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Parallel One-Sided Block Jacobi SVD
Algorithm: I. Analysis and Design

Gabriel Okša∗ and Marián Vajteršic†

Abstract. The computation of a singular value decomposition of an m× n matrix A is cer-
tainly one of the most often demanded tasks in various applications. There are many algorithms
for computing the full or partial singular value decomposition. Among them, the one-sided Ja-
cobi method (coupled with some orderings) is reputable for its ability to compute the singular
values as well as left and right singular vectors with high relative accuracy. This is important,
for example, in applications like quantum physics or chemistry, where the atomic and/or molec-
ular energies of tiny values have to be computed very accurately (these energies are modeled as
the eigenvalues of symmetric operators, thus they equal to singular values). Unfortunately, the
Jacobi method belongs also to the slowest algorithms, and as such has been almost abandoned.
Recently, some new ideas for accelerating the one-sided serial Jacobi algorithm were presented
and implemented. Numerical experiments have shown that the modified Jacobi algorithm is as
fast as the QR algorithm and slightly slower than the divide-and-conquer one. We describe in
detail main ideas of an acceleration, namely, working with matrix blocks rather than elements,
the preprocessing of an original matrix, the special initialization procedure, the new matrix re-
cursion and the sine-cosine decomposition of certain matrix blocks. The possible parallelization
strategy for the one-sided block-Jacobi algorithm is also discussed.

1 Introduction

The one-sided Jacobi methods for computing the singular value decomposition (SVD) of a
rectangular matrix are more efficient than their two-sided counterparts mainly due to the
halving of the number of matrix-matrix products needed for updating the left and right singular
vectors; see [1, 21, 22] Moreover, some of them were also proved to be accurate in the relative
sense and at least as accurate as the two-sided Jacobi methods; see [5, 6, 7, 8, 9, 22]. When
the preprocessing for positive definite matrices is used in form of the Cholesky decomposition,
the one-sided Jacobi methods are very accurate eigensolvers [5]. Recently, it has been reported
in [8, 9] that the clever implementation of a serial one-sided Jacobi algorithm reached the
efficiency of the QR method. However, the QR method uses a bidiagonalization as a pre-
processing step, which means that the relative accuracy is lost and cannot be recovered using
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the subsequent one-sided Jacobi method. Consequently, the QR method should not be used
in such applications where the high relative accuracy of computed singular values is required
(e.g., the computation of energies of atoms and molecules in quantum physics and quantum
chemistry), and the one-sided Jacobi method is the choice.

This report considers a generalization of the scalar one-sided Jacobi algorithm to the block
case. Working with blocks on a serial computer leads to the better usage of available memory,
especially of cache, thus boosting the data flow and computation. Moreover, the computation
with blocks allows for the higher degree of parallelism. Both strategies have been already
successfully applied in the case of the two-sided parallel block-Jacobi method; see [2, 3, 4].

Next section contains a detailed description of the one-sided block-Jacobi algorithm (OSBJA)
for computing the SVD of a general rectangular matrix A. The emphasis is given to the block-
column partition of A as well as to the block formulation of all orthogonal updates needed
during computation.

Two crucial main ideas with respect to the accelerating of the serial OSBJA is given in sec-
tion 3. The first idea was introduced by Drmač and Veselić in [8, 9] for the serial one-sided
Jacobi method, and by Okša and Vajteršic for the parallel two-sided Jacobi method. It con-
sists of preprocessing a given matrix before its SVD by computing its QR decomposition with
column pivoting (either serial or in parallel), so that the SVD algorithm is then applied to the
triangular factor. The second idea, which uses the cosine-sine (CS) decomposition of certain
block-orthogonal matrix and leads to so-called fast scaled block-orthogonal transformations,
was introduced by Hari in [12]. These two ideas cooperate and the result is the more effi-
cient usage of a fast cache memory and a reduced number of sweeps required for the overall
algorithm’s convergence at given precision.

Section 4 discusses main guidelines for a parallel implementation of the OSBJA. We are espe-
cially interested in distributed systems with the Message Passing Interface (MPI) Standard for
sending/receiving messages. In such parallel environment we describe a possible parallel imple-
mentation of individual phases of the OSBJA indicating the computational and communication
complexities. In section 5 we give an outline of future work.

2 One-Sided Block-Jacobi Algorithm

The OSBJA is suited for the SVD computation of a general complex matrix A of order m ×
n, m ≥ n. However, we will restrict ourselves to real matrices with obvious modifications in
the complex case.

