
Generalization of the Dynamic Ordering for
the One-Sided Block Jacobi SVD Algorithm:

I. Analysis and Design

Martin Bečkaa Marián Vajteršic

aMathematical Institute, Department of Informatics, Slovak Academy of Sci-
ences, Bratislava, Slovak Republic

Technical Report 2008-01 June 2008

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series

Generalization of the Dynamic Ordering for
the One-Sided Block Jacobi SVD Algorithm:

I. Analysis and Design

Martin Bečka∗ and Marián Vajteršic†

Abstract. The efficiency of the one-sided parallel block-Jacobi algorithm for computation of
the singular value decomposition (SVD) of a general matrix A ∈ Rm×n, m ≥ n, depends–besides
some numerical tricks that speed-up the convergence–crucially on the parallel ordering of sub-
problems, which are to be solved in each parallel iteration step. We discuss in detail possible
generalizations of the so-called dynamic ordering of subproblems that was originally designed for
the two-sided parallel block-Jacobi SVD algorithm. It turns out that the straightforward gener-
alization leads to the algorithm that requires too much communication in each parallel iteration
step, so that the Jacobi method would spend too much time in communication and its efficiency
due to the clever usage of some numerical tricks will be lost. Therefore, a modification of the
dynamic ordering is proposed based on the use of the maximum principal angle between two
subspaces of the same dimension. This approach can be described as a heuristics. Its efficiency
should be tested with using a wide set of random matrices and compared with the (row or col-
umn) cyclic ordering.

1 Introduction

This report is the third one in the on-going project for the analysis, design and implementation
of the parallel one-sided block Jacobi algorithm (OSBJA) for the computation of the singular
value decomposition (SVD) of a general matrix A ∈ Rm×n on a parallel architecture. The
first part [21] was devoted to the analysis and design using some new ideas for accelerating
the (slow) Jacobi method and for enhancing its efficiency when working with matrix blocks
and special matrix recursion. In the second part [22], the parallel implementation and overall
data layout was discussed in some detail with the emphasis on changing the data distribution
needed for the preprocessing (the QR decomposition with column pivoting) and subsequent
SVD computation.

For the two-sided parallel block-Jacobi SVD algorithm we have designed, implemented and
successfully tested in [4] the so-called dynamic ordering that defines, in the case of p processors,

∗Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Repub-
lic, email: Martin.Becka@savba.sk.
†Department of Computer Sciences, University of Salzburg, Salzburg, Austria, email: marian@cosy.sbg.ac.at.

p pairs of off-diagonal blocks, which are nullified and, at the same time, the decrease of the
off-diagonal Frobenius norm is maximal. This strategy leads to a substantial decrease of the
number of parallel iteration steps needed for the convergence of the whole algorithm at given
precision. For the OSBJA, no such strategy is known. It is the purpose of this report to discuss
the possible application of dynamic ordering (with some modifications) to the one-sided case.

This report should be read in close relationship with [21] and [22]. In particular, we do not
repeat many details regarding the OBSJA and ideas leading to its acceleration and higher
efficiency. The notation from [21] is also used throughout the whole report.

In section 2 we shortly repeat the main ideas about the accelerated OSBJA from [21]. Section
3 describes in details the ordering strategy, which should be related to the dynamic ordering in
the two-sided case.

2 Accelerated One-Sided Block-Jacobi Algorithm

The OSBJA is suited for the SVD computation of a general complex matrix A of order m ×
n, m ≥ n. However, we will restrict ourselves to real matrices with obvious modifications for
the complex case.

We start with the block-column partitioning of A in the form

A = [A1, A2, . . . , Ar],

where the width of Ai is ni, 1 ≤ i ≤ r, so that n1 +n2 + · · ·+nr = n. The most natural choice
is n1 = n2 = · · · = nr−1 = n0, so that n = (r − 1)n0 + nr, nr ≤ n0. Here n0 can be chosen
according to the available cache memory, which is up to 10 times faster than the main memory;
this connection will be clear later on.

The OSBJA can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)U (k), V (k+1) = V (k)U (k), k ≥ 0. (1)

Here the n× n orthogonal matrix U (k) is the so-called block rotation of the form

U (k) =


I

U
(k)
ii U

(k)
ij

I

U
(k)
ji U

(k)
jj

I

 , (2)

where the unidentified matrix blocks are zero. The purpose of matrix multiplication A(k)U (k) in
(1) is to mutually orthogonalize the columns between column-blocks i and j of A(k). The matrix

blocks U
(k)
ii and U

(k)
jj are square of order ni and nj, respectively, while the first, middle and last

