
Generalization of the Dynamic Ordering for
the One-Sided Block Jacobi SVD Algorithm:

II. Implementation

Martin Bečkaa Marián Vajteršic

aMathematical Institute, Department of Informatics, Slovak Academy of Sci-
ences, Bratislava, Slovak Republic

Technical Report 2008-03 December 2008

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series



Generalization of the Dynamic Ordering for
the One-Sided Block Jacobi SVD Algorithm:

II. Implementation

Martin Bečka∗ and Marián Vajteršic†

Abstract. We have designed, implemented and tested (by simulation on a serial computer)
the new dynamic ordering for the parallel one-sided block-Jacobi SVD algorithm. Our idea is
based on the estimation of the cosines of principal angles between two block columns X and Y
of the same width without explicitly forming the matrix product XTY (or Y TX) and computing
its SVD. Instead, we propose to use a fixed number 2q of iterations in the Lanczos algorithm
applied to the symmetric 2x2 block Jordan-Wielandt matrix with zero diagonal blocks, 21-block
XTY and 12-block Y TX; the order of the Jordan-Wielandt matrix is the sum of the block col-
umn widths. However, the matrix blocks XTY and Y TX are never formed explicitly; the needed
matrix-vector multiplications are computed exchanging intermediate product vectors between two
processors that host the block column X and Y . After computing 2q iterations, the Frobenius
norm of an auxiliary tridiagonal matrix of order 2q estimates the square root of twice the sum
of squares of q largest cosines (representing q smallest principal angles) between X and Y . In
the parallel algorithm using p processors, these weights can be used for choosing p pairs of block
columns, which are far from orthogonality with respect to those q smallest angles. We show how
to implement this new parallel ordering in the distributed paradigm of parallel computing using
the Message Passing Interface (MPI). First numerical results obtained by simulation show that
the one-sided parallel dynamic ordering can lead to a substantial decrease of the number of par-
allel iteration steps needed for the convergence as compared to a cyclic ordering.

1 Introduction

This report is the fourth one in the on-going project for the analysis, design and implementation
of the parallel one-sided block Jacobi algorithm (OSBJA) for the computation of the singular
value decomposition (SVD) of a general matrix A ∈ Rm×n on a parallel architecture. The
first part [23] was devoted to the analysis and design using some new ideas for accelerating
the (slow) Jacobi method and for enhancing its efficiency when working with matrix blocks
and special matrix recursion. In the second part [24], the parallel implementation and overall

∗Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Repub-
lic, email: Martin.Becka@savba.sk.
†Department of Computer Sciences, University of Salzburg, Salzburg, Austria, email: marian@cosy.sbg.ac.at.



data layout was discussed in some detail with the emphasis on changing the data distribution
needed for the preprocessing (the QR decomposition with column pivoting) and subsequent
SVD computation. Finally, the third part [6] contains the discussion about possible extensions
of the dynamic ordering for the two-sided block-Jacobi parallel SVD algorithm(see [4]) to the
case of the one-sided block-Jacobi parallel SVD algorithm.

When a matrix A of order m × n is cut columnwise with blocking factor l = 2p, where p
is the number of processors, exactly two block columns (each of width n/l) are stored in
each processor (here we assume that l divides n). The one-sided block-Jacobi SVD algorithm
then mutually orthogonalizes any two block columns (including the mutual orthogonalization
of matrix columns inside the block columns). The aim is to achieve orthogonality between
any two matrix columns to a given accuracy. Then the norms of such columns are singular
values, the columns after normalization are left singular vectors, i.e. they are computed easily
a posteriori.

Having p processors, we need p pairs of block columns that will be mutually orthogonalized.
The main question is, how to choose those p pairs. Usually, some fixed, prescribed, cyclic
strategy is chosen in the form of a list of block columns that need to meet in some processor. In
this case, a sweep can be defined, during which a given block column is orthogonalized against
all remaining block columns exactly once. Many such parallel orderings exist – see [2, 3].

A big disadvantage of any fixed ordering is the fact that the actual status of orthogonality is
usually checked only after a whole sweep and one has no information about the quality of this
process at the beginning of a parallel iteration step. In other words, in a given parallel itera-
tion step one can try to orthogonalize some mutually ‘almost orthogonal’ block columns while
neglecting pairs with small principal angles. It is clear, at least intuitively, that orthogonalizing
block columns with small principal angles first would mean to eliminate the ‘worst’ pairs first,
and this would mean (hopefully) the faster convergence of the whole algorithm as compared
with any fixed, cyclic ordering.

Hence, the main question is how to choose p pairs of block columns with smallest principal
angles among all l(l − 1)/2 = p(2p− 1) pairs. The obvious, but very naive way is to compute,
for each column block X, all possible matrix products XTY , then to compute the SVD of
XTY and look at the singular values, which are the cosines of acute principal angles (the
smaller angle, the larger cosine). When the block columns are distributed in processors, to
compute matrix products XTY for each two different block columns X and Y means to move
block columns across processors, i.e., it leads to heavy communication at the beginning of each
parallel iteration step. Besides that, one needs to compute many matrix products and SVDs.
And, at the end of the day, when p pairs of column blocks with smallest principal angles are
chosen, they must meet in processors, which means yet another communication.