We start with the block-column partitioning of A in the form

A = [A1, A2, . . . , Ar],

where the width of Ai is ni, p ≤ i ≤ r, so that n1 + n2 + · · ·+ nr = n. The most natural choice
is n1 = n + 2 = · · · = nr−1 = n0, so that n = (r − 1)n0 + nr, nr ≤ n0. Here n0 can be chosen
according to the available cache memory, which is up to 10 times faster than the main memory;
this connection will be clear later on.
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The OSBJA can be written as an iterative process:

A(0) = A, V (0) = In,

A(k+1) = A(k)U (k), V (k+1) = V (k)U (k), k ≥ 0. (1)

Here the n× n orthogonal matrix U (k) is the so-called block rotation of the form

U (k) =


I

U
(k)
ii U

(k)
ij

I

U
(k)
ji U

(k)
jj

I

 , (2)

where the unidentified matrix blocks are zero. The purpose of matrix multiplication A(k)U (k) in
(1) is to mutually orthogonalize the columns between column-blocks i and j of A(k). The matrix

blocks U
(k)
ii and U

(k)
jj are square of order ni and nj, respectively, while the first, middle and last

identity matrix is of order
∑i−1

s=1 ns,
∑j−1

s=i+1 ns and
∑r

s=j+1 ns, respectively. The orthogonal
matrix

Û (k) =

(
U

(k)
ii U

(k)
ij

U
(k)
ji U

(k)
jj

)
(3)

of order ni + nj is called the pivot submatrix of U (k) at step k. During the iterative process
(1), two index functions are defined: i = i(k), j = j(k) whereby 1 ≤ i < j ≤ r. At each
step k of the OSBJA, the pivot pair (i, j) is chosen according to a given pivot strategy that
can be identified with a function F : {0, 1, . . .} → Pr = {(l,m) : 1 ≤ l < m ≤ r}. If
O = {(l1, m1), (l2, m2), . . . , (lN(r), mN(r))} is some ordering of Pr with N(r) = r (r− 1)/2, then
the cyclic strategy is defined by:

If k ≡ r − 1 mod N(r) then (i(k), j(k)) = (ls, ms) for 1 ≤ s ≤ N(r).

The most common cyclic strategies are the row-cyclic one and the column-cyclic one, where the
orderings are given row-wise and column-wise, respectively, with regard to the upper triangle
of A. The first N(r) iterations constitute the first sweep of the OSBJA. When the first sweep
is completed, the pivot pairs (i, j) are repeated during the second sweep, and so on, up to the
convergence of the entire algorithm.

Notice that in (1) only the matrix of right singular vectors V (k) is iteratively computed by
orthogonal updates. If the process ends at iteration t, say, then A(t) has mutually highly
orthogonal columns. Their norms are the singular values of A, and the normalized columns
(with unit 2-norm) constitute the matrix of left singular vectors.

One (serial) step of the OSBJA can be described in three parts:

1. For the given pivot pair (i, j), the symmetric, positive semidefinite cross-product matrix
is computed:

Â
(k)
ij = [A

(k)
i A

(k)
j ]T [A

(k)
i A

(k)
j ] =

(
A

(k)T
i A

(k)
i A

(k)T
i A

(k)
j

A
(k)T
j A

(k)
i A

(k)T
j A

(k)
j .

)
(4)
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This requires (ni +nj)(ni +nj − 1)/2 dot products or m (ni +nj)(ni +nj − 1)/2 flops. As

will be soon clear, except for a part of the first sweep, the two diagonal blocks of Â(k) will
be always diagonal. This reduces the flop count to m (ni nj + ni + nj) where m (ni + nj)

comes from the computation of the diagonal elements of Â(k).

2. Â
(k)
ij is diagonalized, i.e., the eigenvalue decomposition of Â

(k)
ij is computed:

Û (k)T Â
(k)
ij Û (k) = Λ̂

(k)
ij (5)

and the eigenvector matrix Û (k) is partitioned according to (3). The matrix Û (k) defines
the orthogonal transformation U (k) in (2) and (1), which is then applied to A(k) and
V (k). Notice that the explicit diagonalization of Â(k) is equivalent to the implicit mutual
orthogonalization of columns between column blocks i and j in A(k), i.e., in (A

(k)
i , A

(k)
j ).

This diagonalization requires (as will be discussed later) on average around 8(ni + nj)
3

flops.

3. Finally, an updating of two block-columns of A(k) and V (k) is required, which requires
2m(ni + nj)

2 flops.

