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Parallel One-Sided Block Jacobi SVD
Algorithm: II. Implementation

Gabriel Okša∗ and Marián Vajteršic†

Abstract. This technical report is devoted to the description of implementation details of
the accelerated parallel one-sided block Jacobi SVD algorithm, whose analysis and design was
described in [21]. We provide discuss a suitable data layout for a parallel implementation of
the algorithm on a parallel computer with distributed memory. This discussion is complicated
by the fact that different computational phases can have different optimal data layouts. We
discuss in some detail the optimal data layout for the matrix pre-processing (QR factorization
with column pivoting), and then our block-column-oriented data layout for the SVD computa-
tion. It turns out that the transition between both layouts is needed in the form of an (optimal)
communication algorithm whose main features are described in detail. Another important issue
is a communication-efficient adaptation of the dynamic ordering from the two-sided block Jacobi
algorithm to the one-sided one.

1 Introduction

This report is the second one in the on-going project for the analysis, design and implementation
of the parallel one-sided block Jacobi algorithm (OSBJA) for the computation of the singular
value decomposition (SVD) of a general matrix A ∈ Rm×n on a parallel architecture. The first
part [21] was devoted to the analysis and design using some new ideas for accelerating the
(slow) Jacobi method and for enhancing its efficiency when working with matrix blocks and
special matrix recursion.

This report is devoted to a description of some implementation details when considering the
target architecture as a parallel machine with distributed memory (e.g., a cluster of personal
computers). The emphasis is given to the optimal data layout for all computational phases. In
our experience with the parallel two-sided block Jacobi SVD algorithm [20], the block-column-
oriented data layout is not well suited for the pre-processing step, which consists of the QR
decomposition with column pivoting. We analyse the reason why it is so and suggest another
data layout - so called block-cyclic distribution of matrix blocks that is closely connected to a
logical mesh of processors. However, for the SVD computation, the block-column-oriented data
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layout is preferable, because the OBSJA is based on a mutual orthogonalization of columns
between two different block columns. This means that an (optimal) communication algorithm
is needed after the pre-processing step that will change the data distribution using a minimum
amount of iter-processor communication. We discuss main features of such an algorithm.

Once the data layout is block-column-oriented, one needs to implement some block ordering
strategy for mutual orthogonalization of pairs of block columns in such a way that all processors
will be busy in each parallel iteration step. We discuss a possible generalization of our dynamic
ordering (which has been designed for the two-sided block Jacobi method, see [4]) to the one-
sided case. It turns out that this generalization can be done in two ways; however, the problem
is the communication complexity of both generalizations, which is much higher than in the
two-sided block Jacobi method.

This report should be read in close relationship with the first part in [21]. The first part is
referred quite extensively; in particular, we do not repeat many details regarding the OBSJA
and ideas leading to its acceleration and higher efficiency. The notation from [21] is also used
throughout the whole report.

In section 2 we shortly repeat the main ideas about the accelerated OSBJA from [21]. Section
3 describes in details our parallelization strategy. Much attention is devoted to the design of
an efficient communication algorithm for changing the data layout from the block-cyclic one to
the block-column one, and to the extension of the dynamic ordering from the two-sided block
Jacobi algorithm to the one-sided one.

2 Accelerated One-Sided Block-Jacobi Algorithm

The OSBJA is suited for the SVD computation of a general complex matrix A of order m ×
n, m ≥ n. However, we will restrict ourselves to real matrices with obvious modifications in
the complex case.

We start with the block-column partitioning of A in the form

A = [A1, A2, . . . , Ar],

where the width of Ai is ni, p ≤ i ≤ r, so that n1 + n2 + · · ·+ nr = n. The most natural choice
is n1 = n2 = · · · = nr−1 = n0, so that n = (r − 1)n0 + nr, nr ≤ n0. Here n0 can be chosen
according to the available cache memory, which is up to 10 times faster than the main memory;
this connection will be clear later on.

