and u∗i,j = ui,j = λi,j

πi,j
.

Since l∗i,j > li,j and λ∗i,j = λi,j , we get that both the upper and the lower
response-time bound increases in case of response accounting.

Proposition 2. Let P = {Pi(ui) | 1 ≤ i ≤ n} be a set of VBS processes each
with bandwidth cap ui. If∑

i∈I ui ≤ 1 and δi,j < λi,j ,

with δi,j , λi,j as defined above, then the set of processes are schedulable with
respect to the new response-time bounds bu∗i,j and bl∗i,j, in the presence of worst-
case scheduler overhead.



Proof. The proof follows from Proposition 1, and the discussion above, when
substituting the load li,j with the new load l∗i,j . �

The jitter for any action αi,j in the response accounting case is at most
bu∗i,j − bli,j .

For further reference, we write the new load in the response accounting case
as a function

RA(l, λ, δ) = l +
⌈

l

λ− δ
⌉
δ.

5.2 Utilization Accounting

In the utilization accounting case an action is allowed to execute for more time
than its original limit within a period in order to account for scheduler overhead.
Thus, we have that δi,j = δui,j . The new load of action αi,j becomes

l∗i,j = li,j +
⌈
li,j
λi,j

⌉
δi,j .

The new limit is λ∗i,j = λi,j + δi,j , and the new utilization is

u∗i,j =
λi,j + δi,j

πi,j
.

Proposition 3. Given a set of processes P = {Pi(ui) | 1 ≤ i ≤ n}, let

u∗i = max
j≥0

λi,j + δi,j
πi,j

.

If ∑
i∈I

u∗i ≤ 1,

then the set of processes P is schedulable with respect to the original response-
time bounds bui,j and bli,j defined in Section 3.2, in the presence of worst-case
scheduler overhead.

Proof. We consider a modified set of processes P∗ = {P ∗i (u∗i ) | 1 ≤ i ≤ n}. By
Proposition 1, this set of processes is schedulable with respect to the response-
time bounds bu∗i,j and bl∗i,j calculated using the new load l∗i,j and the new limit
λ∗i,j . We will prove that the upper response-time bounds with the new load and
limit for action αi,j are the same as the original upper bounds without overhead
(bu∗i,j = bui,j), and the new lower bound is not lower than the old lower bound

(bl∗i,j ≥ bli,j). We start by showing that
⌈
l∗i,j

λ∗i,j

⌉
=
⌈
li,j

λi,j

⌉
.

Let d ∈ R be the difference

d =
⌈
li,j
λi,j

⌉
− l∗i,j
λ∗i,j

.



It suffices to establish that d ∈ [0, 1) in order to prove our claim. We have,

d =
⌈
li,j
λi,j

⌉
−
li,j +

⌈
li,j

λi,j

⌉
δi,j

λi,j + δi,j
=

⌈
li,j

λi,j

⌉
λi,j − li,j

λi,j + δi,j
.

Both
⌈
li,j

λi,j

⌉
λi,j − li,j ≥ 0 and λi,j + δi,j > 0, so d ≥ 0.

If
⌈
li,j

λi,j

⌉
= li,j

λi,j
, then d = 0 and we are done. If

⌈
li,j

λi,j

⌉
6= li,j

λi,j
, we can write

li,j =
⌊
li,j
λi,j

⌋
λi,j +∆ =

⌈
li,j
λi,j

⌉
λi,j − (λi,j −∆),

for 0 < ∆ < λi,j . Therefore,

d =
λi,j −∆
λi,j + δi,j

<
λi,j

λi,j + δi,j
< 1.

Hence we have established
⌈
l∗i,j

λ∗i,j

⌉
=
⌈
li,j

λi,j

⌉
. We then show that

⌊
l∗i,j

λ∗i,j

⌋
≥
⌊
li,j

λi,j

⌋
.

There are three cases to consider:

1. If λi,j does not divide li,j , and λ∗i,j does not divide l∗i,j , then
⌊
l∗i,j

λ∗i,j

⌋
=
⌊
li,j

λi,j

⌋
.

