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Abstract

The Cauchy problem of the homogenous heat conduction equation
leads to a solution which is given by the convolution of the initial data and
the well known fundamental solution. In higher dimensions this integral
can be evaluated by Quasi Monte Carlo (QMC) methods. A powerful tool
to get error estimations for QMC integration is the concept of reproducing
kernel Hilbert spaces. These methods can be used to get approximative
solution formulas for the heat conduction equation for initial data from
a reproducing kernel Hilbert space. Here an estimation for the error is
calculated for the special case that the initial data belongs to the Korobow
class K, ([0,1)%).

1 Introduction

At the beginning we recall some facts about the initial value problem of the
heat conduction equation:

The Cauchy problem of the homogenous heat conduction equation can be for-
mulated in the following way: Let © = (z1,22,...,25) € R® and t € R. Let
uo(x) be a given function continous on R*. We are searching for a function
u(z,t) : R® Xx R — R with the following properties:

e ) u(z,t) is twice continously differentiable on R® x R, and continous on

R* x RY
e ) u(x,t) satisfies the following equation
ou
— —Au=0
ot

for ¢t > 0 and u(x,0) = ug(x).
The symbol A denotes the Laplace operator with respect to x:

o, o
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To get an integral representation of the solution the fundamental solution can
be used:
Theorem 1:( see [1] ) The function

G(z,t) :R*xR—R

fulfills the equation
oG
— —-AG=9¢
5 ()
where §(z) denotes the Dirac distribution and the dervatives have to be under-

stood in distributional sense.

With this fundamental solution the solution of the Cauchy problem is given
by the convolution of the fundamental solution and the initial data ug(z):

Theorem 2: Let up(z) be a continous and bounded function on R*. The
solution of the Cauchyproblem of the homogenous heat conduction equation
with initial condition u(x,0) = ug(x) is given by

1 _le—y|?

o) = gy [ e T dy )

© 9srats

for t > 0. This solution is unique.

Remark: The uniqueness of the solution in Theorem 2 follows from the esti-

mation )
lu(z, )] < AePl=l

and a Theorem from [1]:

Theorem 2a: Let u(x,t) be continous for x € R®* and 0 < ¢t < T and %, 88_26“ -
;0 ;

exist and be continous for € R%and 0 < ¢ < T and satisfy

ou
— —Au<
ot us

for x € R® and 0 < ¢t < T and |u(z,t)| < AeBlzl” for constants A, B > 0 and
u(z,0) = up(x) for x € R®. Then

u(z,t) < sup ug(y)
yeRs



Due to the fact that we treat the integral (1) by QMC methods and repro-
ducing kernels we recall also some details about these concepts.

In QMC integrals are calculated with the domain E® = [0,1)® by formulas
of the following form:

1 N
@~ g ; f (k)

{zr}r>1 € E° denotes a sequence of points uniformly distributed in E®. A
sequence of points {x} is uniformly distributed in E* if and only if

. #(xp e ;31 <k<N)
lim sup |
N—oo jcEs N

—u(J) =0

where u(J) = [, dz denotes the Lebesgue measure of .J. The term

Yoy e J1<k<N
Dy := sup | (@ N )—H(J)|
JCEs

is called the discrepancy of the sequence {zj}r>1 . The discrepancy gives one
famous error estimation for evaluating integrals by QMC-methods: Let

N
Ry= | f(z)dz— % > flaw)
B k=1

the error of the approximative calculation of the integral over f(z). Then we
have the following estimation:

|Rn| < DNV ()

where V (f) is the total variation. This estimation is called the Hlawka-Koksma
inequality. For more detailed regarding discrepancies information refer to [2].