The OSBJA can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)U (k), V (k+1) = V (k)U (k), k ≥ 0. (1)
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Here the n× n orthogonal matrix U (k) is the so-called block rotation of the form

U (k) =


I

U
(k)
ii U

(k)
ij

I

U
(k)
ji U

(k)
jj

I

 , (2)

where the unidentified matrix blocks are zero. The purpose of matrix multiplication A(k)U (k) in
(1) is to mutually orthogonalize the columns between column-blocks i and j of A(k). The matrix

blocks U
(k)
ii and U

(k)
jj are square of order ni and nj, respectively, while the first, middle and last

identity matrix is of order
∑i−1

s=1 ns,
∑j−1

s=i+1 ns and
∑r

s=j+1 ns, respectively. The orthogonal
matrix

Û (k) =

(
U

(k)
ii U

(k)
ij

U
(k)
ji U

(k)
jj

)
(3)

of order ni + nj is called the pivot submatrix of U (k) at step k. During the iterative process
(1), two index functions are defined: i = i(k), j = j(k) whereby 1 ≤ i < j ≤ r. At each
step k of the OSBJA, the pivot pair (i, j) is chosen according to a given pivot strategy that
can be identified with a function F : {0, 1, . . .} → Pr = {(l,m) : 1 ≤ l < m ≤ r}. If
O = {(l1, m1), (l2, m2), . . . , (lN(r), mN(r))} is some ordering of Pr with N(r) = r (r− 1)/2, then
the cyclic strategy is defined by:

If k ≡ r − 1 mod N(r) then (i(k), j(k)) = (ls, ms) for 1 ≤ s ≤ N(r).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where the
orderings are given row-wise and column-wise, respectively, with regard to the upper triangle
of A. The first N(r) iterations constitute the first sweep of the OSBJA. When the first sweep
is completed, the pivot pairs (i, j) are repeated during the second sweep, and so on, up to the
convergence of the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V (k) is iteratively computed by
orthogonal updates. If the process ends at iteration t, say, then A(t) has mutually highly
orthogonal columns. Their norms are the singular values of A, and the normalized columns
(with unit 2-norm) constitute the matrix of left singular vectors.

One (serial) step of the OSBJA can be described in three parts:

1. For the given pivot pair (i, j), the symmetric, positive semidefinite cross-product matrix
is computed:

Â
(k)
ij = [A

(k)
i A

(k)
j ]T [A

(k)
i A

(k)
j ] =

(
A

(k)T
i A

(k)
i A

(k)T
i A

(k)
j

A
(k)T
j A

(k)
i A

(k)T
j A

(k)
j .

)
(4)

2. Â
(k)
ij is diagonalized, i.e., the eigenvalue decomposition of Â

(k)
ij is computed:

Û (k)T Â
(k)
ij Û (k) = Λ̂

(k)
ij (5)
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and the eigenvector matrix Û (k) is partitioned according to (3). The matrix Û (k) defines
the orthogonal transformation U (k) in (2) and (1), which is then applied to A(k) and
V (k). Notice that the explicit diagonalization of Â(k) is equivalent to the implicit mutual
orthogonalization of columns between column blocks i and j in A(k), i.e., in (A

(k)
i , A

(k)
j ).

3. Finally, an updating of two block-columns of A(k) and V (k) is required.

2.1 Matrix preprocessing

It is well known that the one- or two-sided Jacobi method can be efficiently preprocessed by
the QR factorization of A (usually with the complete column pivoting) followed by the LQ
factorization of R-factor; see [7, 8, 9, 20]. The Jacobi method is then applied to the final L-
factor. This leads to a strong reduction of the total number of Jacobi steps, including a strong
decrease in the number of orthogonal updates of the matrix V (k) of right singular vectors in
(1).

The second preprocessing step initializes certain three matrices (see details in 2.1.1), which are
then iterated during the Jacobi process. Here is the connection with the implementation of
the fast scaled block-orthogonal transformations mentioned above. It also makes all columns
within each column block mutually orthogonal, whereas this property remains invariant during
the whole computation, so that diagonal blocks of the cross-product matrix Â

(k)
ij in (4) are

themselves diagonal. Consequently, at step k, the the columns need to be orthogonalized only
between two block columns A

(k)
i and A

(k)
j (not within them).

Mathematical details regarding both preprocessing steps can be found in [21].