Our idea is different. At the beginning of each parallel iteration step, the column blocks remain
stationary in processors. The largest cosines of, say, q smallest principal angles between any
two column blocks X and Y are estimated by the Lanczos algorithm applied on the symmetric
Jordan-Wielandt matrix without explicitly forming XTY and Y TX. After, say, 2q iterations
the square the Frobenius norm of the auxiliary tridiagonal matrix of order 2q provides a good
estimate of the square root of twice the sum of squares of q largest cosines (representing q
smallest principal angles) between X and Y . When the blocking factor is l = 2p, we can use

2



these weights in the maximum perfect matching problem on a complete graph with 2p vertices
to find p pairs of block columns that are ‘least’ mutually orthogonal. This is a direct extension
of the dynamic ordering for the parallel two-sided block-Jacobi SVD algorithm; see [4].

The report is organized as follows. In section 2 we shortly repeat the main ideas about the
OSBJA from [23]. Section 4 describes in details the new parallel ordering strategy, which can
be called as the dynamic ordering for the one-sided case. We describe in detail its parallel im-
plementation under the distributed paradigm of parallel computing using the Message Passing
Interface (MPI) library.

2 One-Sided Block-Jacobi Algorithm

The OSBJA is suited for the SVD computation of a general complex matrix A of order m ×
n, m ≥ n. However, we will restrict ourselves to real matrices with obvious modifications for
the complex case.

We start with the block-column partitioning of A in the form

A = [A1, A2, . . . , Al],

where the width of Ai is ni, 1 ≤ i ≤ l, so that n1 + n2 + · · ·+ nl = n. In order to provide the
maximal balanced width of columns, the first (n mod l) block columns have width dn/le and
the remaining block columns have width bn/lc.

The OSBJA can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)R(k), V (k+1) = V (k)R(k), k ≥ 0. (1)

Here the n× n orthogonal matrix R(k) is the so-called block rotation of the form

R(k) =


I

R
(k)
ii R

(k)
ij

I

R
(k)
ji R

(k)
jj

I

 , (2)

where the unidentified matrix blocks are zero. The purpose of matrix multiplication A(k)R(k) in
(1) is to mutually orthogonalize the columns between column-blocks i and j of A(k). The matrix

blocks R
(k)
ii and R

(k)
jj are square of order ni and nj, respectively, while the first, middle and last

identity matrix is of order
∑i−1

s=1 ns,
∑j−1

s=i+1 ns and
∑l

s=j+1 ns, respectively. The orthogonal
matrix

R̂(k) =

(
R

(k)
ii R

(k)
ij

R
(k)
ji R

(k)
jj

)
(3)

of order ni + nj is called the pivot submatrix of R(k) at step k. During the iterative process
(1), two index functions are defined: i = i(k), j = j(k) whereby 1 ≤ i < j ≤ l. At each

3



step k of the OSBJA, the pivot pair (i, j) is chosen according to a given pivot strategy that
can be identified with a function F : {0, 1, . . .} → Pr = {(i, j) : 1 ≤ i < j ≤ l}. If
O = {(i1, j1), (i2, j2), . . . , (iN(l), jN(l))} is some ordering of Pr with N(l) = l (l − 1)/2, then the
cyclic strategy is defined by:

If k ≡ l − 1 mod N(l) then (i(k), j(k)) = (is, js) for 1 ≤ s ≤ N(l).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where the
orderings are given row-wise and column-wise, respectively, with regard to the upper triangle
of A. The first N(l) iterations constitute the first sweep of the OSBJA. When the first sweep
is completed, the pivot pairs (i, j) are repeated during the second sweep, and so on, up to the
convergence of the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V (k) is iteratively computed by
orthogonal updates. If the process ends at iteration t, say, then A(t) has mutually highly
orthogonal columns. Their norms are the singular values of A, and the normalized columns
(with unit 2-norm) constitute the matrix of left singular vectors.

One (serial) step of the OSBJA can be described in three parts:

1. For the given pivot pair (i, j), the symmetric, positive semidefinite cross-product matrix
is computed:

Â
(k)
ij = [A

(k)
i A

(k)
j ]T [A

(k)
i A

(k)
j ] =

(
A

(k)T
i A

(k)
i A

(k)T
i A

(k)
j

A
(k)T
j A

(k)
i A

(k)T
j A

(k)
j

)
. (4)

2. Â
(k)
ij is diagonalized, i.e., the eigenvalue decomposition of Â

(k)
ij is computed:

R̂(k)T Â
(k)
ij R̂(k) = Λ̂

(k)
ij , (5)

and the eigenvector matrix R̂(k) is partitioned according to (3). The matrix R̂(k) defines
the orthogonal transformation R(k) in (2) and (1), which is then applied to A(k) and
V (k). Notice that the explicit diagonalization of Â(k) is equivalent to the implicit mutual
orthogonalization of columns between column blocks i and j in A(k), i.e., in (A

(k)
i , A

(k)
j ).

3. Finally, an updating of two block-columns of A(k) and V (k) is required.

2.1 Matrix preprocessing

It is well known that the one- or two-sided Jacobi method can be efficiently preprocessed by
the QR factorization of A (usually with the complete column pivoting) followed by the LQ
factorization of R-factor; see [9, 10, 11, 22]. The Jacobi method is then applied to the final
L-factor. This leads to a strong reduction of the total number of Jacobi steps, including a strong
decrease in the number of orthogonal updates of the matrix V (k) of right singular vectors in
(1). Mathematical details regarding the preprocessing step can be found in [23].