An other error estimation is given by the tool of reproducing kernel Hilbert
spaces ( see [3]) .We recall some facts about these spaces:

Definition: Let H be a Hilbert space of complex valued functions defined on
a set ' with inner product (.,.)y . If there is a function K(z,y) : F x F — C
with the following properties:

e ) the functions g,(z) := K(z,y) are elements of H
o ) K(z,y) = K(y,x)

o ) for all f(x) € H and all y € F we have f(y) = (f(z), K(z,y))u (repro-
ducing property )



then H is called a reproducing kernel Hilbert space.

The function K(z,y) is always unique and positive definite in the following

sense: For all N > 1;&1,&,...&ny € C;x1,29,..., x5 € F we have
N —
D GG K (i, ai) > 0 (2)
i,j=1

A special type of reproducing kernels are the Hilbert-Schmidt type kernels: Let
gr(z) be a complete orthonormal system in H. Then the function K(z,y) :

F x F — C with
K(z,y) =Y gk(x)gr(y)
k

is a reproducing kernel of H.

A well known example of a reproducing kernel Hilbert space with a Hilbert
Schmidt kernel is the following: Consider the Korobow-class K, ([0, 1]*) defined
by

Ka([oa 1]8) =
o) a .
T T T S )
n1,M2,...,Ng=—00 (nan s nS)
%)
Z |an1m/2,~~~,ns|2 < oo}
ni,n2...,Ng=—00

for some a > 1 and . @ is defined by 7 := max(1, |n|). Now define a Hermitian
€2wium

scalar product on the basis functions ¢, (z) := “=— in the following way:

eQTri(nla;l +noxot...+nsTs) eQwi(mla;l+m2:v2+...+msw3)

(o), (o)) = (e ) =

= OnymiOnams - - - Onym, (3)
Consider now the Hilbert Schmidt type kernel K(z,y) : R® x R® — C with

e2mi(na (z1—y1)+tn2(z2—y2)+...+ns (T —ys))

K(z,y) =Y eu(@)en(y) = Y — =

VEL VEL® (s ... 75)%

2ming (x; —y;)

=X (4)

n; €L

With Hurwitz’ Fourier series of Bernoulli polynomials this kernel can be written
in closed form for a € N . The n-th Bernoulli polynomial B, (z) for 0 < z < 1
has the Fourier series

e27rik:x

n



This means, K (z,y) is equal to

S )2
K =TT (1+ 0" C2 Bl - D) G

Jj=1

If the integrand f(z) is now an element of a reproducing kernel Hilbert space we
have another error estimation for Ry: This estimation is called the diaphony
of the sequence {xy}: We want to calculate the integration error

N
Ry= | f(z)dx— % > flaw)
ke k=1

for f(z) € H where H is the reproducing kernel Hilbert space with basis
(??rkhs}). So f(x) has a series expansion of the form

f(l‘) — Z %627#1/1'
vezs

and the integral can be calculated to

/ f@)de = ag = (f,1)
Es

By the reproducing property we can write

So the integration error can be written as a scalar product:

1 N
k=1

The factor
N
TN = HN ;K(yaxk) — 1

is called the diaphony ( see [4]) of the sequence {x}}r>1. If the integral can be
written as the scalar product with an arbitrary element g € H | i.e.

f(@)dz = (f,9)
Es



the integration error is written in the form

1 N
Ry = (f(4). 3 >_K(v.21) — 9)
k=1

The factor
N

1
ro = I S0 Kly,a) — ol
k=1
is called the g-diaphony ( see [4] ).
The modulus of the integration error is now given by Cauchy-Schwartz inequal-
ity:
|Rn| < rallfll (6)

resp.
|R| < 7Nl Sl (7)

2 Application of QMC methods to the solution
of the homogenous heat equation

We consider now the Cauchy problem of the homogenous heat equation with
initial data ug(z) € K4([0,1]?). To apply QMC-methods we transform the
integral (??waerme}) into an integral over the s-dimensional unitcube. Therefor
we fix the values for x = (z1, 22, ..., 2z,) and ¢ and use the following substitution:
Fort=1,2,...,s set