2

identity matrix is of order
∑i−1

s=1 ns,
∑j−1

s=i+1 ns and
∑r

s=j+1 ns, respectively. The orthogonal
matrix

Û (k) =

(
U

(k)
ii U

(k)
ij

U
(k)
ji U

(k)
jj

)
(3)

of order ni + nj is called the pivot submatrix of U (k) at step k. During the iterative process
(1), two index functions are defined: i = i(k), j = j(k) whereby 1 ≤ i < j ≤ r. At each
step k of the OSBJA, the pivot pair (i, j) is chosen according to a given pivot strategy that
can be identified with a function F : {0, 1, . . .} → Pr = {(l,m) : 1 ≤ l < m ≤ r}. If
O = {(l1,m1), (l2,m2), . . . , (lN(r),mN(r))} is some ordering of Pr with N(r) = r (r− 1)/2, then
the cyclic strategy is defined by:

If k ≡ r − 1 mod N(r) then (i(k), j(k)) = (ls,ms) for 1 ≤ s ≤ N(r).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where the
orderings are given row-wise and column-wise, respectively, with regard to the upper triangle
of A. The first N(r) iterations constitute the first sweep of the OSBJA. When the first sweep
is completed, the pivot pairs (i, j) are repeated during the second sweep, and so on, up to the
convergence of the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V (k) is iteratively computed by
orthogonal updates. If the process ends at iteration t, say, then A(t) has mutually highly
orthogonal columns. Their norms are the singular values of A, and the normalized columns
(with unit 2-norm) constitute the matrix of left singular vectors.

One (serial) step of the OSBJA can be described in three parts:

1. For the given pivot pair (i, j), the symmetric, positive semidefinite cross-product matrix
is computed:

Â
(k)
ij = [A

(k)
i A

(k)
j]T [A

(k)
i A

(k)
j] =

(
A

(k)T
i A

(k)
i A

(k)T
i A

(k)
j

A
(k)T
j A

(k)
i A

(k)T
j A

(k)
j

)
. (4)

2. Â
(k)
ij is diagonalized, i.e., the eigenvalue decomposition of Â

(k)
ij is computed:

Û (k)T Â
(k)
ij Û

(k) = Λ̂
(k)
ij , (5)

and the eigenvector matrix Û (k) is partitioned according to (3). The matrix Û (k) defines
the orthogonal transformation U (k) in (2) and (1), which is then applied to A(k) and
V (k). Notice that the explicit diagonalization of Â(k) is equivalent to the implicit mutual
orthogonalization of columns between column blocks i and j in A(k), i.e., in (A

(k)
i , A

(k)
j).

3. Finally, an updating of two block-columns of A(k) and V (k) is required.

2.1 Matrix preprocessing

It is well known that the one- or two-sided Jacobi method can be efficiently preprocessed by
the QR factorization of A (usually with the complete column pivoting) followed by the LQ

3

factorization of R-factor; see [7, 8, 9, 20]. The Jacobi method is then applied to the final L-
factor. This leads to a strong reduction of the total number of Jacobi steps, including a strong
decrease in the number of orthogonal updates of the matrix V (k) of right singular vectors in
(1).

The second preprocessing step initializes certain three matrices (see details in 2.1.1), which are
then iterated during the Jacobi process. Here is the connection with the implementation of
the fast scaled block-orthogonal transformations mentioned above. It also makes all columns
within each column block mutually orthogonal, whereas this property remains invariant during
the whole computation, so that diagonal blocks of the cross-product matrix Â

(k)
ij in (4) are

themselves diagonal. Consequently, at step k, the columns need to be orthogonalized only
between two block columns A

(k)
i and A

(k)
j (not within them).

Mathematical details regarding both preprocessing steps can be found in [21].

2.1.1 Initialization

Recall that once the diagonalization in (5) is performed over all block columns of A, then the

diagonal blocks in each cross-product matrix Â
(k)
ij are themselves diagonal. Hence, it is not

necessary to compute their elements except of the diagonal ones. This computation can be
arranged into recursion. Let

Γ(k) = diag(Γ
(k)
1 , . . . ,Γ(k)

r) = diag(Â(k)) with Â(k) = A(k)TA(k),

where Γ
(k)
1 , . . . ,Γ

(k)
r is the partition inherited from the block-column partition of A(k). At step

k, the diagonal of Â
(k)
ij , which is equal to diag(Γ

(k)
i ,Γ

(k)
j), is transformed and written to Λ̂

(k)
ij .

Hence, Λ̂
(k)
ij = diag(Γ

(k+1)
i ,Γ

(k+1)
j), so that Γ(k) (represented in a computer by the vector γ(k))

can be updated very simply (once we have the eigendecomposition of the cross-product matrix
in (5)) and in parallel to the updating of A(k). To initialize the computation, we apply the
following algorithm after the QR and LQ decompositions to the L-factor L = [L1, L2, . . . , Lr]:

1. for i = 1 : r
2. Â

(0)
ii = LTi Li;

3. Â
(0)
ii = Q

(0)
ii Γ

(0)
i Q

(0)T
ii ; (eigenvalue decomposition)

4. (A
(0)
i = LiQ

(0)
ii); (not performed, just an illustration of the connection)

5. end;

Thus the above algorithm initializes three important matrices:

B(0) = [B
(0)
1 , B

(0)
2 , . . . , B(0)

r] = [L1, L2, . . . , Lr],

Q(0) = diag(Q
(0)
11 , Q

(0)
22 , . . . , Q

(0)
rr),

Γ(0) = diag(Γ
(0)
1 ,Γ

(0)
2 , . . . ,Γ(0)

r).