2. If λi,j does not divide li,j , but λ∗i,j divides l∗i,j , then
⌊
l∗i,j

λ∗i,j

⌋
=
⌈
l∗i,j

λ∗i,j

⌉
>
⌊
li,j

λi,j

⌋
.

3. The case when λi,j divides li,j , but λ∗i,j does not divide l∗i,j is not possible,
since as we saw before, if λi,j divides li,j , then λ∗i,j divides l∗i,j .

Hence, the set of processes is schedulable with respect to the old upper bound
and the new lower bound (which is greater than or equal to the old lower bound),
which makes it schedulable with respect to the old bounds. �

In the utilization accounting case, the jitter for any action is the same as in
the analysis without overhead, because the response-time bounds are the same.

We write the new load again as a function

UA(l, λ, δ) = l +
⌈
l

λ

⌉
δ.

5.3 Combined Accounting

In the combined accounting case, both the response-time bounds and the uti-
lization of an action increase. We have that δi,j = δbi,j + δui,j , δ

b
i,j > 0, and

δui,j > 0. Given an action αi,j with its associated virtual periodic resource
Ri,j = (λi,j , πi,j), and load li,j , the new load l∗i,j is computed in two steps.
First we account for the overhead that increases the response time

l′i,j = li,j +

⌈
li,j

λi,j − δbi,j

⌉
δbi,j



and then we add the overhead that increases the utilization

l∗i,j = l′i,j +
⌈
l′i,j
λi,j

⌉
δui,j .

The load function for the combined case is therefore

RUA(l, λ, δb, δu) = UA(RA(l, λ, δb), λ, δu).

The new limit for action αi,j is λ∗i,j = λi,j + δui,j , and the utilization becomes

u∗i,j =
λi,j + δui,j

πi,j
.

The upper response-time bound bu∗i,j for action αi,j is now

bu∗i,j =

⌈
RUA(li,j , λi,j , δbi,j , δ

u
i,j)

λi,j + δui,j

⌉
πi,j + πi,j − 1.

The lower response-time bound bl∗i,j for the same action using the late release
strategy is

bl∗i,j =

⌈
RUA(li,j , λi,j , δbi,j , δ

u
i,j)

λi,j + δui,j

⌉
πi,j ,

and using the early release strategy is

bl∗i,j =

⌊
RUA(li,j , λi,j , δbi,j , δ

u
i,j)

λi,j + δui,j

⌋
πi,j .

Proposition 4. Given a set of processes P = {Pi(ui) | 1 ≤ i ≤ n}, let

u∗i = max
j≥0

λi,j + δui,j
πi,j

.

If ∑
i∈I

u∗i ≤ 1,

then the set of processes P is schedulable with respect to the response-time bounds
bu∗i,j and bl∗i,j, in the presence of worst-case scheduler overhead.

Proof. This schedulability result is derived by combining Proposition 2 and
Proposition 3 in the response accounting and utilization accounting case, re-
spectively. �

Figure 5 shows the effect of the scheduler overhead distribution on the re-
sponse time and utilization for an example action. We consider the action α
with limit λ = 400µs, period π = 1000µs, and load l = 7300µs. The total
scheduler overhead of δ = 100µs corresponds to 100 scheduler invocations, each
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Fig. 5. Response time and utilization with δb varying in [0µs, 100µs] for α =
(7300µs, (400µs, 1000µs)) using the late strategy

with overhead ξ = 1µs. If δb = 0 (utilization accounting), the lower and up-
per response-time bounds bl∗ and bu∗ remain the same as the respective bounds
bl and bu without scheduler overhead accounting but the utilization u∗ is 10%
higher than the utilization u without scheduler overhead accounting. If δb = δ
(response accounting), we have that u∗ = u but bl∗ and bu∗ are several periods
larger than bl and bu, respectively, also resulting in a larger bound bu∗ − bl on
the response-time jitter. As δb increases, u∗ decreases while bu∗ increases along
with bl∗ and the jitter bound. Note that, depending on the involved parameters,
we can change the overhead distribution within some intervals such that the uti-
lization decreases but the response-time bounds remain the same, for example,
when δb varies between 0µs and 16µs.