1 Yi o (@;—w)?
v; = mlt(yz) = E e ™ dw (8)
— 00

The following lemma is a simple consequence of the properties of Gauss normal
distribution function:

Lemma: Fori=1,2,...,sand all z; € Rt > 0 the transformation (??waerme})
has the following properties:

2. Fy, +(y) is monotone increasing

This substitution transforms the integral (??waerme}) in the following way:

u(z,t) =
1 _m1-v? . (we—us)?
zf/ uo(y1, Yo, - - - ys)e A & dyidys ... dys =
257T21f2 Rs
= /( uo(Fy  (@1), Fii(q2), - - - Fy (as))dardas - . . dgs (9)
0,1)s



For o > 1 the series expansion of ug(x) is uniform convergent and therefor ug(x)
is continous. The Gauss distribution function is also continous and strictly
monotone, so the inverse is also continous. As a composition of continous func-
tions

’U’O(th (ql) sz, <Q2) . FI‘N (qs))
is also continous on (0,1)®. By a theorem of uniform distributed sequences ( see

[2] ) the following holds: Let {yx}r>1 = {(y,gl), y,i ), o ,y,C )}k>1be a uniform
distributed sequence ( mod 1 ). Then we have

/( ) uo(Fy (), Fryi(a2), -, Fy i (gs))daqndgs - . . dgs =
0,1)s

N—o0

= lim Y wo(Fr L) FRL ), Frh ) (10)
1

It is not practicable to invert a Gauss distribution function for each z and
t. Therefor we use a slight modification of (??waerme}): Recall the original

substitution v
1 Yi _(mi—w)?
¢ =Fpt(ys) = —— € T dw
2w2t2 J_
We modify this in the following way:

Yi—T4

1
o I,1
2

Yi (z; —w)? 2Vt 2
= F  (y) = e” & dw= e " dw 11
4= Fanlis) = oy /_oo f/ D

We introduce the function

v == [ e au

So we can write the substitution (??neu}) in the form

Yi — T4
;=
¢ ( NG >

With this substitution the integral (9) is written as

1
2575ts

(z1-y1)?2 (zs— ye

/ UO(ylay27"'vys)67 4t o dyldyQ dys =
Rs

u(z,t) =

:/ wo (VI (q1) + 21, 2VED N (gs) + wo)dgr .. dgs  (12)
0.1)¢

Formula (10) can now be written in the form

/ o (2VED (1) + 21, 250 (qu) + 20)da ... dgs =
(071)S



= lim iZuO(Q\/ECD Yoy 4oy, 2vE0 () +2,) (1)

This leads us to an approxiative solution :
Uapproz (T, 1) = Zuo VEe (") + 2y, 2V () 4 ) (14)

{yx}x>1 denotes a uniform distributed sequence in (0,1)%.

Remark: If we transform the integration domain in formula (13) back to R®
we have the following:

1
5 u()(Q\/fyl +z1,. .. 2V tys + xs)e_y%_yg_‘“_y?dyl codys =
VT JRs

— lim —ZuOQ\[@ Yoy 4oy, 2vE0 () +2,)  (15)

N—oo N

This formula is valid for all continous functions wug(z) .

Formula (10) resp. (13) does not deliver any estimation of the integration error.
In the next section we use the fact that K,([0,1]°) forms a RKHS to get an
estimation of the error.

3 Estimation of the integration error

The set K, ([0,1)°] forms a RKHS. We will discover that the solution of the
heat conduction equation is also in K,/([0, 1]%) for ug € K,([0,1]°).
We start with an initial condition

ay xa%4
ug(z) = Z ﬁTteQ (16)

vEZS

By calculating the integral (1) for an initial condition of the form (16) the
following lemma can be verified:
Lemma: For ug(x) of the form (16) the solution (1) is given by

Ueser(w, 1) = Y Sremrem il (17)
vezs ¥

The next step is to write (17) as a scalar product from ug(z) and another element
of K,([0,1]%). From the scalar product in K,([0,1]*) we know that

e27rzuy

v = <U0(y)»7>



and therefor

e27mz/y eQﬂ'zuz

u(z,t) = Z (uo(y), j>?674t”2‘”|2 =

v v

27riuye—27riwc

— <u0(y)7 Z 6T6_4t71'2‘y|2> _

vezZs v
= (uo(Y), gt (v))

with ) )
e27rzl/ye—27r11/m
Gt (y) = E : 2a e
v
vEZS

—4tm?|v)?