4

2.2 Fast scaled block-orthogonal transformations

Now we need to find recursions for the computation of the matrix triplet B(k), Q(k) and Γ(k)

at step k of the Jacobi process. The main idea here is to use small matrices of order ni, nj
or ni × nj for all updates (computed as matrix multiplications), so that these updates can be
done in the fast cache memory; see [12].

Let us assume that at step k we have B(k), Q(k) and Γ(k). Then, according to (4), we need to

compute the cross-product matrix Â
(k)
ij for the given pivot pair (i, j):

Â
(k)
ij =

(
Q

(k)
ii

Q
(k)
jj

)T (
B

(k)T
i B

(k)
i B

(k)T
i B

(k)
j

B
(k)T
j B

(k)
i B

(k)T
j B

(k)
j

) (
Q

(k)
ii

Q
(k)
jj

)

=

(
Γ

(k)
i Ã

(k)
ij

Ã
(k)T
ij Γ

(k)
j

)
, where Ã

(k)
ij ≡ Q

(k)T
ii (B

(k)T
i B

(k)
j)Q

(k)
jj . (6)

Next, we compute the eigendecomposition of Â
(k)
ij according to (5). Having the orthogonal

eigenvector matrix Û (k), Hari [12] proposed to compute its cosine-sine (CS) decomposition

Û (k) =

(
V

(k)
ii

V
(k)
jj

) (
C

(k)
ii −S(k)

ij

S
(k)
ji C

(k)
jj

) (
W

(k)
ii

W
(k)
jj

)T

≡ V̂ (k) T̂ (k) Ŵ (k)T , (7)

where the matrix blocks V
(k)
ii , C

(k)
ii , W

(k)
ii (V

(k)
jj , C

(k)
jj , W

(k)
jj) are square of order ni (nj),

T̂ (k) =

(
C

(k)
ii −S(k)

ij

S
(k)
ji C

(k)
jj

)
=



Ini−nj
0 0

0 C(k) −S(k)

0 S(k) C(k)

 , if ni ≥ nj,

C(k) 0 −S(k)

0 Inj−ni
0

S(k) 0 C(k)

 , if nj ≥ ni,

(8)

and

C(k) = diag(c
(k)
1 , . . . , c(k)νij

), S(k) = diag(s
(k)
1 , . . . , s(k)

νij
),

c
(k)
1 ≥ c

(k)
2 ≥ · · · ≥ c(k)νij

≥ 0, 0 ≤ s
(k)
1 ≤ s

(k)
2 ≤ · · · ≤ s(k)

νij
,

(c(k)r)2 + (s(k)
r)2 = 1, 1 ≤ r ≤ νij, νij = min{ni, nj}.

Next step in the OSBJA is the multiplication of the pivot block-column matrix (A
(k)
i , A

(k)
j) by

Ûk from the left (see (1)) to get the new iteration (A
(k+1)
i , A

(k+1)
j). This can be written in the

factored form:

(B
(k+1)
i Q

(k+1)
ii , B

(k+1)
j Q

(k+1)
jj) = (B

(k)
i Q

(k)
ii , B

(k)
j Q

(k)
jj) V̂ (k) T̂ (k) Ŵ (k)T

= (B
(k)
i (Q

(k)
ii V

(k)
ii), B

(k)
j (Q

(k)
jj V

(k)
jj)) T̂ (k) diag(W

(k)
ii ,W

(k)
jj)T ,

5

which leads immediately to a recursion for matrices B and Q:

(B
(k+1)
i , B

(k+1)
j) = (B

(k)
i (Q

(k)
ii V

(k)
ii), B

(k)
j (Q

(k)
jj V

(k)
jj)) T̂ (k), (9)

Q
(k+1)
ii = W

(k)T
ii , Q

(k+1)
jj = W

(k)T
jj .

(Recall that the new Γ(k+1) is obtained simply by copying ni + nj eigenvalues from Λ̂
(k)
ij to

appropriate places of Γ(k).) It is immediately seen from (9) that the original number of flops
required for updating in (1) is significantly reduced using the new recursion. First, in the

computation of (Q
(k)
ii V

(k)
ii) and (Q

(k)
jj V

(k)
jj), only the small dimensions ni and nj are involved.

Second, once these two matrix multiplications are computed, the update of Bi and Bj requires
the matrix multiplication of the form XY , where X is of order n×ni or n×nj, and Y is square

of order ni or nj. The final update of Bi and Bj requires the matrix multiplication by T̂ (k) from

the left, which is equivalent, due to the special structure of T̂ (k), to simple rotations of columns
of length n. Notice that we have eliminated the dimension m � n, which is the main source
of inefficient updating of original A in (1). The price paid is the recursion of three matrices,
where two of them are updated by a simple copy of elements. The main idea in this auxiliary
recursion exploits the fact that the dimensions of blocks can be chosen so that all computations
in this phase can be done in fast (cache) memory.

