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Abstract

The Cauchy problem of the homogenous heat conduction equation
leads to a solution which is given by the convolution of the initial data and
the well known fundamental solution. In higher dimensions this integral
can be evaluated by Quasi Monte Carlo (QMC) methods. A powerful tool
to get error estimations for QMC integration is the concept of reproducing
kernel Hilbert spaces. These methods can be used to get approximative
solution formulas for the heat conduction equation for initial data from
a reproducing kernel Hilbert space. Here an estimation for the error is
calculated for the special case that the initial data belongs to the Korobow
class Kα([0, 1)s).

1 Introduction

At the beginning we recall some facts about the initial value problem of the
heat conduction equation:
The Cauchy problem of the homogenous heat conduction equation can be for-
mulated in the following way: Let x = (x1, x2, . . . , xs) ∈ Rs and t ∈ R. Let
u0(x) be a given function continous on Rs. We are searching for a function
u(x, t) : Rs × R → R with the following properties:

• ) u(x, t) is twice continously di�erentiable on Rs × R+ and continous on
Rs × R0

+

• ) u(x, t) satis�es the following equation

∂u

∂t
−∆u = 0

for t > 0 and u(x, 0) = u0(x).

The symbol ∆ denotes the Laplace operator with respect to x:

∆u =
∂2u

∂x2
1

+ . . . +
∂2u

∂x2
s
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To get an integral representation of the solution the fundamental solution can
be used:
Theorem 1:( see [1] ) The function

G(x, t) : Rs × R → R

G(x, t) =
1

2s(πt)
s
2
e−

|x|2
4t t > 0

G(x, t) = 0 t ≤ 0

ful�lls the equation
∂G

∂t
−∆G = δ(x)

where δ(x) denotes the Dirac distribution and the dervatives have to be under-
stood in distributional sense.

With this fundamental solution the solution of the Cauchy problem is given
by the convolution of the fundamental solution and the initial data u0(x):

Theorem 2: Let u0(x) be a continous and bounded function on Rs. The
solution of the Cauchyproblem of the homogenous heat conduction equation
with initial condition u(x, 0) = u0(x) is given by

u(x, t) =
1

2sπ
s
2 t

s
2

∫
Rs

u0(y)e−
|x−y|2

4t dy (1)

for t > 0. This solution is unique.

Remark: The uniqueness of the solution in Theorem 2 follows from the esti-
mation

|u(x, t)| ≤ AeB|x|2

and a Theorem from [1]:

Theorem 2a: Let u(x, t) be continous for x ∈ Rs and 0 ≤ t ≤ T and ∂u
∂t , ∂2u

∂xi∂xj

exist and be continous for x ∈ Rsand 0 ≤ t ≤ T and satisfy

∂u

∂t
−4u ≤ 0

for x ∈ Rs and 0 ≤ t ≤ T and |u(x, t)| ≤ AeB|x|2 for constants A,B > 0 and
u(x, 0) = u0(x) for x ∈ Rs. Then

u(x, t) ≤ sup
y∈Rs

u0(y)
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Due to the fact that we treat the integral (1) by QMC methods and repro-
ducing kernels we recall also some details about these concepts.

In QMC integrals are calculated with the domain Es = [0, 1)s by formulas
of the following form: ∫

Es

f(x)dx ≈ 1
N

N∑
k=1

f(xk)

{xk}k≥1 ∈ Es denotes a sequence of points uniformly distributed in Es. A
sequence of points {xk} is uniformly distributed in Es if and only if

lim
N→∞

sup
J⊂Es

|#(xk ∈ J, 1 ≤ k ≤ N)
N

− µ(J)| = 0

where µ(J) =
∫

J
dx denotes the Lebesgue measure of J . The term

DN := sup
J⊂Es

|#(xk ∈ J, 1 ≤ k ≤ N)
N

− µ(J)|

is called the discrepancy of the sequence {xk}k≥1 . The discrepancy gives one
famous error estimation for evaluating integrals by QMC-methods: Let

RN =
∫

Es

f(x)dx− 1
N

N∑
k=1

f(xk)

the error of the approximative calculation of the integral over f(x). Then we
have the following estimation:

|RN | ≤ DNV (f)

where V (f) is the total variation. This estimation is called the Hlawka-Koksma
inequality. For more detailed regarding discrepancies information refer to [2].