2.1.1 Initialization

Recall that once the diagonalization in (5) is performed over all block columns of A, then the

diagonal blocks in each cross-product matrix Â
(k)
ij are themselves diagonal. Hence, it is not

necessary to compute their elements except of the diagonal ones. This computation can be
arranged into recursion. Let

Γ(k) = diag(Γ
(k)
1 , . . . , Γ(k)

r ) = diag(Â(k)) with Â(k) = A(k)T A(k),

where Γ
(k)
1 , . . . , Γ

(k)
r is the partition inherited from the block-column partition of A(k). At step

k, the diagonal of Â
(k)
ij , which is equal to diag(Γ

(k)
i , Γ

(k)
j ), is transformed and written to Λ̂

(k)
ij .

Hence, Λ̂
(k)
ij = diag(Γ

(k+1)
i , Γ

(k+1)
j ), so that Γ(k) (represented in a computer by the vector γ(k))

can be updated very simply (once we have the eigendecomposition of the cross-product matrix
in (5) and in parallel to updating A(k). To initialize the computation, we apply the following
algorithm after the QR and LQ decompositions to the L-factor L = [L1, L2, . . . , Lr]:

1. for i = 1 : r
2. Â

(0)
ii = LT

i Li;

3. Â
(0)
ii = Q

(0)
ii Γ

(0)
i Q

(0)T
ii ; (spectral decomposition)
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4. (A
(0)
i = LiQ

(0)
ii ); (not performed, just an illustration of the connection)

5. end;

Thus the above algorithm initializes three important matrices:

B(0) = [B
(0)
1 , B

(0)
2 , . . . , B(0)

r ] = [L1, L2, . . . , Lr],

Q(0) = diag(Q
(0)
11 , Q

(0)
22 , . . . , Q(0)

rr ),

Γ(0) = diag(Γ
(0)
1 , Γ

(0)
2 , . . . , Γ(0)

r ).

2.2 Fast scaled block-orthogonal transformations

Now we need to find recursions for the computation of the matrix triplet B(k), Q(k) and Γ(k)

at step k of the Jacobi process. The main idea here is to use small matrices of order ni, nj

or ni × nj for all updates (computed as matrix multiplications), so that these updates can be
done in the fast cache memory; see [12].

Let us assume that at step k we have B(k), Q(k) and Γ(k) fulfilling. Then, according to (4), we

need to compute the cross-product matrix Â
(k)
ij for the given pivot pair (i, j):

Â
(k)
ij =

(
Q

(k)
ii

Q
(k)
jj

)T (
B

(k)T
i B

(k)
i B

(k)T
i B

(k)
j

B
(k)T
j B

(k)
i B

(k)T
j B

(k)
j

) (
Q

(k)
ii

Q
(k)
jj

)

=

(
Γ

(k)
i Ã

(k)
ij

Ã
(k)T
ij Γ

(k)
j

)
, where Ã

(k)
ij ≡ Q

(k)T
ii (B

(k)T
i B

(k)
j )Q

(k)
jj . (6)

Next, we compute the eigendecomposition of Â
(k)
ij according to (5). Having the orthogonal

eigenvector matrix Û (k), Hari [12] proposed to compute its cosine-sine (CS) decomposition

Û (k) =

(
V

(k)
ii

V
(k)
jj

) (
C

(k)
ii −S

(k)
ij

S
(k)
ji C

(k)
jj

) (
W

(k)
ii

W
(k)
jj

)T

≡ V̂ (k) T̂ (k) Ŵ (k)T , (7)

where the matrix blocks V
(k)
ii , C

(k)
ii , W

(k)
ii (V

(k)
jj , C

(k)
jj , W

(k)
jj ) are square of order ni (nj), and

T̂ (k) =

(
C

(k)
ii −S

(k)
ij

S
(k)
ji C

(k)
jj

)
=



Ini−nj
0 0

0 C(k) −S(k)

0 S(k) C(k)

 , if ni ≥ nj,

C(k) 0 −S(k)

0 Inj−ni
0

S(k) 0 C(k)

 , if nj ≥ ni,

(8)

and

C(k) = diag(c
(k)
1 , . . . , c(k)

νij
), S(k) = diag(s

(k)
1 , . . . , s(k)

νij
),

c
(k)
1 ≥ c

(k)
2 ≥ · · · ≥ c(k)

νij
≥ 0, 0 ≤ s

(k)
1 ≤ s

(k)
2 ≤ · · · ≤ s(k)