4



3 Dynamic ordering in the two-sided algorithm

At the beginning of each parallel iteration step it is necessary to choose p = l/2 pivot pairs
(i, j) that define, for p processors, p subtasks (Ai, Aj) that can be computed in parallel. This
means to assign one pivot pair per one processor, and to move (at most) two block columns
with block indices equal to the pivot pair to that processor. In other words, we need to design
a proper parallel block ordering.

In the past, the parallel orderings were designed mostly for the scalar Jacobi method and
perhaps the best discussion is provided in [18]. In those days, some 20 years ago, the empha-
sis was given to the requirement that the processors should exchange their elements on the
nearest-neighbor basis, and the amount of communicated data should be minimized. Today,
working with modern parallel architectures, the requirement of the nearest neighbor commu-
nication is not so important, whereas it is still useful to keep the amount of exchanged data
at minimum due to the start-up time and transfer time per one double variable needed for the
synchronous/asynchronous data transfer, which can be several orders of magnitude larger than
that for computation.

Luk and Park [18] analyzed the caterpillar-track and caterpillar-tractor orderings, odd-even
ordering and the round-robin ordering. They showed that they are equivalent for n odd or n
even (n is the matrix order). However, the main disadvantage of these parallel orderings (with
exception of the round-robin ordering) is the low exploitation of the computational power:
only at each second stage there are n/2 parallel rotations, which ‘cover’ all n/2 processors (for
simplicity, we take here n even). The round-robin parallel ordering is optimal: for n even,
each stage consists of exactly n/2 parallel rotations, which can be implemented exactly on n/2
processors. Unfortunately, the convergence of the Jacobi method with the parallel round-robin
ordering is not guaranteed for n even. As was shown in [19], there exists a matrix of even
order (albeit with a very special structure), for which, when applying the one-sided Jacobi
SVD algorithm with the round-robin ordering, its off-diagonal norm does not converge to zero
(it stagnates).

All above mentioned parallel scalar orderings can be easily and directly extended to the block
case. Recall that our blocking factor l = 2p is even (p is the number of processors). With
respect to the convergence of parallel block-Jacobi SVD algorithms, the actual situation can
be described as ‘terra incognita’. We know of only one paper [15], which proves the global con-
vergence of a serial block-oriented quasi-cyclic Jacobi method for symmetric matrices. To our
best knowledge, there are no global convergence results for any parallel block-Jacobi method.
Therefore, we should try the block version of the most-efficient scalar parallel ordering—namely,
the round-robin ordering and conduct extensive numerical experiments. Alternatively, we could
try to design a communication-efficient version of the dynamic ordering [4].

The dynamic ordering is based on a complete weighted graph with l = 2p vertices - hence the
number of vertices is equal to the blocking factor; see Fig. 1. In the two-sided block Jacobi
method, each edge is weighted by the non-negative weight ‖Aij‖2F + ‖Aji‖2F, where ‖Auv‖2F is
the square of the Frobenius norm of matrix block Auv. Recall that the convergence of the two-
sided block Jacobi algorithm is based on the convergence of the off-diagonal Frobenius norm of
matrix A to zero. Hence, the purpose is to choose, at the beginning of each parallel iteration

5



V V

V

VV

V6

5 4

3

21

Figure 1: Maximum-weight perfect matching on a complete graph for r = 6. The chosen edges
are dashed.

step, those block pairs (Aij, Aji) that would decrease (after their zeroing) the off-diagonal norm
as much as possible. Moreover, we need l/2 disjunct pairs, one per processor. This task is
equivalent to finding a maximum-weight perfect matching on a complete graph (see Fig. 1). It
is known that there exist the optimal polynomial algorithm for this task and we have designed
the suboptimal polynomial algorithm in [4].

Our experiments with the two-sided block Jacobi SVD algorithm have shown that the ordering
algorithm is very efficient, and although it runs at the beginning of each parallel iteration step,
it takes only some 5 per cent of the total parallel execution time for matrices of order 104. The
reason of this efficiency lies in the fact that Frobenius norms (or their squares) of individual
matrix blocks can be easily computed locally within processors (since each processor stores
exactly 2 block columns, it can locally compute the square of Frobenius norms for 2l matrix
blocks). Then, these Frobenius norms are centralized in processor P0, sorted in decreasing
order and the maximum-weight perfect matching is found. The result is then broadcast to all
processors, and after assembling chosen pairs of matrix blocks in individual processors, the next
p parallel SVD computations can start. Therefore, from a communication point of view, the
finding of a maximum-weight perfect matching costs only one MPI ALLGATHER.