It is easily seen that g, .(y) is an element of K,([0,1]®).
The next step is t0 write Ugppros(%,t) as a scalar product. By the reproducing
property we get

Ugpproz (T, 1) = Zu 2Vt~ ((1))+x1,.. 2V/td ! ( )—i—xs)—

N
%Zuo (21,225 - > ), K((21, - - - 25), (2VED () )41, ., 2VE0 L (5 ) 4,))) =
k=1

= (uo(z1,- .-, 2 NZK 21, ze), VIR (D), 2vVER T () )

Collecting these facts we can write the difference uqppros (%, t) — Uegqct (T, 1) as
a scalar product:
Uapprox (1'7 t) — Uezact (1'7 t) =
1 N
= (uo(z1,. -, 2), ST K (21 2), @VER T g ) b, 2V T () ) 4 as)) gt (o1, 26)
k=1

Application of Cauchy-Schwartz inequality deliveres an estimation of the error:

|uapp7“oz (1‘, t) — Uezact ($7 t)| <

N
< Juoll II%ZK((%m O VIO () 2V T (5 )4 —gaa (2 2|
k=1

Il denotes the norm induced by the scalar product (.,.)and is calculated with
respect to (z1,...,2s). This error estimation has the same form as (7).
The term

N
Ry (z,t) := ||%ZK((2’1, zs), (2Vt®~ ( )—l—a:l,.. 2/t o~ ( )+ms))—gm7t(21,...,zs)HQ
k=1



can be simplified. Calculation of the norm showes that

Ry(z,t) N2 Z K((2\f<1> (y 21)),...,2\6@‘1(3/;?))) , (2\/%<I>‘1(yl(1)),...,2\/E<I>‘1(yl(s)))) -

k=1

74t7T2‘V|2 —8tmw?|v|?

_Z Z Z cos 4V/tm (m@ Yy ,(Cl)) +...+ns<1>*1(y,(:)))+z GPT

VEZS k=1 VELS

This error term does not depend on the spatial coordinate, only on the “time”-
coordinate.

We state the following definition:

Definition: Let (y,) = (y%l),yéz),...,yég)) Yn € (0,1)° a uniform distributed
sequence. Let Fj(x) , ¢ = 1,2,...,s be probability distribution functions on
(—o00,4+00). We call a sequence (z,) = (F (ygll)),F (y (2)) ...,Fs’l(yﬁls)))
uniform ditributed with respect to the s-dimensional distribution function F(z) =
F(Il, Loy ... ,IS) = Fl(I1>F2(I2> N Fs(xg)

We can state the following

Theorem: For a uniform distributed sequence (y,,) =
spect to the s-dimensional distribution function F(z)
the error expression Ry (z,t) — 0 as N — oo.

(n 7"'7y£l,)) with re-
= O(z1)P(x2) ... P(x2)

Proof: From formula (15) we know that

1
VT

/ flzy,ma,. .. 7%)6,1’;‘,_”,&6&71 coodrg =
'S

lim —Zf y,(cl)7...,yk )

We start our investigation of Ry (z,t) with the term

—4t7r2\ |2

il Z Z COS4\/7T (myk ) +..+ nsy](CS))

I/EZs k=1

We choose an M > 0 and define Iy = {-M,-M +1,....M —1,M}* . We
split the sum over v into 2 parts:

74t7r2|1/\2
— Z Z cos 4Vt (nlyk —l—ngy,i )>

VEIM k=1

N —4f7r2|u|2

2 € ) (s)
+N Z ZTCOS4\/TF (nlyk + ..+ gy, )

10



For the second part we can find an estimation independant from the node points:

—4t7r2\1/| ()
i Z Z cos4\/7r(n1yk sy, )7
u¢1Mk 1
—4t7r2|u\2 ) 6—4t712M
<2 <2
> ((Mﬂ)zﬂ_e_w
I/QI]»[

So we can find an index M so that this term is smaller than any given e. Now
we turn to the finite part: An easy calculation showes that

1 .
75/ cos(4vtm(nyzy + ... + nsxs))e’zf -
NZTT

2
sdry...drs =

_ e—4t7r2(n%+...+n§)
So we can find an index Ny(e, M) so

—4t7r2\u| —8tr?|v|?

s e €
Z cos 4/t (nlyk ) +---+nsy](€)> T

NCIVESIE

for N > Ni(e, M) and all v € I;. Now we investigate the term

% iv: K ((2\/@,(6”,...,2\/%@—1;;(5 ) (2\/y(1),...,2\/£yﬁ))) (18)

k=1
Recall that the kernel function is given by

eQﬂ'iu(xfy)
K(z,y) = %
VEZS

So the expression (18) is an infinite sum over v. We split this infinite sum into
2 parts:

% iv: K (v, 2vie iy (2vag), . 2vi()) =
k=1

1 N 64\[71'11/(1/;c yl) 1 4\[TFW(Uk —1)
=2 X m T RE > —m

velyp k=1 vl k=1
Due to the convergence of 5 -1
the node points ) with

—z= we can find an index Lo ( independent from

4\/7”1/ (yx—yL)

|Z — | <e

VQIL

11



for all L > L. So we have

eAVimiv(y—y1)

‘*ZZ 2 [ <e

vl k,l=1

for all L > Ly. We can write the finite part in the form

4\f7rzy(yk —y1) 1 4\[71'11le 1 N —4/trivyy
FY Y s () ()

velp k,l=1 velyg k=1 k=1
(19)
We can find indices Na(e, L) and Ns(e, L) with
4\/7rzuyk 74t7r2\1/|2 €
Z P Y T
for all v € I, and N > Ny(e, L) and
N 674\/f7riz/yk 674t7r2\1/|2 €
v - < 5
N 7 o <G
k=1
for all N > N3(e€). So we get from term (19)
1 4\/7'rwyk —4\/7'r11/y;C e—8t7r2\u|2
Z N Z va N Z - Z an =
velr k=1 velr
4\f7rwyk e—4t7r2|y\2 1 N 6—4\/fﬂiuyk e—41§7r2|u\2
= Z Z e B ¢ NZ e - e ‘ +
vely, k 1 k=1
e—41‘7r2|1/|2 ( 1 N 4\/7rwyk e—4t71'21/|2>
R Z ) -
k=
—4t7r2\y|2 1 e4\f7r'wyk e—4t7r2|1/\2
N e
k=1

So we have for N > max(N2(e), N3(e))

4\f7ru/yk 1 N —aEmivyy —8tmw?|v|?
|Z< Z,/a> (NZ‘gycy)—Zeyhk

velyr k=1 k=1 vely
€ €

s + s

(2L+1)5 ' (2L +1)3

Let P = max(L, M) . To use these results we write

<e2—|—

4fﬂzz/(yk —y1) —8t7r2| \2

Ry (1) NQZZ O

kil=1velp velp

12



4t7r2| I —8ta2|v|?

—8tmw?|v|?