νij
,

(c(k)
r )2 + (s(k)

r )2 = 1, 1 ≤ r ≤ νij, νij = min{ni, nj}.
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Next step in the OSBJA is the multiplication of the pivot block-column matrix (A
(k)
i , A

(k)
j ) by

Ûk from the left (see (1)) to get the new iteration (A
(k+1)
i , A

(k+1)
j ). This can be written in the

factored form:

(B
(k+1)
i Q

(k+1)
ii , B

(k+1)
j Q

(k+1)
jj ) = (B

(k)
i Q

(k)
ii , B

(k)
j Q

(k)
jj ) V̂ (k) T̂ (k) Ŵ (k)T

= (B
(k)
i (Q

(k)
ii V

(k)
ii ), B

(k)
j (Q

(k)
jj V

(k)
jj )) T̂ (k) diag(W

(k)
ii , W

(k)
jj )T ,

which leads immediately to a recursion for matrices B and Q:

(B
(k+1)
i , B

(k+1)
j ) = (B

(k)
i (Q

(k)
ii V

(k)
ii ), B

(k)
j (Q

(k)
jj V

(k)
jj ) T̂ (k), (9)

Q
(k+1)
ii = W

(k)T
ii , Q

(k+1)
jj = W

(k)T
jj .

(Recall that the new Γ(k+1) is obtained simply by copying ni + nj eigenvalues from Λ̂
(k)
ij to

appropriate places of Γ(k).) It is immediately seen from (9) that the original number of flops
required for updating in (1) is significantly reduced using the new recursion. First, in the

computation of (Q
(k)
ii V

(k)
ii ) and (Q

(k)
jj V

(k)
jj ), only the small dimensions ni and nj are involved.

Second, once these two matrix multiplications are computed, the update of Bi and Bj requires
the matrix multiplication of the form XY , where X is of order n×ni or n×nj, and Y is square

of order ni or nj. The final update of Bi and Bj requires the matrix multiplication by T̂ (k) from

the left, which is equivalent, due to the special structure of T̂ (k), to simple rotations of columns
of length n. Notice that we have eliminated the dimension m � n, which is the main source
of inefficient updating of original A in (1). The price paid is the recursion of three matrices,
where two of them are updated by simple copying of elements. The main idea in this auxiliary
recursion exploits the fact that the dimensions of blocks can be chosen so that all computations
in this phase can be done in fast (cache) memory.

3 Parallel Implementation

Next we describe main ideas behind the parallelization of one-sided block-Jacobi SVD method.
We are interested in the parallelization of the above algorithm assuming the distributed paradigm
of parallel processing. In particular, we would like to implement the OSBJA using the Message
Passing Interface (MPI) and BLACS libraries for communication, and the ScaLAPACK library
for a distributed computation. The serial computation inside each processor can be performed
using the standard LAPACK library.

We start with discussion of data layout for the QR decomposition and continue with changing
this data layout for the SVD computation. Then we describe possible extensions of our dynamic
block ordering from the two-sided block Jacobi method to the one-sided one. Afterwards, we
shortly discuss a possible parallel implementation of all phases of the algorithm.

3.1 Data layout for the parallel QR decomposition

Numerical experiments with the two-sided block Jacobi SVD algorithm with preprocessing in
[20] have shown that the block-column data distribution (see Fig. 3) is not well suited for the
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preprocessing step, which consists of the QR decomposition of an original matrix with column
pivoting followed by an optional QR decomposition of the R-factor. We reproduce here Fig. 1,
from which it is clear that the time complexity of the preprocessing step dominates is at least
30 per cent, but for matrices of order 6000 this number increases to 75 per cent! Taking
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Figure 1: Portion of the total parallel execution time for the pre-processing (the QR decom-
position), collective communication and post-processing (matrix-matrix multiplication) in the
two-sided parallel block Jacobi SVD algorithm. The horizontal axis is the matrix dimension.

into account that the preprocessing step is done only at most twice at the beginning of the
iterative process, its portion of the total parallel execution time is huge and should be somehow
decreased.