In summary, the kth step of the standard OSBJA requires

Nflop(k) ≈ m(ninj + ni + nj) + 8(ni + nj)
3 + 2m(ni + nj)

2

= 64n3
0 + (9n2

0 + 2n0)n (if m = n = n0r) (6)

flops.

Let us discuss shortly these three parts in terms of the CPU time needed for their computation
on a serial computer. The first part needs the computation of dot products of length m, which
are fast in comparison with matrix multiplications required in the third part. The second part,
the eigendecomposition of Â(k), will be fast provided that we can choose the block width small
enough to perform all needed computations in the cache memory (notice that Â(k) is of the order
only ni + nj). So, the third part of each step in the OSBJA seems to be the most demanding
one.

Notice that the cross-product matrix Â(k) in the second phase is symmetric and positive definite.
Moreover, for larger indices k, the matrix Â(k) will be almost diagonal and we can use, for
example, the two-sided Jacobi method to perform (5). This will ensure that Û (k) and Λ̂

(k)
ij will

be computed with high accuracy; see [5].

When speaking about convergence of the OSBJA, each one-sided block-Jacobi method has its
counterpart, the two-sided block-Jacobi method applied on the cross-product matrix AT A. If
the latter converges to the diagonal matrix Σ2 (notice that AT A is symmetric, positive definite,
so it has positive eigenvalues), then A(k) approaches the set of orthonormal matrices whose
columns are (up to a permutation) the left singular vectors of A. The same accumulation
points has the matrix whose columns are the normalized columns of A(k). Hence, the Euclidean
norms of columns of A(k) converge (in some order) to the singular values of A. At the same
time, V (k) is an orthogonal matrix (by construction) whose columns approach the right singular
vectors of A. Individual singular triplets of A must be recovered from the order in which the
singular values converge, i.e., one has to use an appropriate permutation. In practice, the serial
(and all cyclic) block-Jacobi methods always converge.
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3 Accelerating the One-Sided Block-Jacobi Algorithm

To improve the speed and efficiency of the OSBJA, one can try first to reduce the number
of sweeps required for the convergence of the entire algorithm at given precision. This is the
highest level of improvement that requires in general some sort of preprocessing of an original
matrix A. In subsection 3.1 we describe two steps of the preprocessing, which help to reduce,
sometimes quite substantially, the number of sweeps. Next, we present new ideas of Hari [12],
which reduce the flop count and the CPU time within one step of the OSBJA using a recursive
implementation of so-called fast scaled block-orthogonal transformations.

3.1 Matrix preprocessing

It is well known that the one- or two-sided Jacobi method can be efficiently preprocessed by
the QR factorization of A (usually with the complete column pivoting) followed by the LQ
factorization of R-factor; see [7, 8, 9, 20]. The Jacobi method is then applied to the final L-
factor. This leads to a strong reduction of the total number of Jacobi steps, including a strong
decrease in the number of orthogonal updates of the matrix V (k) of right singular vectors in
(1).

The second preprocessing step initializes certain three matrices (see details in 3.1.2), which are
then iterated during the Jacobi process. Here is the connection with the implementation of
the fast scaled block-orthogonal transformations mentioned above. It also makes all columns
within each column block mutually orthogonal, whereas this property remains invariant during
the whole computation, so that diagonal blocks of the cross-product matrix A(k) in (4) are
themselves diagonal. Consequently, at step k, the the columns need to be orthogonalized only
between two block columns A

(k)
i and A

(k)
j (not within them). Next two subsections contain

details with respect to both preprocessing steps.

3.1.1 QR and LQ factorizations

For a rectangular matrix A of order m× n with m � n, it is a common practice first to apply
the QR factorization prior to the SVD computation, since then we work only with the R-factor
of much lower size n × n. However, in the context of the OSBJA, it was suggested in [8] to
perform two factorizations of an initial matrix A,

A = Q1RP T and R = LQT
2 ,

so that the SVD computation is then applied to the final L-factor. Here Q1 and Q2 are
orthogonal, P is a permutation matrix, R is upper and L lower triangular. The first factorization
is the QR decomposition with column pivoting, the second one is the LQ decomposition of the
R-factor. It is very important that both decompositions preserve the relative accuracy of the
singular values and vectors that will be computed next by the Jacobi process (this is at least
true for the case when AD is well-conditioned for some diagonal matrix D; see [5, 7]). The
number of needed flops is of order mn2.
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Next, the OSBJA starts with the L-factor partitioned into r block-columns, L = [L1, L2, . . . , Lr].
Moreover, the L-factor is almost diagonal, so that the number of Jacobi steps till the convergence
at given precision is highly reduced. In [8, 9] some special pivot strategies were suggested that
operate more frequently in the vicinity of diagonal. This further reduces the number of steps
till the convergence. The experience with the serial implementation shows that in general only
approximately n2/2 Jacobi rotations are needed (although there are matrices, which require
several times more rotations till convergence).