6 Optimization

There is a natural division of the VBS scheduler overhead into overhead due to
release δRi,j and overhead due to limit/completion δLi,j . In Section 4 we bounded
the overhead due to release for each period of an action as δRi,j = NR

i,j · ξ. In
this estimate, each action accounts for the release of each of the other actions
in the system, or in other words, when an action is activated all other processes
account for the overhead, although at most one process is truly preempted.
This is clearly an over-approximation. As already discussed, all preemptions due
to release occur at time instants given by the set {k · gcd({πi,j | i ∈ I, j ≥
0}) | k ∈ N}. Hence, instead of letting other processes account for the release
overhead, the overhead can be modeled as a separate, virtual VBS process with



Case Overhead distribution Load

RA δbi,j = δLi,j + δRi,j , δ
u
i,j = 0 l∗i,j = li,j +

l
li,j

λi,j−δi,j

m
δi,j

UA δbi,j = 0, δui,j = δLi,j + δRi,j l∗i,j = li,j +
l
li,j

λi,j

m
ξ

RUA δbi,j = δLi,j , δ
u
i,j = δRi,j l∗i,j = li,j +

l
li,j

λi,j−ξ

m
ξ

Case Utilization Schedulability test

RA
λi,j
πi,j

P
i∈I maxj≥0

λi,j
πi,j

≤ 1

UA
λi,j + ξ

πi,j

P
i∈I maxj≥0

λi,j + ξ

πi,j
≤ 1− uS

RUA
λi,j
πi,j

P
i∈I maxj≥0

λi,j
πi,j

≤ 1− uS

Table 2. Cases with optimization

the same action repeated infinitely many times. We call this process the scheduler
process. Introducing a virtual process allows accounting for the overhead due
to release only once, and not (as before) in every process. As a result, some
of the presented scheduling results optimize, by weakening the utilization-based
schedulability test. Note that the scheduler process provides an optimization only
if the scheduler invocations due to release are accounted for in the utilization of
the processes, i.e., that δui,j ≥ δRi,j .
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Fig. 6. Example of scheduler overhead as a separate, virtual VBS process PS for the
combined accounting case

In addition to a set of VBS processes (as before) there is the scheduler process
PS with all actions equal αS,j = (ξ,RS) where RS = (λS , πS) = (ξ, gcd({πi,j |



i ∈ I, j ≥ 0}). Thus, the utilization of the scheduler process is

uS =
ξ

gcd({πi,j | i ∈ I, j ≥ 0}) .

Note that the scheduler process accounts only for the preemptions due to the
release of an action but not for the actions using all their limit or completing
their load.

Example 3. Consider the same processes as in Example 1. The schedule in Fig-
ure 6 shows how the scheduler overhead resulting from releases is integrated into
the scheduler process. In cases where preemption can occur due to multiple rea-
sons, such as at time 20, we prioritize the release and let the scheduler process
run. As can be seen in Figure 6 and Figure 4, the scheduler process may not
optimize the actual schedule, but it does optimize the schedulability test.

Table 2 summarizes the effect of the optimization to all cases. Note that the
response accounting case cannot be optimized, since δui,j = 0 in this case.

6.1 Combined accounting

In the combined accounting case an optimization is possible only in the case
δui,j = δRi,j and δbi,j = δLi,j = ξ. The overhead due to limit/completion continues
to add to the response time of each process and thus the new load for action αi,j
is

l∗i,j = li,j +
⌈

li,j
λi,j − ξ

⌉
ξ

and the utilization remains λ
π . The bounds bu∗i,j and bl∗i,j are given by (6), (7) and

(8), as before. The next result presents an optimization to Proposition 4.

Proposition 5. Given a set of processes P = {Pi(ui) | 1 ≤ i ≤ n}. If∑
i∈I

ui ≤ 1− uS ,

then the set of processes P is schedulable with respect to the response-time bounds
bu∗i,j and bl∗i,j, in the presence of worst-case scheduler overhead.