Unfortunately, the situation is more complicated in case of the one-sided block Jacobi algorithm,
which is based on a mutual orthogonalization of two different block columns in one processor.
(We note that after the first iteration the columns within each block column Ai remain mu-
tually orthogonal.) Now, the principle of the maximum-weight perfect matching can be easily
extended also to the paradigm of mutual orthogonality of block columns. An ideal case is the
mutual orthogonality of all pairs of block columns. The departure from this ideal case can be
measured either by a sum of squares of cosines of angles between all pairs of columns in two
given block columns, or by the maximum cosine of these angles. Hence, for each pair of block

6



columns (Ai, Aj), we can define the departure from their mutual orthogonality by

wij =

n/l∑
u,v=1

cos2∠(a(i)
u , a

(j)
v ) or wij = max

1≤u,v≤n/l
{cos2∠(a(i)

u , a
(j)
v )}, (6)

where a
(k)
t is the t-th column of the matrix block Ak (for simplicity, we have omitted the iteration

index). The number wij is then the weight in the complete graph between vertices i and j. Note
that computation of weights wij for one pair of block columns (Ai, Aj) requires O((n/l)2) scalar
products, each of length m. Then the result of a maximum-perfect matching means to choose
those p pairs of matrix blocks for which the sum of departures from mutual orthogonality is
maximum. This is highly desirable because in orthogonalizing the block columns we prefer to
work precisely with those pairs, which depart a lot from their mutual orthogonality.

But, in contrast to the two-sided block Jacobi method, the weights defined in (6) can not be
updated locally (inside processors). At the end of a parallel iteration step, each processor
contains two mutually orthogonal block columns, so we know which p weights in (6) are zero.
However, the angles between any two columns residing in two different processors could have
changed. To see how much, we have to compute the cosine of angle between them. In other
words, we need to organize the update of cosines and weights in (6) in such a way that each
matrix block column Ai must meet each matrix block column Aj, j 6= i, in some processor,
in which the updated weight wij is computed according to (6). Since there are exactly two
block columns in each processor (each with n/2p columns for the blocking factor l = 2p),
the update of weights can be achieved by organizing the processors into a ring and using the
neighbor communication pattern, where each processor sends its the ‘left’ block column to its
left neighbor and receives one block column from its right neighbor. In the second round, the
local ‘right’ block column is sent to the right neighbor and one block column is received from
the left neighbor.

Hence, in each of two rounds each processor sends and receives exactly one block column per
one communication start-up. Two rounds are needed to ensure that each pair of block columns
is met in some processor exactly ones. Having p processors, two rounds can be done using
2(p−1) sends and receives with respect to each processor. The overall transferred data volume
is n2 double real values, i.e., the complete matrix A. Therefore, the updating of weights in
case of the one-sided block Jacobi method is much more communication-demanding than is
was for the two-sided block Jacobi method. Since this updating is needed at the beginning of
each parallel iteration step, it is of crucial importance to design an efficient strategy how to
minimize the communication complexity of this subtask. Also, the complexity of computing all
scalar products between all columns of all blocks is ≈ 2pn3/4p2 = n3/2p (considering m = n),
which is, for p > 4, even larger that the computational complexity ≈ 10n3/p3 of one iteration
step of the accelerated OSBJA (see the estimate (13) in [24]).

One possibility to decrease the computational and communication complexity would be to
choose randomly only s� n/2p columns from each block column and to send/receive only this
restricted set of columns. This approach decreases the amount of scalar products, the amount
of transferred data as well as the number of start-ups needed at the beginning of each data
transfer. Also, the random choice of s columns leads to some sort of heuristics, and it is not
clear if this is better than , e.g., the row cyclic ordering of subproblems.

7



Can we somehow decrease the communication complexity when looking for the ordering of p
parallel subproblems at the beginning of each iteration step? The solution might be in the
consideration of block columns as the orthogonal bases of certain linear subspaces of dimension
n/(2p) in the original linear subspace Rm. Having two block columns, i.e., two orthogonal bases
of two linear subspaces of the same dimension k, the mutual position of them is defined by so
called principal angles. In the next subsection we show that the twice the sum of squares of q
largest cosines of these angles can be estimated by the Frobenius norm of certain tridiagonal,
symmetric matrix T2q, which comes out from the Lanczos process applied to the special Jordan-
Wielandt matrix.

4 Dynamic ordering in the one-sided algorithm

After the first iteration, the block columns contain mutually orthogonal columns. Suppose that
each processor contains exactly two block columns (this is not substantial for the following
discussion). Moreover, suppose that the columns in each block column are normalized so
that each has the unit Euclidean norm. Each processor then stores two vectors of dimension
n/2p ≡ k. (Recall that these norms are estimations of singular values of matrix A.) Hence,
each column block is the orthonormal basis of the k-dimensional subspace which is spanned by
the column vectors of a given block column.

Now take two block columns Ai, Aj which should be orthogonalized in a given parallel iteration
step. Having p processors, our goal is to choose p pairs of those block columns that are maxi-
mally inclined to each other, i.e., their mutual position differs maximally from the orthogonal
one.

This vague description can be made mathematically correct using the notion of principal angles
between two k-dimensional subspaces spanned by two block columnsAi, Aj. SinceAi andAj are
orthonormal bases of two subspaces with the equal dimension, the cosines of principal angles are
defined as the singular values of the matrix AT

i Aj. Let σ1 ≥ σ2 ≥ . . . ≥ σk be k singular values
of the k×k matrix AT

i Aj. Then the principal angles θ1 ≤ θ2 ≤ . . . ≤ θk, θi ∈ [0, π/2], 1 ≤ i ≤ k,
are defined as:

θi = arccos(σi), 1 ≤ i ≤ k. (7)

Since Ai and Aj have orthonormal columns, all singular values of AT
i Aj are in the interval [0, 1],

so that the relation (7) is well defined.