An other error estimation is given by the tool of reproducing kernel Hilbert
spaces ( see [3]) .We recall some facts about these spaces:

De�nition: Let H be a Hilbert space of complex valued functions de�ned on
a set F with inner product 〈., .〉H . If there is a function K(x, y) : F × F → C
with the following properties:

• ) the functions gy(x) := K(x, y) are elements of H

• ) K(x, y) = K(y, x)

• ) for all f(x) ∈ H and all y ∈ F we have f(y) = 〈f(x),K(x, y)〉H (repro-
ducing property )
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then H is called a reproducing kernel Hilbert space.

The function K(x, y) is always unique and positive de�nite in the following
sense: For all N ≥ 1; ξ1, ξ2, . . . ξN ∈ C;x1, x2, . . . , xN ∈ F we have

N∑
i,j=1

ξiξjK(xi, xj) ≥ 0 (2)

A special type of reproducing kernels are the Hilbert-Schmidt type kernels: Let
gk(x) be a complete orthonormal system in H. Then the function K(x, y) :
F × F → C with

K(x, y) =
∑

k

gk(x)gk(y)

is a reproducing kernel of H.
A well known example of a reproducing kernel Hilbert space with a Hilbert
Schmidt kernel is the following: Consider the Korobow-class Kα([0, 1]s) de�ned
by

Kα([0, 1]s) =

= {f(x1, . . . , xs)|f(x1, . . . , xs) =
∞∑

n1,n2,...,ns=−∞

an1,n2,...ns

(n1n2 . . . ns)
α e2πi(n1x1+...+nsxs),

∞∑
n1,n2...,ns=−∞

|an1,n2,...,ns |2 < ∞}

for some α > 1 and . n is de�ned by n := max(1, |n|). Now de�ne a Hermitian

scalar product on the basis functions ϕν(x) := e2πiνx

να in the following way:

〈ϕν(x), ϕµ(x)〉 = 〈e
2πi(n1x1+n2x2+...+nsxs)

(n1n2 . . . ns)
α ,

e2πi(m1x1+m2x2+...+msxs)

(m1m2 . . . nms)
α 〉 =

= δn1m1δn2m2 . . . δnsms (3)

Consider now the Hilbert Schmidt type kernel K(x, y) : Rs × Rs → C with

K(x, y) =
∑
ν∈Z

ϕν(x)ϕν(y) =
∑
ν∈Zs

e2πi(n1(x1−y1)+n2(x2−y2)+...+ns(xs−ys))

(n1n2 . . . ns)2α
=

=
s∏

j=1

∑
nj∈Z

e2πinj(xj−yj)

nj
2α

 (4)

With Hurwitz' Fourier series of Bernoulli polynomials this kernel can be written
in closed form for α ∈ N . The n-th Bernoulli polynomial Bn(x) for 0 < x < 1
has the Fourier series

Bn(x) = − n!
(2πi)n

∑
k∈Z,k 6=0

e2πikx

kn
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This means, K(x, y) is equal to

K(x, y) =
s∏

j=1

(
1 + (−1)α (2π)2α

(2α)!
B2α({xj − yj})

)
(5)

If the integrand f(x) is now an element of a reproducing kernel Hilbert space we
have another error estimation for RN : This estimation is called the diaphony
of the sequence {xk}: We want to calculate the integration error

RN =
∫

Es

f(x)dx− 1
N

N∑
k=1

f(xk)

for f(x) ∈ H where H is the reproducing kernel Hilbert space with basis
(??rkhs}). So f(x) has a series expansion of the form

f(x) =
∑

ν∈Zs

aν

να e2πiνx

and the integral can be calculated to∫
Es

f(x)dx = a0 = 〈f, 1〉

By the reproducing property we can write

1
N

N∑
k=1

f(xk) =
1
N

N∑
k=1

〈f(y),K(y, xk)〉 =

= 〈f(y),
1
N

N∑
k=1

K(y, xk)〉

So the integration error can be written as a scalar product:

RN = 〈f(y),
1
N

N∑
k=1

K(y, xk)− 1〉

The factor

rN := ‖ 1
N

N∑
k=1

K(y, xk)− 1‖

is called the diaphony ( see [4]) of the sequence {xk}k≥1. If the integral can be
written as the scalar product with an arbitrary element g ∈ H , i.e.∫