The reason of this inefficiency is the implicit “serialization” of the QR decomposition. Although
the data is distributed in a block-column manner among processors, the ScaLAPACK procedure
PDGEQRF with column pivoting proceeds columnwise from the first column (the leftmost one)
to the last column (the rightmost one). After a possible exchange of columns by column
pivoting, the actual column is reduced to the triangular form and only after that next column
is processed (again after a possible column exchange by column pivoting). Hence, when a
matrix is distributed by block columns among processors, then the column reduction is made
in one processor (which is efficient), but after finishing the reduction of all columns residing in
a given processor that processor becomes idle for the rest of the QR decomposition (which is
highly inefficient).

It is better to keep all processors busy during the whole QR decomposition regardless to which
column is actually processed. This can be achieved by the block-cyclic matrix distribution
among processors; one example of it is depicted in Fig. 2. The main idea is to keep busy as
many processors as possible during the triangular reduction of any matrix column. There are
two parameters which control the efficiency of the distributed QR decomposition. The first
one is the number of processors p and their arrangement into a logical (rectangular) mesh of
size u × v where p = uv. The second one is the blocking factor r1 and r2 in the row and
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Figure 2: Block-cyclic matrix distribution for the parallel QR decomposition with the square
grid of p =

√
p×√p processors and blocking factor r = 2p. Here p = 9, r = 18 and the logical

square grid of processors is enhanced in the left upper corner of the mesh.

column direction, respectively, so that, for a matrix A of size m × n, the matrix blocks are of
size m/r1 × n/r2. Notice that the block-cyclic data distribution is perfectly balanced (i.e., each
processor contains the same amount of data) if and only if m/r1 and n/r2 are both integers,
and u divides r1 as well as v divides r2.

On Fig. 2, a special configuration of the processor mesh and blocking factor is depicted. The
processor mesh is square of size

√
p×√p (i.e., one has together p processors, and the blocking

factor is the same in both directions: r = r1 = r2 = 2p. The size of the blocking factor
was chosen with respect to the data distribution used for the Jacobi iterations in the SVD
computations (see the next subsection), since each processor will have exactly two block columns
in that computational phase of the algorithm.

So, at the beginning of computation we have an original matrix A distributed in a block-
cyclic fashion. Then the first preprocessing step is needed. We compute the QR factorization
of A with column pivoting (QRFCP) followed by an optional LQ factorization (LQF) of the
R-factor. In particular, the QRFCP and the LQF can be implemented by the ScaLAPACK
routine PDGEQPF and PDGELQF, respectively. Note that also the results of the QRFCP (and
LQF)–i.e., the matrices Q and R–will be distributed in the same block-cyclic fashion than A.
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3.2 Data layout for the parallel SVD computation

After the first preprocessing step, the data layout is changed from the block-cyclic one to
the block-column one (compare Fig. 2 with Fig. 3). All subsequent computations (i.e., the

P0 P2 P3 P5 P6 P8P1 P2 P0 P1 P4 P5 P4 P7 P8 P7P6P3

Figure 3: Block-column matrix distribution for the parallel SVD computation with p = 1 × p
processors and blocking factor r = 2p, here with p = 9, r = 18. Notice that block columns are
not assigned consecutively to processors; this special permutation minimizes the communication
complexity when going from the block-cyclic to block-column data layout. Each processor
contains two block columns.

initialization of a three-matrix recursion as well as the Jacobi iteration process) will be done
with this new data layout, which has proven to be very efficient in our experiments with the
two-sided block Jacobi method; see a discussion of numerical results in [2, 3, 4, 20].

To achieve the change of data distribution, a special communication algorithm is needed which
will change the data layout. Notice that this ‘data re-configuration step’ is needed only once
in the whole computation, because the parallel QR decomposition is never repeated inside
the Jacobi iterations. Nevertheless, to achieve a good performance (measured by the total
parallel execution time) and a good scalability (measured by the dependence of the total parallel
execution time on the problem’s size), a communication algorithm should be optimal in the
sense of minimizing the amount of serialized communication steps and transferred data.

This special communication algorithm has not been designed yet in all details. However, some
observations help to guess its main features for square grids of

√
p×√p processors that cover
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completely the partition of matrix A:

1. Starting with the block-cyclic distribution (Fig. 2), notice that any fixed block column is
distributed only among

√
p processors.

2. Any two block columns exactly
√

p apart are distributed among the same processors.