3 Parallel Ordering of Subproblems

3.1 Dynamic ordering in the one-sided algorithm

At the beginning of each parallel iteration step it is necessary to choose p = r/2 pivot pairs
(i, j) that define, for p processors, p subtasks (Bi, Bj) that can be computed in parallel. This
means to assign one pivot pair per one processor, and to move (at most) two block columns
with block indices equal to the pivot pair to that processor. In other words, we need to design
a proper parallel block ordering.

In the past, the parallel orderings were designed mostly for the scalar Jacobi method and
perhaps the best discussion is provided in [16]. In those days, some 20 years ago, the empha-
sis was given to the requirement that the processors should exchange their elements on the
nearest-neighbor basis, and the amount of communicated data should be minimized. Today,
working with modern parallel architectures, the requirement of the nearest neighbor commu-
nication is not so important, whereas it is still useful to keep the amount of exchanged data
at minimum due to the start-up time and transfer time per one double variable needed for the
synchronous/asynchronous data transfer, which can be several orders of magnitude larger than
that for computation.

Luk and Park [16] analyzed the caterpillar-track and caterpillar-tractor orderings, odd-even
ordering and the round-robin ordering. They showed that they are equivalent for n odd or n
even (n is the matrix order). However, the main disadvantage of these parallel orderings (with
exception of the round-robin ordering) is the low exploitation of the computational power:
only at each second stage there are n/2 parallel rotations, which ‘cover’ all n/2 processors (for

6

simplicity, we take here n even). The round-robin parallel ordering is optimal: for n even,
each stage consists of exactly n/2 parallel rotations, which can be implemented exactly on n/2
processors. Unfortunately, the convergence of the Jacobi method with the parallel round-robin
ordering is not guaranteed for n even. As was shown in [17], there exists a matrix of even
order (albeit with a very special structure), for which, when applying the one-sided Jacobi
SVD algorithm with the round-robin ordering, its off-diagonal norm does not converge to zero
(it stagnates).

All above mentioned parallel scalar orderings can be easily and directly extended to the block
case. Recall that our blocking factor r = 2p is even (p is the number of processors). With
respect to the convergence of parallel block-Jacobi SVD algorithms, the actual situation can
be described as ‘terra incognita’. We know of only one paper [13], which proves the global con-
vergence of a serial block-oriented quasi-cyclic Jacobi method for symmetric matrices. To our
best knowledge, there are no global convergence results for any parallel block-Jacobi method.
Therefore, we should try the block version of the most-efficient scalar parallel ordering—namely,
the round-robin ordering and conduct extensive numerical experiments. Alternatively, we could
try to design a communication-efficient version of the dynamic ordering [4].

The dynamic ordering is based on a complete weighted graph with r = 2p vertices–hence the
number of vertices is equal to the blocking factor; see Fig. 1. In the two-sided block Jacobi

V V

V

VV

V6

5 4

3

21

Figure 1: Maximum-weight perfect matching on a complete graph for r = 6. The chosen edges
are dashed.

method, each edge is weighted by the non-negative weight ‖Aij‖2F + ‖Aji‖2F, where ‖Auv‖2F is
the square of the Frobenius norm of matrix block Auv. Recall that the convergence of the two-
sided block Jacobi algorithm is based on the convergence of the off-diagonal Frobenius norm of
matrix A to zero. Hence, the purpose is to choose, at the beginning of each parallel iteration
step, those block pairs (Aij, Aji) that would decrease (after their zeroing) the off-diagonal norm
as much as possible. Moreover, we need r/2 disjunct pairs, one per processor. This task is

7

equivalent to finding a maximum-weight perfect matching on a complete graph (see Fig. 1). It
is known that there exist the optimal polynomial algorithm for this task and we have designed
the suboptimal polynomial algorithm in [4].

Our experiments with the two-sided block Jacobi SVD algorithm have shown that the ordering
algorithm is very efficient, and although it runs at the beginning of each parallel iteration step,
it takes only some 5 per cent of the total parallel execution time for matrices of order 104. The
reason of this efficiency lies in the fact that Frobenius norms (or their squares) of individual
matrix blocks can be easily computed locally within processors (since each processor stores
exactly 2 block columns, it can locally compute the square of Frobenius norms for 2r matrix
blocks). Then, these Frobenius norms are centralized in processor P0, sorted in decreasing
order and the maximum-weight perfect matching is found. The result is then broadcast to all
processors, and after assembling chosen pairs of matrix blocks in individual processors, the next
p parallel SVD computations can start. Therefore, from a communication point of view, the
finding of a maximum-perfect matching costs only one MPI ALLGATHER and one MPI BROADCAST.