Es

f(x)dx = 〈f, g〉

5



the integration error is written in the form

RN = 〈f(y),
1
N

N∑
k=1

K(y, xk)− g〉

The factor

rg,N := ‖ 1
N

N∑
k=1

K(y, xk)− g‖

is called the g-diaphony ( see [4] ).
The modulus of the integration error is now given by Cauchy-Schwartz inequal-
ity:

|RN | ≤ rN‖f‖ (6)

resp.
|R| ≤ rg,N‖f‖ (7)

2 Application of QMC methods to the solution

of the homogenous heat equation

We consider now the Cauchy problem of the homogenous heat equation with
initial data u0(x) ∈ Kα([0, 1]s). To apply QMC-methods we transform the
integral (??waerme}) into an integral over the s-dimensional unitcube. Therefor
we �x the values for x = (x1, x2, . . . , xs) and t and use the following substitution:
For i = 1, 2, . . . , s set

vi = Fxi,t(yi) =
1

2π
1
2 t

1
2

∫ yi

−∞
e−

(xi−w)2

4t dw (8)

The following lemma is a simple consequence of the properties of Gauss normal
distribution function:
Lemma: For i = 1, 2, . . . , s and all xi ∈ R, t > 0 the transformation (??waerme})
has the following properties:

1. Fxi,t(−∞) = 0

2. Fxi,t(y) is monotone increasing

3. Fxi,t(+∞) = 1

This substitution transforms the integral (??waerme}) in the following way:

u(x, t) =

=
1

2sπ
s
2 t

s
2

∫
Rs

u0(y1, y2, . . . , ys)e−
(x1−y1)2

4t −...− (xs−ys)2

4t dy1dy2 . . . dys =

=
∫

(0,1)s

u0(F−1
x1,t(q1), F−1

x2,t(q2), . . . , F−1
xs,t(qs))dq1dq2 . . . dqs (9)
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For α > 1 the series expansion of u0(x) is uniform convergent and therefor u0(x)
is continous. The Gauss distribution function is also continous and strictly
monotone, so the inverse is also continous. As a composition of continous func-
tions

u0(F−1
x1,t(q1), F−1

x2,t(q2), . . . , F−1
xs,t(qs))

is also continous on (0, 1)s. By a theorem of uniform distributed sequences ( see

[2] ) the following holds: Let {yk}k≥1 = {(y(1)
k , y

(2)
k , . . . , y

(s)
k )}k≥1be a uniform

distributed sequence ( mod 1 ). Then we have∫
(0,1)s

u0(F−1
x1,t(q1), F−1

x2,t(q2), . . . , F−1
xs,t(qs))dq1dq2 . . . dqs =

= lim
N→∞

N∑
k=1

u0(F−1
x1,t(y

(1)
k ), F−1

x2,t(y
(2)
k ), . . . , F−1

xs,t(y
(s)
k )) (10)

It is not practicable to invert a Gauss distribution function for each x and
t. Therefor we use a slight modi�cation of (??waerme}): Recall the original
substitution

qi = Fxi,t(yi) =
1

2π
1
2 t

1
2

∫ yi

−∞
e−

(xi−w)2

4t dw

We modify this in the following way:

qi = Fxi,t(yi) =
1

2π
1
2 t

1
2

∫ yi

−∞
e−

(xi−w)2

4t dw =
1√
π

∫ yi−xi
2
√

t

−∞
e−w2

dw (11)

We introduce the function

Φ(y) =
1√
π

∫ y

−∞
e−w2

dw

So we can write the substitution (??neu}) in the form

qi = Φ
(

yi − xi

2
√

t

)
With this substitution the integral (9) is written as

u(x, t) =
1

2sπ
s
2 t

s
2

∫
Rs

u0(y1, y2, . . . , ys)e−
(x1−y1)2

4t −...− (xs−ys)2

4t dy1dy2 . . . dys =

=
∫

(0,1)s

u0(2
√

tΦ−1(q1) + x1, . . . , 2
√

tΦ−1(qs) + xs)dq1 . . . dqs (12)

Formula (10) can now be written in the form∫
(0,1)s

u0(2
√

tΦ−1(q1) + x1, . . . , 2
√

tΦ−1(qs) + xs)dq1 . . . dqs =
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= lim
N→∞

1
N

N∑
k=1

u0(2
√

tΦ−1(y(1)
k ) + x1, . . . , 2

√
tΦ−1(y(s)

k ) + xs) (13)

This leads us to an approxiative solution :

uapprox(x, t) =
1
N

N∑
k=1

u0(2
√

tΦ−1(y(1)
k ) + x1, . . . , 2

√
tΦ−1(y(s)

k ) + xs) (14)

{yk}k≥1 denotes a uniform distributed sequence in (0, 1)s.