We are interested in, say, q smallest principal angles, i.e., in q largest cosines (largest singular
values) σ1 ≥ σ2 ≥ · · · ≥ σq. When σ1 = 0, then all σi = 0, 2 ≤ i ≤ k, and two block columns Ai

and Aj are perfectly orthogonal; we do not need to orthogonalize them explicitly. On the other
hand, when all σk are significantly greater than 0, column blocks Ai and Aj are certainly far
from the mutual orthogonality. Now, for large matrices A of order, say, 103 - 104, and modest
number of processors, of order, say, 101, the width k of column blocks can be quite large, say,
of order 102. Hence, we can choose s much smaller - say, of order 100 - 101.

However, it seems this approach means that we must explicitly compute the matrix AT
i Aj.

When two block columns Ai and Aj are placed in two different processors, we can either

8



compute this matrix product in parallel (but for each pair of block columns), or store both
blocks in one processor and compute the matrix product locally using the LAPACK library.
Afterwards, we must compute (or at least somehow estimate) the largest m singular values
and afterwards compute some function of them (e.g., the sum of their squares) to get our
weight wij for the maximum-weight perfect matching. In both cases we need again too much
communication at the beginning of each parallel iteration step to construct the actual parallel
ordering for that step.

To estimate q largest singular value of the k × k matrix AT
i Aj, we suggest to use the Lanczos

process applied to the symmetric Jordan-Wielandt matrix C,

C ≡
(

0 AT
i Aj

AT
j Ai 0

)
. (8)

It is well known that the eigenvalues of the 2k × 2k matrix C are ±σ1,±σ2, . . . ,±σk. Notice
that there are k pairs of eigenvalues with the same absolute value.

It follows from the theory of Krylov space methods that the Lanzcos algorithm applied to a
symmetric matrix is the good iterative method for estimating its largest (in absolute value)
eigenvalues. This algorithm, applied to the symmetric Jordan-Wielandt matrix C, is listed
below as Algorithm A1 for a fixed number of iteration steps 2q.

A1: Lanczos algorithm for the symmetric Jordan-Wielandt matrix C

1. Choose integer 2q and the vector x0 of length 2k, and compute: β1 = ‖x0‖; v1 = x0/β;
2. for (` = 1; ` < 2q; `+ +) {
3. w` = Cv`;
4. if (` ! = 1) w` = w` − β`v`−1;
5. α` = wT

` v`;
6. w` = w` − α`v`;
7. β`+1 = ‖w`‖;
8. if (β`+1 ! = 0) v`+1 = w`/β`+1;
9. if (β`+1 == 0) ` = 2q; }
10. Set: T2q = tridiag(βs+1, αs, βs+1), s = 1, . . . , 2q.
11. Compute the Frobenius norm of T2q. �

Steps 2-9 constitute an adaptation of the Arnoldi method for a symmetric matrix. Due to
the special structure of C (see Eq. (8)), the matrix-vector product in step 2 is applied in two
substeps: w1

` = AT
i Ajv

1
` , w

2
` = AT

j Aiv
2
` , where v` = (v1T

` , v2T
` )T and w` = (w1T

` , w2T
` )T .

The result is the orthonormal basis of the Krylov subspace Km(C, x0) formed by vectors v`, 1 ≤
` ≤ 2q. Besides that, the coefficients α` and β` are computed that are stored in the symmetric,
tri-diagonal matrix T2q (step no. 10).

In our application, the orthonormal vectors v` are not important (they are used, for example,
in the solution of a linear system of equations). What is most important, is the square of the
Frobenius norm of T2q written in terms of its eigenvalues ω`, 1 ≤ ` ≤ 2q (they are known as
Ritz values):

‖T2q‖2F =

2q∑
`=1

ω2
` .

9



As already mentioned, the 2q Ritz values approximate reasonably well 2q largest (in the absolute
value) eigenvalues λ` of the Jordan-Wielandt matrix C. However, in our application, there are
exactly two eigenvalues of C with the same absolute value (with opposite signs) and they are
related to the squares of singular values of AT

i Aj. Therefore,

‖T2q‖2F =

2q∑
`=1

ω2
` ≈

2q∑
`=1

λ2
` = 2

q∑
`=1

σ2
` = 2

q∑
`=1

cos2(θ`),

i.e., the Frobenius norm of T2q can be used as the (good) approximation for the sum of q
largest cosines defining q smallest principal angles between subspaces span(Ai) and span(Aj).
In other words, we have found a relatively easily computable weight wij for the maximum
perfect matching in the one-sided block-Jacobi method. We stress that we do not need to
compute the Ritz values (i.e., the eigendecomposition of Tm) - the Frobenius norm squared is
enough!

Moreover, note that in our application T2q is not needed in its explicit form. All that is needed
is the square of its Frobenius norm. Since

wij = ‖T2q‖2F =

2q∑
`=1

α2
` + 2

2q∑
`=2

β2
` ,

‖T2q‖2F can be computed recursively immediately after computing α` and β`+1 in the `th itera-
tion step of the Lanczos algorithm. Indeed, this is a very simple computation!