3. Hence, using both properties mentioned above, it would not be efficient to build up
the block-column partition for the SVD computation by assigning the block columns to
processors consecutively (i.e., two first block columns for processor P0, next two block
columns for processor P1, etc.). It is easy to see that such a consecutive assignment means
that any given processor Pj has to communicate with either 2

√
p−1 other processors (in

the case when Pj appears in one of those two consecutive block columns assigned to it),
or 2

√
p other processors have to send their data to Pj (when Pj does not appear in any

of those two consecutive block columns assigned to it). Both cases can be demonstrated
on Fig. 2. For example, let first two block columns be assigned to processor P0 and next
two block columns to processor P1. Since P0 appears in block column 1 but it does not
appear in block column 2, it has to communicate with 2

√
p− 1 other processors–namely,

P3, P6, P1, P4 and P7. But processor P1 appears neither in the third nor in the fourth
block column, so that all 2

√
p processors–namely, P0, P2, P3, P5, P6 and P8–must send

their data to P1.

4. The difference between above two cases is not only in the number of communicated
processors (this number differs only by one), but also in the amount of transferred matrix
blocks. In the first case, exactly 2

√
p matrix blocks of R and Q each are already assigned

to the target processor, so that only 4p − 2
√

p = 2
√

p(2
√

p − 1) matrix blocks of R and
Q each have to be transferred from other processors. In the second case, all 4p matrix
blocks have to be transferred. When p is large, the first approach can be much more
efficient than the second one.

5. However, there is another way how to achieve even less communication complexity. Since,
as mentioned above, any two block columns exactly

√
p apart are distributed among the

same processors, we can assign to a given processor Pj exactly one pair of such block
columns. Thus using Fig. 3, processor P0 will contain block columns (1, 4), processor
P1 block columns (2, 5), processor P2 block columns (3, 6), processor P3 block columns
(7, 10), processor P4 block columns (8, 11), processor P5 block columns (9, 12), processor
P6 block columns (13, 16), processor P7 block columns (14, 17) and processor P8 block
columns (15, 18). In general, for the square grid of

√
p × √

p processors numbered from
left to right and from top to bottom by 0, 1, · · · , p−1, and for the blocking factor r = 2p,
processor Pj with index j = k

√
p + `, 0 ≤ k ≤ √

p − 1, 0 ≤ ` ≤ √
p − 1, will contain

block columns (2k
√

p + ` + 1, 2(k + 1)
√

p + ` + 1). Hence, after reshaping the data layout
from the block-cyclic one to the block-column one, the Jacobi process will start with the
specially permuted matrices Q and R (L). But the amount of communication is further
decreased, because each processor will have exactly 4

√
p matrix blocks of R and Q each

in place, so that only 4
√

p(
√

p − 1) matrix blocks of R and Q each have to be received
from other processors. Moreover, each processor has to communicate only with

√
p − 1

other processors, which is halved in comparison with both cases mentioned above.

10



It is easy to see that for a square grid of p processors covering completely the block partition
in a perfectly balanced manner, the communication complexity of the specially permuted case
mentioned as the last possibility above is optimal (minimal). A (small) disadvantage is that
we will start the Jacobi iterations with block-column permuted matrices Q and R (the Jacobi
process needs only the matrix R; the matrix Q is needed in the post-processing). However,
during the Jacobi iterations, the parallel block ordering itself causes permutations of block
columns, and the final assembling of matrices has to be done according to a final permutation
describing, say, a decreasing sequence of singular values. Hence, the first permutation of block
columns made during a transition from the block-cyclic to block-column data layout represents
no difficulty.

3.3 Dynamic ordering in the one-sided algorithm

At the beginning of each parallel iteration step it is necessary to choose p = r/2 pivot pairs
(i, j) that define, for p processors, p subtasks that can be computed in parallel. This means to
assign one pivot pair per one processor, and to move (at most) two block columns with block
indices equal to the pivot pair to that processor. In other words, we need to design a proper
parallel block ordering.

In the past, the parallel orderings were designed mostly for the scalar Jacobi method and
perhaps the best discussion is provided in [16]. In those days,some 20 years ago, the empha-
sis was given to the requirement that the processors should exchange their elements on the
nearest-neighbor basis, and the amount of communicated data should be minimized. Today,
working with modern parallel architectures, the requirement of the nearest neighbor commu-
nication is not so important, whereas it is still useful to keep the amount of exchanged data
at minimum due to the start-up time and transfer time per one double variable needed for the
synchronous/asynchronous data transfer, which can be several orders of magnitude larger than
that for computation.