Remark: If we transform the integration domain in formula (13) back to Rs

we have the following:

1
√

π
s

∫
Rs

u0(2
√

ty1 + x1, . . . 2
√

tys + xs)e−y2
1−y2

2−...−y2
s dy1 . . . dys =

= lim
N→∞

1
N

N∑
k=1

u0(2
√

tΦ−1(y(1)
k ) + x1, . . . , 2

√
tΦ−1(y(s)

k ) + xs) (15)

This formula is valid for all continous functions u0(x) .

Formula (10) resp. (13) does not deliver any estimation of the integration error.
In the next section we use the fact that Kα([0, 1]s) forms a RKHS to get an
estimation of the error.

3 Estimation of the integration error

The set Kα([0, 1)s] forms a RKHS. We will discover that the solution of the
heat conduction equation is also in Kα([0, 1]s) for u0 ∈ Kα([0, 1]s).
We start with an initial condition

u0(x) =
∑

ν∈Zs

aν

να e2πiνx (16)

By calculating the integral (1) for an initial condition of the form (16) the
following lemma can be veri�ed:
Lemma: For u0(x) of the form (16) the solution (1) is given by

uexact(x, t) =
∑
ν∈Zs

aν

να e2πiνxe−4tπ2|ν|2 (17)

The next step is to write (17) as a scalar product from u0(x) and another element
of Kα([0, 1]s). From the scalar product in Kα([0, 1]s) we know that

aν = 〈u0(y),
e2πiνy

να 〉
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and therefor

u(x, t) =
∑

ν∈Zs

〈u0(y),
e2πiνy

να 〉e
2πiνx

να e−4tπ2|ν|2 =

= 〈u0(y),
∑

ν∈Zs

e2πiνye−2πiνx

ν2α e−4tπ2|ν|2〉 =

= 〈u0(y), gx,t(y)〉

with

gx,t(y) :=
∑

ν∈Zs

e2πiνye−2πiνx

ν2α e−4tπ2|ν|2

It is easily seen that gx,t(y) is an element of Kα([0, 1]s).
The next step is to write uapprox(x, t) as a scalar product. By the reproducing
property we get

uapprox(x, t) =
1
N

N∑
k=1

u0(2
√

tΦ−1(y(1)
k ) + x1, . . . , 2

√
tΦ−1(y(s)

k ) + xs) =

=
1
N

N∑
k=1

〈u0(z1, z2, . . . , zs),K((z1, . . . zs), (2
√

tΦ−1(y(1)
k )+x1, . . . , 2

√
tΦ−1(y(s)

k )+xs))〉 =

= 〈u0(z1, . . . , zs),
1
N

N∑
k=1

K((z1, . . . zs), (2
√

tΦ−1(y(1)
k )+x1, . . . , 2

√
tΦ−1(y(s)

k )+xs))〉

Collecting these facts we can write the di�erence uapprox(x, t) − uexact(x, t) as
a scalar product:

uapprox(x, t)− uexact(x, t) =

= 〈u0(z1, . . . , zs),
1
N

N∑
k=1

K((z1, . . . zs), (2
√

tΦ−1(y(1)
k )+x1, . . . , 2

√
tΦ−1(y(s)

k )+xs))−gx,t(z1, . . . , zs)〉

Application of Cauchy-Schwartz inequality deliveres an estimation of the error:

|uapprox(x, t)− uexact(x, t)| ≤

≤ ‖u0‖ ‖ 1
N

N∑
k=1

K((z1, . . . zs), (2
√

tΦ−1(y(1)
k )+x1, . . . , 2

√
tΦ−1(y(s)

k )+xs))−gx,t(z1, . . . , zs)‖

‖.‖ denotes the norm induced by the scalar product 〈., .〉and is calculated with
respect to (z1, . . . , zs). This error estimation has the same form as (7).
The term