ZZ cos4\f7r1/yk—§:ePT +ZegT+

VEI k=1 velp velp

1 N 4\/7rw(y;, —y1) 74t7r2|u|2 \[

—2 E g BT — E E —————cosdvVinryy
kl=1vélp V§§I k=1

So we get the estimation

|Ry (2, 1)] <
N 2),12
1 4\/7r'w(yk Y1) e—8tm |v|
Sl T
kl=1velp velp
1 e—4t7r2|u\2 e—8t7r2|u\2
+2|N TCOS4JWVyk — Z vT|+
vel, k=1 velp
78t7r2|1/\2 74t7r2|1/\2
Yt Y w2y
v¢lp v¢lp v¢lp
) € € 78t7r2|1/\2
<€+ s + +2€+ €+ 26+ — 5
(2P+1)2 (2P +1)2 Z [z
v¢lp
The sum
Z e—8t7r2|1/\2
20
VQIP v
can be majorized by
e—4t7‘r2|1/\2
—2a
VQIP v

This sum is smaller than e due to the fact that P = max(L, M). So

2 2
|RN(1‘,t)| <€ ((2]34»1); +6> +e€

for N > max(Ni (e, P), Na(e, P), N3(e, P)). So the theorem is proved.

In the following there are some graphs for s = 2 of the function h(t) :=
for different values of NV and different sequences:

13

RN(t)



1) Sobol-sequence, N = 200:

2) Sobol sequence, N = 400:




3) Niederreiter-Sequence, N—=200:

4) Niederreiter sequence, N = 500:




4 A “weighted” form of Ry(z,t)

The algorithm can be modified. We return to the Poisson integral (??waerme}):

1 _Je—y|?
u(r,t) = —5—= [ uo(y)e” = dy
RS

25m2t2
At first we use the transformation

Y

2Vt

w; i=1,2,...5

and we get

u(%t) = u0(2\/£w1 + L1y 2\/gws + xs)€—|w‘2dw
RS

1
VT

Now let 8 = (by,...,bs) with 0 < b; < 1fori=1,2,...,s. Then we can write

1
u(z,t) = — / u0(2\/£w1+x1, .. .,2\/1?ws+xs)e_b1w%_“'_bﬁw —(A=b)wi=(1=bo)w gy,

T2 JRs

(20)
Now we use the substitution
1 \/1—1)1,11)@ 2
Qi:q)(\/l_biwi>:7/ e " du
VT )

and we get from (20)

u(w,t) = \/“7/ ( tiléqz —l—x) (@ @) gy (21)
Of course,
U (2\/123_11% + x)
stands for

(2\/& xl,...2\/1:/q)11£q23+x5)

and ,
o1 (27 @)

is an abbrevation for

2

o o (27 (@) - i (27 (00)

Evaluation of (21) leads us to an approximative solution of the IVP :

b ( l(q(k))) (b_l (k)
(w) — E 2\/% (q ) t
aPPTOw N W m

16




We can interpret the numbers
o5 (21 )’
H;:1<1 - bi)

as “weights” of the quadrature formula. By use of the scalar product in the
RKHS we get again an error estimation in the form of a diaphony:

W =

tegact (@, 1) — ule) oo (2, 6)] < RS (2, 0)||uo|

with

(R%’)(xvt))2 = % i wrw K (2\[ 4 (k)) 2\/2(1)1((](”)>
k=1

V1 V1
N 2012

2) e—4tm [v| 71(q(k))
—— Z Z cos 4\[7w7—|—

N k=1 ezs v1=b

—8t71'2\1/|2
+ Z 7204
veZzs

The term Rg\qf)(:v, t) is the “weighted” form of Ry(x,1).

In the following there are some graphs for s = 2 of h(t) := Rng) (t) for different
sequences and different weights:
1) Sobol sequence, N = 200, weights b; = 0.8 and by = 0.8

0.56

17



2) Sobol sequence N = 200, weights by = 0.02, by = 0.02:

0.56

0.42 |

028 |

014 L
o T4 28 437 56
3) Niederreiter sequence, N = 400, by = 0.5, by = 0.5
0.56 |
0.42
0.28
0.14
o 1.4 28 437 58
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