Luk and Park [16] analyzed the caterpillar-track and caterpillar-tractor orderings, odd-even
ordering, round-robin ordering. They showed that they are equivalent for n odd or n even (n is
the matrix order). However, the main disadvantage of these parallel orderings (with exception
of the round-robin ordering) is the low exploitation of the computational power: only at each
second stage there are n/2 parallel rotations, which ‘cover’ all n/2 processors (for simplicity,
we take here n even). The round-robin parallel ordering is optimal: for n even, each stage
consists of exactly n/2 parallel rotations, which can be implemented exactly on n/2 processors.
Unfortunately, the convergence of the Jacobi method with the parallel round-robin ordering is
not guaranteed for n even. As was shown in [17], there exists a matrix of even order (albeit
with a very special structure), for which, when applying the one-sided Jacobi SVD algorithm
with the round-robin ordering, its off-diagonal norm does not converge to zero (it stagnates).

All above mentioned parallel scalar orderings can be easily and directly extended to the block
case. Recall that our blocking factor r = 2p is even (p is the number of processors). With
respect to the convergence of parallel block-Jacobi SVD algorithms, the actual situation can
be described as ‘terra incognita’. We know only one paper [13], which proves the global con-
vergence of a serial block-oriented quasi-cyclic Jacobi method for symmetric matrices. To our
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best knowledge, there are no global convergence results for any parallel block-Jacobi method.
Therefore, we should try the block version of the most-efficient scalar parallel ordering—namely,
the round-robin ordering and conduct extensive numerical experiments. Alternatively, we could
try to design a communication-efficient version of the dynamic ordering [4].

The dynamic ordering is based on a complete weighted graph with r = 2p vertices–hence the
number of vertices is equal to the blocking factor; see Fig. 4. In the two-sided block Jacobi

V V

V

VV

V6

5 4

3

21

Figure 4: Maximum-weight perfect matching on a complete graph for r = 6. The chosen edges
are dashed.

method, each edge is weighted by the non-negative weight ‖Aij‖2
F + ‖Aji‖2

F, where ‖Auv‖2
F is

the square of the Frobenius norm of matrix block Auv. Recall that the convergence of the two-
sided block Jacobi algorithm is based on the convergence of the off-diagonal Frobenius norm of
matrix A to zero. Hence, the purpose is to choose, at the beginning of each parallel iteration
step, those block pairs (Aij, Aji) that would decrease (after their zeroing) the off-diagonal norm
as much as possible. Moreover, we need r/2 disjunct pairs, one per processor. This task is
equivalent to finding a maximum-weight perfect matching on a complete graph (see Fig. 4). It
is known that there exist the optimal polynomial algorithm for this task and we have designed
the suboptimal polynomial algorithm in [4].

Our experiments with the two-sided block Jacobi SVD algorithm have shown that the ordering
algorithm is very efficient, and although it runs at the beginning of each parallel iteration step,
it takes only some 5 per cent of the total parallel execution time for matrices of order 104. The
reason of this efficiency lies in the fact that Frobenius norms (or their squares) of individual
matrix blocks can be easily computed locally within processors (since each processor stores
exactly 2 block columns, it can locally compute the square of Forbenius norms for 2r matrix
blocks). Then, these Frobenius norms are centralized in processor P0, sorted in decreasing
order and the maximum-weight perfect matching is found. The result is then broadcast to all
processors, and after assembling chosen pairs of matrix blocks in individual processors, the next
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p parallel SVD computations can start. Therefore, from a communication point of view, the
finding of a maximum-perfect matching costs only one MPI ALLGATHER and one MPI BROADCAST.