RN (x, t) := ‖ 1
N

N∑
k=1

K((z1, . . . zs), (2
√

tΦ−1(y(1)
k )+x1, . . . , 2

√
tΦ−1(y(s)

k )+xs))−gx,t(z1, . . . , zs)‖2
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can be simpli�ed. Calculation of the norm showes that

RN (x, t) =
1

N2

N∑
k,l=1

K
((

2
√

tΦ−1(y(1)
k ), . . . , 2

√
tΦ−1(y(s)

k )
)

,
(
2
√

tΦ−1(y(1)
l ), . . . , 2

√
tΦ−1(y(s)

l )
))

−

− 2
N

∑
ν∈Zs

N∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπ
(
n1Φ−1(y(1)

k ) + . . . + nsΦ−1(y(s)
k )
)
+
∑
ν∈Zs

e−8tπ2|ν|2

ν2α

This error term does not depend on the spatial coordinate, only on the �time�-
coordinate.

We state the following de�nition:

De�nition: Let (yn) = (y(1)
n , y

(2)
n , . . . , y

(s)
n ), yn ∈ (0, 1)s a uniform distributed

sequence. Let Fi(x) , i = 1, 2, . . . , s be probability distribution functions on

(−∞,+∞). We call a sequence (xn) =
(
F−1

1 (y(1)
n ), F−1

2 (y(2)
n ), . . . , F−1

s (y(s)
n )
)

uniform ditributed with respect to the s-dimensional distribution function F (x) =
F (x1, x2, . . . , xs) = F1(x1)F2(x2) . . . Fs(xs).

We can state the following

Theorem: For a uniform distributed sequence (yn) = (y(1)
n , . . . , y

(s)
n ) with re-

spect to the s-dimensional distribution function F (x) = Φ(x1)Φ(x2) . . .Φ(x2)
the error expression RN (x, t) → 0 as N →∞.

Proof: From formula (15) we know that

1
√

π
s

∫
Rs

f(x1, x2, . . . , xs)e−x2
1−...−x2

sdx1 . . . dxs =

= lim
N→∞

1
N

N∑
k=1

f(y(1)
k , . . . , y

(s)
k )

We start our investigation of RN (x, t) with the term

2
N

∑
ν∈Zs

N∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπ
(
n1y

(1)
k + . . . + nsy

(s)
k

)
We choose an M > 0 and de�ne IM = {−M,−M + 1, . . . ,M − 1,M}s . We
split the sum over ν into 2 parts:

2
N

∑
ν∈IM

N∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπ
(
n1y

(1)
k + . . . + nsy

(s)
k

)
+

+
2
N

∑
ν /∈IM

N∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπ
(
n1y

(1)
k + . . . + nsy

(s)
k

)
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For the second part we can �nd an estimation independant from the node points:

2
N

∑
ν /∈IM

N∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπ
(
n1y

(1)
k + . . . + nsy

(s)
k

)
≤

≤ 2
∑

ν /∈IM

e−4tπ2|ν|2

ν2α ≤ 2

(
2

(M + 1)2α

e−4tπ2M

1− e−4tπ2

)s

So we can �nd an index M so that this term is smaller than any given ε. Now
we turn to the �nite part: An easy calculation showes that

1
√

π
s

∫
Rs

cos(4
√

tπ(n1x1 + . . . + nsxs))e−x2
1−...−x2

sdx1 . . . dxs =

= e−4tπ2(n2
1+...+n2

s)

So we can �nd an index N1(ε,M) so

| 1
N

N∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπ
(
n1y

(1)
k + . . . + nsy

(s)
k

)
− e−8tπ2|ν|2

ν2α | < ε

(2M + 1)s

for N > N1(ε,M) and all ν ∈ IM . Now we investigate the term

1
N2

N∑
k,l=1

K
((

2
√

ty
(1)
k , . . . , 2

√
tΦ−1y

(s)
k

)
,
(
2
√

ty
(1)
l , . . . , 2

√
ty

(s)
l

))
(18)

Recall that the kernel function is given by

K(x, y) =
∑

ν∈Zs

e2πiν(x−y)

ν2α

So the expression (18) is an in�nite sum over ν. We split this in�nite sum into
2 parts:

1
N2

N∑
k,l=1

K
((

2
√

ty
(1)
k , . . . , 2

√
tΦ−1y

(s)
k

)
,
(
2
√

ty
(1)
l , . . . , 2

√
ty

(s)
l

))
=

=
1

N2

∑
ν∈IL

N∑
k,l=1

e4
√

tπiν(yk−yl)

ν2α +
1

N2

∑
ν /∈IL

N∑
k,l=1

e4
√

tπiν(yk−yl)

ν2α

Due to the convergence of
∑

1
ν2α we can �nd an index L0 ( independent from

the node points ) with

|
∑
ν /∈IL

e4
√

tπiν(yk−yL)

ν2α | < ε

11



for all L > L0. So we have

| 1
N2

∑
ν /∈IL

N∑
k,l=1

e4
√

tπiν(yk−yl)

ν2α | < ε

for all L > L0. We can write the �nite part in the form

1
N2

∑
ν∈IL

N∑
k,l=1

e4
√

tπiν(yk−yl)

ν2α =
∑
ν∈IL

(
1
N

N∑
k=1

e4
√

tπiνyk

να

)(
1
N

N∑
k=1

e−4
√

tπiνyk

να

)
(19)

We can �nd indices N2(ε, L) and N3(ε, L) with

| 1
N

N∑
k=1

e4
√

tπiνyk

να − e−4tπ2|ν|2

να | < ε

(2L + 1)
s
2

for all ν ∈ IL and N > N2(ε, L) and

| 1
N

N∑
k=1

e−4
√

tπiνyk

να − e−4tπ2|ν|2

να | < ε

(2L + 1)
s
2

for all N > N3(ε). So we get from term (19)

∑
ν∈IL

(
1
N

N∑
k=1

e4
√

tπiνyk

να

)(
1
N

N∑
k=1

e−4
√

tπiνyk

να

)
−
∑
ν∈IL

e−8tπ2|ν|2

ν2α =

=
∑
ν∈IL

(
1
N

N∑
k=1

e4
√

tπiνyk

να − e−4tπ2|ν|2

να

)(
1
N

N∑
k=1

e−4
√

tπiνyk

να − e−4tπ2|ν|2

να |

)
+

−e−4tπ2|ν|2

να

(
1
N

N∑
k=1

e4
√

tπiνyk

να − e−4tπ2|ν|2

να

)
−

−e−4tπ2|ν|2

να

(
1
N

N∑
k=1

e4
√

tπiνyk

να − e−4tπ2|ν|2

να

)
So we have for N > max(N2(ε), N3(ε))

|
∑
ν∈IL

(
1
N

N∑
k=1

e4
√

tπiνyk

να

)(
1
N

N∑
k=1

e−4
√

tπiνyk

να

)
−
∑
ν∈IL

e−8tπ2|ν|2

ν2α | <

< ε2 +
ε

(2L + 1)
s
2

+
ε

(2L + 1)
s
2

Let P = max(L,M) . To use these results we write

RN (x, t) =
1

N2

N∑
k,l=1

∑
ν∈IP

e4
√

tπiν(yk−yl)

ν2α −
∑

ν∈IP

e−8tπ2|ν|2

ν2α −

12



−2

 1
N

∑
ν∈Ip

∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπνyk −
∑

ν∈IP

e−8tπ2|ν|2

ν2α

+
∑

ν /∈IP

e−8tπ2|ν|2

ν2α +

+
1

N2

N∑
k,l=1

∑
ν /∈IP

e4
√

tπiν(yk−yl)

ν2α − 2
N

∑
ν /∈Ip

∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπνyk

So we get the estimation
|RN (x, t)| ≤

≤ | 1
N2

N∑
k,l=1

∑
ν∈IP

e4
√

tπiν(yk−yl)

ν2α −
∑

ν∈IP

e−8tπ2|ν|2

ν2α |+

+2| 1
N

∑
ν∈Ip

∑
k=1

e−4tπ2|ν|2

ν2α cos 4
√

tπνyk −
∑

ν∈IP

e−8tπ2|ν|2

ν2α |+

+
∑

ν /∈IP

e−8tπ2|ν|2

ν2α +
∑

ν /∈IP

1
ν2α + 2

∑
ν /∈IP

e−4tπ2|ν|2

ν2α <

< ε2 +
ε

(2P + 1)
s
2

+
ε

(2P + 1)
s
2

+ 2ε + ε + 2ε +
∑

ν /∈IP

e−8tπ2|ν|2

ν2α

The sum ∑
ν /∈IP

e−8tπ2|ν|2

ν2α

can be majorized by ∑
ν /∈IP

e−4tπ2|ν|2

ν2α

This sum is smaller than ε due to the fact that P = max(L,M). So

|RN (x, t)| < ε

(
2

(2P + 1)
s
2

+ 6
)

+ ε2

for N > max(N1(ε, P ), N2(ε, P ), N3(ε, P )). So the theorem is proved.