Note that the weight wij takes into account the actual mutual position of two subspaces
span(Ai) and span(Aj). Therefore, we can simply choose ‘worst’ p pairs of column blocks
for their parallel orthogonalization by choosing the pairs with highest values of wij. This is an
analogy to the two-sided dynamic ordering where the actual Frobenius norm of the off-diagonal
blocks was taken into account. Therefore, the above described ordering can be defined as the
one-sided dynamic ordering. To choose p ‘worst’ block columns for the parallel orthogonal-
ization, the same maximum-weight perfect matching algorithm on the complete graph with r
vertices and weights wij can be used as in the two-sided case - see [4].

We have just described, how we can quite cheaply compute the weight wij that is the function
of q (estimated) largest cosines of principal angles between subspaces span(Ai) and span(Aj).
The larger is the weight, the lower is the degree of mutual orthogonality between these two
subspaces. However, at the beginning of each parallel iteration step we have to compute those
weights for all l(l−1)/2 pairs of block columns of matrix A. In the next subsection we describe
how this computation can be done in parallel without sending/receiving whole block columns
and without computing explicitly the matrix products AT

i Aj.

4.1 Parallel implementation of the one-sided dynamic ordering

Having p processors and l = 2p block columns of matrix A, each processor stores 2 block
columns. This means that there are l(l−1)/2 = p(2p−1) pairs of block columns. Suppose that
p pairs of block columns stored currently in processors have been just mutually orthogonalized.

10



Then there are 2p(p − 1) pairs that are not mutually orthogonalized. From this number we
need to choose p pairs at the beginning of each parallel iteration step; these pairs should be the
’worst’ ones, i.e., those that differ at most from the mutual orthogonality. In other words, at
the beginning of each parallel iteration step it is necessary to run 2p(p− 1) Lanczos processes
for a fixed number 2q of iterations to get weights wij defined above.

It is possible to organize the computation of Lanczos processes in parallel as follows. Let us
number the processors from P0 to Pp−1 in a process row. Let us denote 2 block columns in each
processor by left (L) and right (R). Pairings of block columns are defined in a systematic way.
The block L from a given processor Pi is paired with all left blocks from all processors Pj to
the right of Pi (i.e., j > i), and with all right blocks from all processors Pj to the left of Pi (i.e.,
j < i). Similarly, the block R from a given processor Pi is paired with all right blocks from all
processors Pj to the right of Pi (i.e., j > i), and with all left blocks from all processors Pj to
the left of Pi (i.e., j < i). It is easy to see that such an organization defines exactly 2(p − 1)
pairings for each processor that contain either block L or R from a given processor. Moreover,
all block columns are covered and the covering is optimally balanced in the sense that each
processors has to do the same computational work. We say that each processor is the master
for its own 2(p− 1) Lanczos processes.

For one pair of block columns (X, Y ), the corresponding Lanczos process requires matrix-
vector products of type XTY u and Y TXv where the composed vector (uT , vT )T is of unit
length. We do not want to form matrices XTY and Y TX explicitly (since the column blocks X
and Y are in different processors). Instead, the matrix-vector multiplications can be computed
sequentially by sending only m and k-dimensional vectors between processors. For example,
let the block column X and Y reside in processor P0 and P1, respectively. Then processor P0

(which is the master) generates (or normalizes) the unit vector (uT , vT )T , computes Xu and
sends and Xu and v to processor P1. Processor P1 computes Y v and Y T (Xu) and sends both
vectors back to processor P0. Processor P0 finishes the current step of the Lanczos method by
computing XT (Y v), scalars α and β and by updating the Frobenius norm of the matrix T2q.
Hence, 2q iterations of one Lanczos process requires two point-to point communications for
sending/receiving m and k-dimensional vectors (these two vectors can be sent in one message).

This is the work for one Lanczos process. In fact, these computations must be done for all
2(p − 1) Lanczos processes for which processor P0 is the master and this work is serialized
inside each processor. However, all processors serve as the master exactly for 2(p− 1) different
Lanczos processes each and they compute these tasks in parallel. Moreover, in our implementa-
tion, one data structure is used for all Lanczos processes and each processor receives the whole
data structure (not only the relevant part of it). At the same time, each processor stores the
information about two block columns that it currently stores, and about all Lanczos processes
for which it serves as the master. Therefore, each processor can read/write from/to the data
structure the data/results of its own computations for all Lanczos processes for which it is
the master (matrix-vector products, updates of Frobenius norms). To communicate the data
structure to all processors, the MPI collective communication ALLTOALL is used. Two such
communications are needed per one (parallel) iteration, i.e., together 4q collective communi-
cations are needed. These communications serve also like the global synchronization steps in
the whole computation. Finally, one MPI ALLGATHER is used to gather all computed weights on
each processor.

11



At the end of computation with Lanczos processes, all processors contain all weights wij for all
block column pairs (via one MPI ALLGATHER call), which are simply the squares of Frobenius
norms of all matrices T2q produced in all Lanczos processes. Therefore, each processor can com-
pute the maximum-weight perfect matching and the resulting parallel ordering; the algorithm
is the same as for the parallel two-sided block-Jacobi method (see [4]). For transferring the
chosen pairs in processors, the optimal parallel scheduling is used in order to send/receive at
most one block column (see [5]) for any processor.