Unfortunately, the situation is more complicated in case of the one-sided block Jacobi algo-
rithm, which is based on a mutual orthogonalization of two different block columns in one
processor. (Recall that after initialization the columns within each block column Bi are mu-
tually orthogonal and remain so during the whole iteration process.) Now, the principle of
the maximum-weight perfect matching can be easily extended also to the paradigm of mutual
orthogonality of block columns. An ideal case is the mutual orthogonality of all pairs of block
columns. The departure from this ideal case can be measured either by a sum of squares of
cosines of angles between all pairs of columns in two given block columns, or by the maxi-
mum cosine of these angles. Hence, for each pair of block columns (Bi, Bj), we can define the
departure from their mutual orthogonality by

wij =

n/r∑
u,v=1

cos2 ∠(b(i)u , b
(j)
v) or wij = max

1≤u,v≤n/r
{cos2 ∠(b(i)u , b

(j)
v)}, (10)

where b
(k)
t is the t-th column of the matrix block Bk (for simplicity, we have omitted the iteration

index). The number wij is then the weight in the complete graph between vertices i and j. Note
that computation of weights wij for one pair of block columns (Bi, Bj) requires O((n/r)2) scalar
products, each of length n. Then the result of a maximum-perfect matching means to choose
those p pairs of matrix blocks for which the sum of departures from mutual orthogonality is
maximum. This is highly desirable because in orthogonalizing the block columns we prefer to
work precisely with those pairs, which depart a lot from their mutual orthogonality.

But, in contrast to the two-sided block Jacobi method, the weights defined in (10) can not
be updated locally (inside processors). At the end of a parallel iteration step, each processor
contains two mutually orthogonal block columns, so we know which p weights in (10) are zero.
However, the angles between any two columns residing in two different processors could have
changed. To see how much, we have to compute the cosine of angle between them. In other
words, we need to organize the update of cosines and weights in (10) in such a way that each
matrix block column Bi must meet each matrix block column Bj, j 6= i, in some processor,
in which the updated weight wij is computed according to (10). Since there are exactly two
block columns in each processor (each with n/2p columns for the blocking factor r = 2p),
the update of weights can be achieved by organizing the processors into a ring and using the

8

neighbor communication pattern, where each processor sends its the ‘left’ block column to its
left neighbor and receives one block column from its right neighbor. In the second round, the
local ‘right’ block column is sent to the right neighbor and one block column is received from
the left neighbor. Hence, in each of two rounds each processor sends and receives exactly one
block column per one communication start-up. Two rounds are needed to ensure that each
pair of block columns is met in some processor exactly ones. Having p processors, two rounds
can be done using 2(p − 1) sends and receives with respect to each processor. The overall
transferred data volume is n2 double real values, i.e., the complete matrix A. Therefore, the
updating of weights in case of the one-sided block Jacobi method is much more communication-
demanding than is was for the two-sided block Jacobi method. Since this updating is needed
at the beginning of each parallel iteration step, it is of crucial importance to design an efficient
strategy how to minimize the communication complexity of this subtask. Also, the complexity
of computing all scalar products between all columns of all blocks is ≈ 2pn3/4p2 = n3/2p,
which is, for p > 4, even larger that the computational complexity ≈ 10n3/p3 of one iteration
step of the accelerated OSBJA (see the estimate (13) in [22]).

One possibility to decrease the computational and communication complexity would be to
choose randomly only s � n/2p columns from each block column and to send/receive only
this restricted set of columns. This approach decreases the amount of scalar products and the
amount of transferred data, but it does not decrease the number of start-ups needed at the
beginning of each data transfer. Also, the random choice of s columns leads to some sort of
heuristics, and it is not clear if this is better than , e.g., the row cyclic ordering of subproblems.

Can we somehow decrease the communication complexity when looking for the ordering of p
parallel subproblems at the beginning of each iteration step? The solution might be in the
consideration of block columns as the orthogonal bases of certain linear subspaces of dimension
n/(2p) in the original linear subspace Rn and in the description of the geometric position of
such subspaces with respect to the canonical basis of Rn. We will describe our ideas in the next
subsection.

3.2 Mutual position of block columns

After the initialization, the block columns contain mutually orthogonal columns. Suppose that
each processor contains exactly two block columns (this is not substantial for the following
discussion). Moreover, suppose that the columns in each block column are normalized so
that each has the unit Euclidean norm. Each processor then stores two vectors of dimension
n/2p ≡ k. (Recall that these norms are estimations of singular values of matrix A.) Hence,
each column block is the orthonormal basis of the k-dimensional subspace which is spanned by
the column vectors of a given block column.

Now take two block columns X, Y which should be orthogonalized in a given parallel iteration
step. Having p processors, our goal is to choose p pairs of those block columns that are maxi-
mally inclined to each other, i.e., their mutual position differs maximally from the orthogonal
one.