In the following there are some graphs for s = 2 of the function h(t) := RN (t)
for di�erent values of N and di�erent sequences:

13



1) Sobol-sequence, N = 200:

2) Sobol sequence, N = 400:
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3) Niederreiter-Sequence, N=200:

4) Niederreiter sequence, N = 500:
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4 A �weighted� form of RN(x, t)

The algorithm can be modi�ed. We return to the Poisson integral (??waerme}):

u(x, t) =
1

2sπ
s
2 t

s
2

∫
Rs

u0(y)e−
|x−y|2

4t dy

At �rst we use the transformation

wi =
yi − xi

2
√

t
i = 1, 2, . . . s

and we get

u(x, t) =
1

√
π

s

∫
Rs

u0(2
√

tw1 + x1, . . . 2
√

tws + xs)e−|w|
2
dw

Now let β = (b1, . . . , bs) with 0 < bi < 1 for i = 1, 2, . . . , s. Then we can write

u(x, t) =
1

π
s
2

∫
Rs

u0(2
√

tw1+x1, . . . , 2
√

tws+xs)e−b1w2
1−...−bsw2

se−(1−b1)w
2
1−(1−bs)w2

sdw

(20)
Now we use the substitution

qi = Φ
(√

1− biwi

)
=

1√
π

∫ √
1−biwi

−∞
e−u2

du

and we get from (20)

u(x, t) =
1√∏s

i=1(1− bi)

∫
Es

u0

(
2
√

t
Φ−1(q)√

1− b
+ x

)
e−

b
1−b (Φ−1(q))2

dq (21)

Of course,

u0

(
2
√

t
Φ−1(q)√

1− b
+ x

)
stands for

u0

(
2
√

t
Φ−1(q1)√

1− b1

+ x1, . . . 2
√

t
Φ−1(qs)√

1− bs

+ xs

)
and

e−
b

1−b (Φ−1(q))2

is an abbrevation for

e−
b1

1−b1
(Φ−1(q1))2−...− bs

1−bs
(Φ−1(qs))2

Evaluation of (21) leads us to an approximative solution of the IVP :

u(w)
approx =

1
N

N∑
k=1

e−
b

1−b (Φ−1(q(k)))2√∏s
i=1(1− bi)

u0

(
2
√

t
Φ−1(q(k))√

1− b
+ x

)

16



We can interpret the numbers

wk :=
e−

b
1−b (Φ−1(q(k)))2√∏s

i=1(1− bi)

as �weights� of the quadrature formula. By use of the scalar product in the
RKHS we get again an error estimation in the form of a diaphony:

|uexact(x, t)− u(w)
approx(x, t)| ≤ R

(w)
N (x, t)‖u0‖

with (
R

(w)
N (x, t)

)2

=
1

N2

N∑
k,l=1

wkwlK

(
2
√

t
Φ−1(q(k))√

1− b
, 2
√

t
Φ−1(q(l))√

1− b

)
−

− 2
N

N∑
k=1

wk

∑
ν∈Zs

e−4tπ2|ν|2

ν2α cos 4
√

tπν
Φ−1(q(k))√

1− b
+

+
∑

ν∈Zs

e−8tπ2|ν|2

ν2α

The term R
(w)
N (x, t) is the �weighted� form of RN (x, t).

In the following there are some graphs for s = 2 of h(t) := R
(w)
N (t) for di�erent

sequences and di�erent weights:
1) Sobol sequence, N = 200, weights b1 = 0.8 and b2 = 0.8
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2) Sobol sequence N = 200, weights b1 = 0.02 , b2 = 0.02:

3) Niederreiter sequence, N = 400, b1 = 0.5, b2 = 0.5
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