The stopping criterion of the iteration process is based on the maximum value of currently
computed weights wij. When using the double precision with the machine precision ε, the
convergence is reached when

max
i,j

wij < m 2q ε, (9)

where m is the matrix order and q is the number of angles computed in Lanczos processes. In
other words, the computation is finished when the cosines of q largest principal angles between
all column blocks are ’sufficiently’ small. This is the global stopping criterion and it seems
that it works very well (with one exception - see the next section). The local stopping criterion
(which decide when it is not necessary to orthogonalize a given pair of block columns) is similar
to the global stopping criterion

wij < m 2q ε. (10)

5 First numerical results: Simulation on a serial com-

puter

Since the cluster of personal computers at the Salzburg University is not available at the
moment, we have simulated the parallel one-sided block-Jacobi algorithm with the new dynamic
ordering on a serial computer. However, our serial simulation enables to define and use all
parameters normally used in ‘true’ parallel processing - namely, the number of processors p.
All computations were performed using the IEEE standard double precision floating point
arithmetic with the machine precision εM ≈ 2.22 × 10−16. The global stopping criterion was
of size 10−13. Of course, the total execution time of the simulated parallel algorithm is of a
questionable value and we do not include it here. But the number of parallel iteration steps
nit, needed for the convergence, is a reliable measure of efficiency (or inefficiency) and should
be preserved also in computations on a ‘true’ parallel architecture.

In our simulations, we have used 6 various distributions of singular values (SVs) of randomly
generated matrices. A distribution of SVs is described by the parameter mode. For a condition
number κ, the SVs were always contained in the interval [κ−1, 1]. The value mode = 1 corre-
sponds to a multiple minimal SV, mode = 2 defines a multiple maximal SV, mode = 3 describes
a geometric sequence of SVs. Additional distributions of SVs are used with mode = 4 defining
an arithmetic sequence of SVs, mode = 5 defining the SVs as random numbers such that their
logarithms are uniformly distributed, and, finally, mode = 6 setting the SVs to random num-
bers from the same distribution as the rest of a matrix (i.e., in our case they were normally
distributed).

12



Table 1: Performance for n = 2000, p = 4, κ = 101 and 2q = 4. For the one-sided block Jacobi
algorithm, the computations were simulated on a serial computer. For the two-sided method,
the computations were run on the cluster ‘Gaisberg’ in Salzburg.

mode 1 2 3 4 5 6
nit (one-sided) 3 3 43 40 42 –
nit (two-sided) 130 127 41 42 44 43

Table 1 compares the results of simulation (for the one-sided method with dynamic ordering)
and true parallel computation (for the two-sided method with dynamic ordering, see [4]) for a
random matrix A of order n = 2000, p = 4 processors. The one-sided dynamic ordering uses
only 4 iterations in Lanczos method so that only 2 maximal principal cosines are approximated.
The global stopping criterion was the same for both methods.

When looking at nit, the one-sided method with dynamic ordering clearly outperforms the two-
sided one for mode = 1 and 2 by two orders of magnitude! Recall that here we do not use any
pre-processing of the matrix before its SVD. For the two-sided method, O(1) parallel iterations
for mode = 1, 2 can be achieved only by computing the QR factorization with column pivoting
of a matrix prior to its SVD and then applying the SVD to the R-factor - see [23].

For other modes the values of nit are almost the same. With respect to the computational
complexities of the one-sided and the two-sided method, the efficient computation of weights
for ordering and almost equal number of iterations for both, one can expect the one-sided
method is almost two times faster than its two-sided counterpart. We note that 42 parallel
iteration means 42/(l − 1) = 6 sweeps of the classical cyclic one-sided Jacobi method.

Currently, we have some problems with mode = 6 for the one-sided method. The convergence
stagnates, it helps to decrease q to 1 when the weights are getting very small. The problem is
probably related to the computation with values closed to zero (we compute cosine squared,
what can be very small value for almost right angles).

The quality of simulated computations for the one-sided method with dynamic ordering can be
documented by defining three ‘quality indices’ Q1, Q2 and Q3:

Q1 =
‖A− UΣV T‖F

‖A‖F
, Q2 =

‖I − UTU‖F√
n

, Q3 =
‖I − V TV ‖F√

n
. (11)

Here, the matrices U, Σ and V are the computed left singular vectors, singular values and right
singular vectors, respectively. Recall that the one-sided method computes iteratively only the
singular values and right singular vectors. Left singular vectors ui are computed a posteriori
by

ui = σ−1
i Avi, 1 ≤ i ≤ n. (12)

Thus, the index Q1 measures the overall relative accuracy of the SVD computation, whereas the
indices Q2 and Q3 give the information about the relative loss of orthogonality of the computed
left and right singular vectors, respectively.

Table 2 brings the values of Q1, Q2 and Q3 for the simulated parallel one-sided block-Jacobi

13



Table 2: Numerical accuracy of simulated computations for the one-sided method with dynamic
ordering.

mode 1 2 3 4 5 6
Q1 1.43× 10−15 1.56× 10−15 1.71× 10−15 1.31× 10−15 1.67× 10−15 –
Q2 9.97× 10−15 9.40× 10−15 8.11× 10−14 8.23× 10−14 2.49× 10−14 –
Q3 6.58× 10−15 6.89× 10−15 3.41× 10−14 3.41× 10−14 3.30× 10−14 –

method with dynamic ordering. The simulation parameters are the same as mentioned in the
caption of Table 1.