This vague description can be made mathematically correct using the notion of principal angles

9

between two k-dimensional subspaces spanned by two block columns X, Y . Since X and Y are
orthonormal bases of two subspaces with an equal dimension, the cosines of principal angles are
defined as the singular values of the matrix XTY . Let σ1 ≥ σ2 ≥ . . . ≥ σk be k singular values
of the k×k matrix XTY . Then the principal angles θ1 ≤ θ2 ≤ . . . ≤ θk, θi ∈ [0, π/2], 1 ≤ i ≤ k,
are defined as:

θi = arccos(σi), 1 ≤ i ≤ k. (11)

Since X and Y have orthonormal columns, all singular values of XTY are in the interval [0, 1],
so that the relation (11) is well defined.

We are interested in the smallest principal angle θ1, i.e., in the largest cosine (largest singular
value) σ1. When σ1 = 0, then all σi = 0, 2 ≤ i ≤ k, and two block columns X and Y are
perfectly orthogonal; we do not need to orthogonalize them explicitly. On the other hand,
when σ1 ≈ 1, we can not say too much about the values of other cosines (without their explicit
computation), but we know for sure that at least one dimension is so to say ‘common’ for both
subspaces, so that we need to explicitly orthogonalize them, i.e., we choose such a pair for the
parallel ordering. In other words, the weights of the complete graph in Fig. 1 will be maximal
singular value of the matrix XTY for each pair of block columns (X, Y).

However, this approach means that we must explicitly compute the matrix XTY . When two
block columns X and Y are placed in two different processors, we can either compute this
matrix product in parallel (but for each pair of block columns), or store both blocks in one
processor and compute the matrix product locally using the LAPACK library. Afterwards, we
must compute (or at least somehow estimate) the largest singular value to get our weights for
the maximal perfect matching. In both cases we need again too much communication at the
beginning of each parallel iteration step to construct the actual parallel ordering for that step.

Is it possible to reliably estimate σ1 of XTY for a pair (X, Y) of block columns based only
on local information gained by processing the block columns separately? If so, this approach
would solve the communication (and computational) bottleneck at the beginning of each parallel
iteration step.

To estimate the largest singular value σ1 of the k × k matrix XTY , one can use, for example,
the power method applied to the Jordan-Wielandt matrix C,

C ≡
(

0 XTY
Y TX 0

)
.

It is well known that the eigenvalues of the 2k × 2k matrix C are ±σ1,±σ2, . . . ,±σk. Notice
that there are k pairs of eigenvalues with the same absolute value. However, we are interested
neither in estimating the multiplicity of eigenvalues, nor in the approximations of eigenspaces;
we need only an estimate of σ1 > 0. Therefore, we will use the power method in its simplest
form, discarding the estimate of the eigenvector.

The power method requires matrix-vector products of type XTY u and Y TXv where the com-
posed vector (uT , vT)T is of unit length. We do not want to form matrices XTY and Y TX
explicitly (since the column blocks X and Y are in different processors). Instead, the matrix-
vector multiplications can be computed sequentially as XT (Y u) and Y T (Xv) by sending only
two k-dimensional vectors between processors. For example, let the block column X and Y
reside in processor 0 and 1, respectively. Then processor 0 generates (or normalizes) the unit

10

vector (uT , vT)T , computes Xv and sends u and Xv to processor 1. Processor 1 computes
Y u and Y T (Xv) and sends both vectors back to processor 0. Processor 0 finishes the cur-
rent step of the power method by computing XT (Y u), collecting both parts into one vector
w = ((Y T (Xv))T , (XT (Y u))T)T , finding α = max1≤i≤2k |wi| (which is the estimate of σ1), divid-
ing w/α and scaling w to unit length. Hence, each step of the power method requires exchange
of two vectors of length k between two processors that store the required block columns. This
work can be organized in parallel for all pairs of block columns residing in two different pro-
cessors, where it needs to be defined, for each pair of processors, who is the ‘master’ (doing the
job of processors 0 in the above example) and who is the ‘slave’ (doing only two matrix-vector
multiplications as processor 1). The number of steps of the power method can be fixed (de-
pending on the width k of block columns), so that no computation of residuals and no testing
of the convergence criterion will be needed.

At the end, all estimates of all σ1’s for all pairs of different blocks will be sent to processor
0. These estimates are the weights for the complete graph, and processor 0 will compute the
maximum perfect matching on this graph, which will give those pairs of block columns that
may be mostly inclined to each other (i.e., their minimal angle is close to 0, but we cannot say
anything about other angles). On the other hand, when σ1 of is close to 0, we know for sure
that all principal angles are close to π/2 and it is not efficient to orthogonalize those two block
columns in the next parallel iteration step. In this sense, the weights based on estimates of σ1

lead to the heuristics that should be tested in numerical experiments. Finally, processor 0 will
broadcast the computed ordering to all processors, appropriate column blocks will be collected
in processors and the SVD computations of the next parallel iteration step can begin.