Proof. Let P = {Pi(ui) | 1 ≤ i ≤ n} be a set of VBS processes each with
bandwidth cap ui. Let PS be the scheduler process as defined above. It is im-
portant to note that the scheduler process generates tasks that always have the
highest priority when released. This is because the action αS,k has the period
πS = gcd({πi,j | i ∈ I, j ≥ 0})) ≤ πi,j ,∀i ∈ I, ∀j ≥ 0. Hence, at every invocation
time of the action its deadline is earlier or at the same time as any other deadline
in the system and thus we can be sure it is never preempted by any other task
using EDF. By Proposition 4 we get that the extended set of processes (together
with the scheduler process) is schedulable with respect to the new bounds if

uS +
∑
i∈I

max
j≥0

λi,j
πi,j
≤ 1.

�



6.2 Utilization accounting

In the case when the entire overhead increases the utilization of an action, op-
timization is possible. For the preemptions due to limit or completion, the limit
of the action αi,j becomes λ∗i,j = λi,j + ξ and therefore the utilization is

u∗i,j =
λi,j + ξ

πi,j
.

Note that it is not possible to account for such preemptions in the scheduler pro-
cess as that would mean that the scheduler process could execute at every time
instant of the “fine-grained timeline”. The next result presents the optimized
version of Proposition 3.

Proposition 6. Given a set of processes P = {Pi(ui) | 1 ≤ i ≤ n}, let

u∗i = max
j≥0

λi,j + ξ

πi,j
.

If ∑
i∈I

u∗i ≤ 1− uS ,

then the set of processes P is schedulable with respect to the response-time bounds
bui,j and bli,j defined in Section 3.2, in the presence of worst-case scheduler over-
head.

Proof. The proof is similar to Proposition 3 and Proposition 5 with the differ-
ence that at any time the system consists of tasks with the type (λi,j + ξ, πi,j)
generated by the processes in P∗ and the tasks generated by the scheduler pro-
cess. The response-time bounds are proven to remain unchanged by substituting
δi,j with ξ in Proposition 3. �

Clearly, the set of processes is not schedulable if ξ ≥ gcd({πi,j | i ∈ I, j ≥ 0}).
The utilization that can be used by processes drops to 0 if ξ = c. The system is
thus better suited for values of c that respect the condition ξ � c ≤ gcd({πi,j |
i ∈ I, j ≥ 0}).

7 Scheduler overhead as a function

A bare-metal implementation of a VBS-based scheduling algorithm, with three
different plugins that allow trading-off time and space complexity, exists and
has been presented in [10, 12]. Table 3 shows the time and space complexities
of the scheduler invocations distinguished by plugin in terms of the number of
processes in the system (n), and in the period resolution, that is, the number of
time instants the system can distinguish (t).

So far we have assumed that the duration of a scheduler invocation is constant
or bounded by a constant. However, motivated by our VBS implementation, the



list array matrix/tree

time O(n2) O(log(t) + n · log(t)) Θ(t)

space Θ(n) Θ(t+ n) O(t2 + n)

Table 3. Time and space complexity per plugin [10, 12]

execution time of the scheduler can vary depending on the number of processes
in the system and/or the number of different time instants we can distinguish.
This is because the scheduler execution time is composed of the time it takes to
manage process queues, which depends on the specific implementation, and the
time spent on context switches and other operations that are independent of the
implementation. We can thus write that ξ = ξq + ξc, where ξq : N× N→ N is a
function representing the overhead of managing the queues and ξc is a constant
overhead induced by the scheduling algorithm.

8 Conclusions

We have introduced response and utilization accounting of scheduler overhead
in the schedulability analysis of VBS. Response accounting maintains CPU uti-
lization at the expense of increased response-time bounds whereas utilization
accounting maintains the bounds at the expense of increased utilization. Our
analysis improves when accounting for scheduler overhead due to releasing pro-
cesses in a separate, virtual VBS process. We have also shown that our method
can readily be generalized to account for non-constant scheduler overhead. Com-
bined response and utilization accounting is possible and may be used in future
work to trade-off response time and utilization in solutions to finding appro-
priate server configurations that also consider scheduler overhead (server design
problem).
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R. Staudinger. The Tiptoe system. http://tiptoe.cs.uni-salzburg.at, 2007.
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