Unfortunately, the situation is more complicated in case of the one-sided block Jacobi algorithm,
which is based on a mutual orthogonalization of two different block columns in one processor.
(Recall that after initialization the columns within each block column are mutually orthogonal
and remain so during the whole iteration process.) Now, the principle of the maximum-weight
perfect matching can be easily extended also to the paradigm of mutual orthogonality of block
columns. An ideal case is the mutual orthogonality of all pairs of block columns. The departure
from this ideal case can be measured either by a sum of squares of cosines of angles between
all pairs of columns in two given block columns, or by the maximum cosine of these angles.
Hence, for each pair of block columns (Ai, Aj), we can define the departure from their mutual
orthogonality by

wij =

n/r∑
u,v=1

cos2 ∠(a(i)
u , a(j)

v ) or wij = max
1≤u,v≤n/r

{cos2 ∠(a(i)
u , a(j)

v )}, (10)

where a
(k)
t is the t-th column of the matrix block Ak (for simplicity, we have omitted the iteration

index). The number wij is then the weight in the complete graph between vertices i and j. Note
that computation of weights wij for one pair of block columns (Ai, Aj) requires (n/r)2 scalar
products, each of length m. Then the result of a maximum-perfect matching means to choose
those p pairs of matrix blocks for which the sum of departures from mutual orthogonality is
maximum. This is highly desirable because in orthogonalizing the block columns we prefer to
work precisely with those pairs, which depart a lot from their mutual orthogonality.

But, in contrast to the two-sided block Jacobi method, the weights defined in (10) can not
be updated locally (inside processors). At the end of a parallel iteration step, each processor
contains two mutually orthogonal block columns, so we know which p weights in (10) are zero.
However, the angles between any two columns residing in two different processors could have
changed. To see how much, we have to compute the cosine of angle between them. In other
words, we need to organize the update of cosines and weights in (10) in such a way that each
matrix block column Ai must meet each matrix block column Aj, j 6= i, in some processor, in
which the updated weight wij is computed according to (10). Therefore, the updating of weights
in case of the one-sided block Jacobi method is much more communication-demanding than
is was for the two-sided block Jacobi method. Since this updating is needed at the beginning
of each parallel iteration step, it is of crucial importance to design an efficient strategy how
to minimize the communication complexity of this subtask. As for now, this question remains
open.

3.4 Computations with the block-column data layout

The second preprocessing consists of the initialization that computes a spectral decomposition
of p diagonal blocks of the cross-product matrix Â(0) = LT L (when using two factorizations in
the preprocessing); see those 5 steps at the beginning of section 2.1.1. This means that each
processor that stores two block columns i and j will compute serially exactly two cross-products
Â

(0)
ll = LT

l Ll, l = i, j and then, again serially, two spectral decompositions of two symmetric,
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positive definite matrices Â
(0)
ll . Recall that we need to preserve a high relative accuracy, so that

these spectral decompositions can be computed, e.g., by the Kogbetliantz method.

When two block columns are assigned to each processor, all computations in the modified
algorithm are performed in parallel for p = r/2 subtasks. No inter-processor communication of
any kind is needed during this computation, because all computations and updates are local.
Recall that assigning a pivot pair (i, j) to a processor actually means (in the worst case) the
transfer of matrix blocks Bi, Bj, Qii, Qjj and vectors γi and γj to that processor.

In contrast to local computations in the modified algorithm, the implementation of the stopping
criterion (see [21]) requires some sort of global communication between processors. The update
of ω2 and ν (see [21]) requires the local computation of the squared Frobenius norm of each
nullified matrix block in each processor, then the global sum of local squares and, finally,
the broadcast of an updated value to all processors. This can be implemented using routines
MPI ALLREDUCE and MPI ALLGATHER from the ScaLAPACK. The computation of α is even more
complex, because one needs to scale the columns and rows of B by the values stored in vector
γ. This means that all elements of vector γ must be known to all processors (the routine
MPI ALLGATHERV), and, after local scaling, the Frobenius norm of a whole scaled matrix must
be computed from the local Frobenius norms (routines MPI ALLREDUCE and MPI ALLGATHER).

4 Conclusions

We have designed a possible parallelization strategy for the accelerated one-sided block-Jacobi
SVD algorithm on a parallel architecture with distributed memory. New ideas include the
transition from the block-cyclic data layout, which is efficient for the parallel QR decomposi-
tion with or without column pivoting, to the block-column data layout, which is desirable for
the Jacobi iteration process. Another new approach is the possible extension of the dynamic
ordering from the two-sided block Jacobi algorithm to its one-sided version. However, here
it is important to minimize the communication complexity at the beginning of each parallel
iteration step, which is an open problem.
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[4] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi
SVD algorithm, Parallel Computing 28 (2002) 243-262.

14
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