Another approach to this problem is based on description of each block column with respect to
the canonical basis of Rn. The local information about an n×k block column X is the geometric
position of the k-dimensional vector subspace it defines in the whole space Rn. This position
can be described by means of n angles between span(X) and canonical vectors ei, 1 ≤ i ≤ n.
(Recall that the canonical vector ei in Rn has dimension n, its ith component is 1 and all other
components are 0.) Since X has k orthonormal columns, the orthogonal projection PX on the
subspace span(X) is defined by the n × n idempotent matrix PX = XXT . The image of ei
under this projection is

PXei = X(XT ei) = XX(i, :)T ,

where X(i, :) is the ith row of X. Then the cosine αi of the acute angle ∠(ei, X) between ei
and span(X) is defined by

αi ≡ cos ∠(ei, X) = ‖PXei‖ = ‖(X(i, :)‖. (12)

Thus, to compute all αi, 1 ≤ i ≤ n, we need to compute all n Euclidean row norms of the
block column X, and this can be done locally in a processor storing X. Since each row is of
dimension k, the computational complexity is O(nk2), which is low for k � n.

Hence, the position of each column block in Rn is defined by the n-tuple (α1, α2, . . . , αn) that
describes its position with respect to the canonical basis [e1, e2, . . . , en]. This information can
be computed locally in each processor for all block columns it stores. Taking two such n-tuples,
say, {αi} and {βi}, for two different block columns X and Y stored in two different processors,
can we get an estimate of some principal angle between them?

11

We can use a well-known relationship between the largest principal angle θn and the spectral
norm of the difference of orthogonal projectors PX and PY :

sin θn = ‖PX − PY ‖.

Now we can bound ‖PX − PY ‖ from below using the definition of the spectral norm and (12):

‖PX − PY ‖ = max
‖z‖=1

‖PXz − PY z‖ ≥ max
1≤i≤n

{‖PXei − PY ei‖}

≥ max
1≤i≤n

{|‖PXei‖ − ‖PY ei‖|} = max
1≤i≤n

{|αi − βi|}.

Consequently, we obtain the lower bound for sin θn using only local information from block
columns X and Y in the form of two n-tuples {αi} and {βi}:

sin θn ≥ max
1≤i≤n

{|αi − βi|}. (13)

At the beginning of a parallel iteration step, each processor computes the n-tuples {αi} for all
block columns it stores and sends them to processor 0. For all different pairs of block columns
(X, Y), processor 0 computes the lower bound on the right-hand side of (13), which is the
weight in the complete graph with r nodes (` is the blocking factor, usually r = 2p, where p
is the number of processors). Then processor 0 computes the minimal weight perfect matching
that will give r/2 = p pairs of block columns that can be minimally inclined to each other (their
maximal principal angle can be close to zero, so that all other angles could be close to zero).
Thus, the ordering of subproblems is defined in processor 0 that is broadcast to all processors
and the computation of p parallel EVDs can start.

Notice that we can speak only about the possibility of minimal inclination when the weight is
small, because the weights are only lower bounds for sin θn. When the weight between block
columns X and Y is large, say, 1− δ where 0 < δ � 1, then we know that the maximum angle
is near π/2 (but we have no information about smaller principal angles). However, when the
weight is small, the maximum principal angle θ1 can be small (but it can be also large). In
other words, the large weights defined by the right-hand side of relation (13) allow us to find
those pairs of column blocks that are nearly orthogonal with respect to the largest principal
angle, and we will not orthogonalize them in a given parallel iteration step. But the small
weights carry the risk that respective pairs of column blocks may be orthogonal to each other
and we choose them for our parallel ordering. Now, this risk is very small at the beginning
of the iterative process, because it can be expected that the mutual position of pairs of block
columns will be random and only very seldom will be two blocks exactly orthogonal to each
other. As the iterative computation proceeds, any two column blocks will be more and more
orthogonal to each other with respect to all principal angles.

It is clear from above, that because we work only with the lower estimate for the largest
principal angle θn, the proposed approach can be regarded as a heuristics. It should be tested
by numerical experiments and compared with the (row or column) cyclic ordering.

3.3 Computations with the block-column data layout

The second preprocessing consists of the initialization that computes a spectral decomposition
of p diagonal blocks of the cross-product matrix Â(0) = LTL (when using two factorizations in

12

the preprocessing); see those 5 steps at the beginning of section 2.1.1. This means that each
processor that stores two block columns i and j will compute serially exactly two cross-products
Â

(0)
ll = LTl Ll, l = i, j and then, again serially, two spectral decompositions of two symmetric,

positive definite matrices Â
(0)
ll . Recall that we need to preserve a high relative accuracy, so that

these spectral decompositions can be computed, e.g., by the Kogbetliantz method.

When two block columns are assigned to each processor, all computations in the modified
algorithm are performed in parallel for p = r/2 subtasks. No inter-processor communication of
any kind is needed during this computation, because all computations and updates are local.
Recall that assigning a pivot pair (i, j) to a processor actually means (in the worst case) the
transfer of matrix blocks Bi, Bj, Qii, Qjj and vectors γi and γj to that processor.