In general, the accuracy of our new one-sided method seems to be excellent. The matrix A can
be recovered from its computed SVD to the relative accuracy of 10−15 regardless to a value of
mode. With respect to the loss of orthogonality, one can perhaps distinguish between ‘easy’
cases (mode = 1, 2) and ‘hard’ cases (mode ≥ 3). In the first group, the orthogonality of both
sets of singular vectors is maintained to the relative accuracy of 10−15, whereas in the second
group it drops to 10−14. It is also interesting to note, that the relative loss of orthogonality is
always larger for the a posteriori computed left singular vectors (except for mode = 5). But
more numerical experiments must be done to better understand this behavior.

6 Conclusions

We have designed, implemented and tested (albeit only by simulation on a serial computer) the
so-called one-sided dynamic ordering. As far as we know, our ordering is completely new, based
on the original ideas of applying the Lanczos algorithm (in fact, a set of Lanczos processes run
in parallel) to the set of Jordan-Wielandt matrices and of using the squares of Frobenius norms
of tridiagonal, symmetric Lanczos matrices as the weights in the maximum-weight perfect
matching algorithm for finding ’worst’ p pairs of block columns for their orthogonalization
at the beginning of each parallel iteration step. First simulated numerical results show that
it is possible to substantially decrease the number of parallel iteration steps needed for the
convergence as compared with the usual cyclic ordering. In particular, there is no notion of
the ’sweep’ in the one-sided dynamic ordering. A lot of work must be done in testing the
new ordering for matrices with various distributions of singular values. Also, the question of a
reliable local stopping criterion remains open. However, the new one-sided dynamic ordering
seems to be quite promising.

References

[1] A. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and
D. Sorensen, LAPACK Users’ Guide, Second ed., SIAM, Philadelphia, 1999.

14



[2] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory
systems: I. Hypercubes and rings, Parallel Algorithms Appl. 13 (1999) 265-287.

[3] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory
systems: II. Meshes, Parallel Algorithms Appl. 14 (1999) 37-56.

[4] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi
SVD algorithm, Parallel Computing 28 (2002) 243-262.

[5] M. Bečka and G. Okša, Variable blocking factor ... for a parallel block-Jacobi SVD
algorithm, Parallel Computing ...

[6] M. Bečka and M. Vajteršic, Generalization of the Dynamic Ordering for the One-
Sided Block Jacobi SVD Algorithm: I. Analysis and Design, Technical report, Salzburg
University, Salzburg, Austria, June 2008.

[7] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix
Anal. Appl. 13 (1992) 1204-1245.

[8] Z. Drmač, Implementation of Jacobi rotations for accurate singular value computation in
floating-point arithmetic, SIAM J. Sci. Comp. 18 (1997) 1200-1222.

[9] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi
SVD algorithm, IMA J. Numer. Anal. 19 (1999) 191-213.

[10] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: I., LAPACK
Working Note 169, August 2005.

[11] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: II., LAPACK
Working Note 170, August 2005.

[12] V. Hari and J. Matejaš, Accuracy of the Kogbetliantz method, preprint, University of
Zagreb, 2005.

[13] V. Hari and V. Zadelj-Martič, Parallelizing Kogbetliantz method, accepted for pub-
lication at Int. Conf. on Numerical Analysis and Scientific Computation, Rhodos, Greece,
September 2006.

[14] V. Hari, Accelerating the SVD block-Jacobi method, Computing 75 (2005) 27-53.

[15] V. Hari, Convergence of a block-oriented quasi-cyclic Jacobi method, accepted for publi-
cation in SIAM J. Matrix Anal. Appl.

[16] E. Kogbetliantz, Diagonalization of general complex matrices as a new method for
solution of linear equations, Proc. Intern. Congr. Math. Amsterdam 2 (1954) 356-357.

[17] E. Kogbetliantz, Solutions of linear equations by diagonalization of coefficient matrices,
Quart. Appl. Math. 13 (1955) 123-132.

[18] F. T. Luk and H. Park, On parallel Jacobi orderings, SIAM J. Sci. Statist. Comput.
10 (1989) 18-26.

15



[19] F. T. Luk and H. Park, A proof of convergence for two parallel Jacobi SVD algorithms,
IEEE Trans. Comp. 38 (1989) 806-811.

[20] W. Mascarenhas, On the convergence of the Jacobi method, poster presentation, 4th
SIAM Conference on Parallel Processing for Scientific Computing, Chicago, USA, Decem-
ber 1989.

[21] J. Matejaš, Convergence of scaled iterates by Jacobi method, Lin. Alg. Appl. 349 (2002)
17-53.

[22] G. Okša and M. Vajteršic, Efficient preprocessing in the parallel block-Jacobi SVD
algorithm, Parallel Computing 31 (2005) 166-176.

[23] G. Okša and M. Vajteršic, Parallel one-sided block Jacobi SVD algorithm: I. Analysis
and design, Technical report, Salzburg University, Salzburg, Austria, June 2007.

[24] G. Okša and M. Vajteršic, Parallel one-sided block Jacobi SVD algorithm: II. Imple-
mentation, Technical report, Salzburg University, Salzburg, Austria, December 2007.

[25] P. M. de Rijk, A one-sided Jacobi algorithm for computing the singular value decompo-
sition on a vector computer, SIAM J. Sci. Stat. Comp. 10 (1989) 359-371.

[26] K. Veselić and V. Hari, A note on a one-sided Jacobi algorithm, Numer. Math. 56
(1989) 627-633.

16