In contrast to local computations in the modified algorithm, the implementation of the stopping
criterion (see [21]) requires some sort of global communication between processors. The update
of ω2 and ν (see [21]) requires the local computation of the squared Frobenius norm of each
nullified matrix block in each processor, then the global sum of local squares and, finally,
the broadcast of an updated value to all processors. This can be implemented using routines
MPI ALLREDUCE and MPI ALLGATHER from the ScaLAPACK. The computation of α is even more
complex, because one needs to scale the columns and rows of B by the values stored in vector
γ. This means that all elements of vector γ must be known to all processors (the routine
MPI ALLGATHERV), and, after local scaling, the Frobenius norm of a whole scaled matrix must
be computed from the local Frobenius norms (routines MPI ALLREDUCE and MPI ALLGATHER).

4 Conclusions

The main contribution of this report is the design of two variants of dynamic ordering for the
one-sided parallel block-Jacobi SVD algorithm using only local information from distributed
block columns at the beginning of each parallel iteration step. The first method is based on
estimating the cosine of the smallest principal angle by the power method (implemented in
parallel), while the second one uses the local information for estimating the sine of the largest
principal angle. Both approaches can be regarded as heuristics, but the first approach seems to
give more accurate estimates. However, only numerical experiments will show their efficiency
as compared to some classic parallel block orderings (e.g., block row/column cyclic).

References

[1] A. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchov and
D. Sorensen, LAPACK Users’ Guide, Second ed., SIAM, Philadelphia, 1999.

[2] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory
systems: I. Hypercubes and rings, Parallel Algorithms Appl. 13 (1999) 265-287.

13

[3] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory
systems: II. Meshes, Parallel Algorithms Appl. 14 (1999) 37-56.

[4] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi
SVD algorithm, Parallel Computing 28 (2002) 243-262.

[5] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix
Anal. Appl. 13 (1992) 1204-1245.

[6] Z. Drmač, Implementation of Jacobi rotations for accurate singular value computation in
floating-point arithmetic, SIAM J. Sci. Comp. 18 (1997) 1200-1222.

[7] Z. Drmač, A posteriori computation of the singular vectors in a preconditioned Jacobi
SVD algorithm, IMA J. Numer. Anal. 19 (1999) 191-213.

[8] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: I., LAPACK
Working Note 169, August 2005.

[9] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm: II., LAPACK
Working Note 170, August 2005.

[10] V. Hari and J. Matejaš, Accuracy of the Kogbetliantz method, preprint, University of
Zagreb, 2005.

[11] V. Hari and V. Zadelj-Martič, Parallelizing Kogbetliantz method, accepted for pub-
lication at Int. Conf. on Numerical Analysis and Scientific Computation, Rhodos, Greece,
September 2006.

[12] V. Hari, Accelerating the SVD block-Jacobi method, Computing 75 (2005) 27-53.

[13] V. Hari, Convergence of a block-oriented quasi-cyclic Jacobi method, accepted for publi-
cation in SIAM J. Matrix Anal. Appl.

[14] E. Kogbetliantz, Diagonalization of general complex matrices as a new method for
solution of linear equations, Proc. Intern. Congr. Math. Amsterdam 2 (1954) 356-357.

[15] E. Kogbetliantz, Solutions of linear equations by diagonalization of coefficient matrices,
Quart. Appl. Math. 13 (1955) 123-132.

[16] F. T. Luk and H. Park, On parallel Jacobi orderings, SIAM J. Sci. Statist. Comput.
10 (1989) 18-26.

[17] F. T. Luk and H. Park, A proof of convergence for two parallel Jacobi SVD algorithms,
IEEE Trans. Comp. 38 (1989) 806-811.

[18] W. Mascarenhas, On the convergence of the Jacobi method, poster presentation, 4th
SIAM Conference on Parallel Processing for Scientific Computing, Chicago, USA, Decem-
ber 1989.

[19] J. Matejaš, Convergence of scaled iterates by Jacobi method, Lin. Alg. Appl. 349 (2002)
17-53.

14

[20] G. Okša and M. Vajteršic, Efficient preprocessing in the parallel block-Jacobi SVD
algorithm, Parallel Computing 31 (2005) 166-176.

[21] G. Okša and M. Vajteršic, Parallel one-sided block Jacobi SVD algorithm: I. Analysis
and design, Technical report, Salzburg University, Salzburg, Austria, June 2007.

[22] G. Okša and M. Vajteršic, Parallel one-sided block Jacobi SVD algorithm: II. Imple-
mentation, Technical report, Salzburg University, Salzburg, Austria, December 2007.

[23] P. M. de Rijk, A one-sided Jacobi algorithm for computing the singular value decompo-
sition on a vector computer, SIAM J. Sci. Stat. Comp. 10 (1989) 359-371.

[24] K. Veselić and V. Hari, A note on a one-sided Jacobi algorithm, Numer. Math. 56
(1989) 627-633.

15