The almost diagonal form of the L-factor also implies that the rotation angles will be small.
This, together with the reduced number of rotations, increases the accuracy of computed sin-
gular values and singular vectors. As recognized by Hari in [12], the Jacobi method applied
to the L-factor can be much faster and accurate than when applied to the original matrix A
without any preprocessing.

The additional important impact of this preprocessing is that the right singular vectors can be
accurately computed a posteriori from the linear system

LV = UΣ,

where UΣ is the accumulation point (i.e., final stage) of Jacobi iterates. Drmač [7] has shown
that L is well-conditioned for the accurate computation of the columns of V . The cost is
around n3/2 flops. This means that in (1) we can discard the orthogonal updating of V (k),
which immediately saves half of flops in the slowest part of the algorithm.

Once we have U, Σ and V , the SVD of A is obtained from:

A = Q1LQT
2 P T = (Q1U)Σ(PQ2V )T . (7)

Now we can summarize the flops that follow from the preprocessing step. We have mn2 flops
for two factorizations, n3/2 flops for the final computing of V and around mn2 + n3 flops from
matrix multiplications required in (7) for computing the final left and right singular vectors
of A. The last two items define the work done in postprocessing rather than in preprocessing.
Altogether, this yields 2mn2 + 1.5n3 flops in addition to the work done in Jacobi iterates.
On the other side, we hope to substantially reduce the number of Jacobi steps needed for the
convergence, and we also discarded the orthogonal updates of right singular vectors during
iterations.

As noted in [12], the methods based on the bidiagonalization require 2mn2−(4/3)n3 flops for the
bidiagonalization and mn2 + n3 flops for updating singular vectors. Thus the additional work
is 3mn2 − n3/3 flops, usually smaller (but not substantially smaller, depending on the relation
between m and n) than for the Jacobi method, however, without being relatively accurate.

3.1.2 Initialization

Recall that once the diagonalization in (5) is performed over all block columns of A, then the

diagonal blocks in each cross-product matrix Â
(k)
ij are themselves diagonal. Hence, it is not

necessary to compute their elements except of the diagonal ones. This computation can be
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arranged into recursion. Let

Γ(k) = diag(Γ
(k)
1 , . . . , Γ(k)

r ) = diag(Â(k)) with Â(k) = A(k)T A(k),

where Γ
(k)
1 , . . . , Γ

(k)
r is the partition inherited from the block-column partition of A(k). At step

k, the diagonal of Â
(k)
ij , which is equal to diag(Γ

(k)
i , Γ

(k)
j ), is transformed and written to Λ̂

(k)
ij .

Hence, Λ̂
(k)
ij = diag(Γ

(k+1)
i , Γ

(k+1)
j ), so that Γ(k) (represented in a computer by the vector γ(k))

can be updated very simply (once we have the eigendecomposition of the cross-product matrix
in (5) and in parallel to updating A(k). To initialize the computation, we apply the following
algorithm after the QR and LQ decompositions to the L-factor L = [L1, L2, . . . , Lr]:

1. for i = 1 : r
2. Â

(0)
ii = LT

i Li;

3. Â
(0)
ii = Q

(0)
ii Γ

(0)
i Q

(0)T
ii ; (spectral decomposition)

4. (A
(0)
i = LiQ

(0)
ii ); (not performed, just an illustration of the connection)

5. end;

Thus the above algorithm initializes three important matrices:

B(0) = [B
(0)
1 , B

(0)
2 , . . . , B(0)

r ] = [L1, L2, . . . , Lr],

Q(0) = diag(Q
(0)
11 , Q

(0)
22 , . . . , Q(0)

rr ),

Γ(0) = diag(Γ
(0)
1 , Γ

(0)
2 , . . . , Γ(0)

r ).

At step k of the Jacobi process, the matrices will be B(k), Q(k) and Γ(k) (in fact the vector γ(k)),
and we will show in next subsection how to update them efficiently.

If n = n0r, then the computation of the step 1 in the above initialization requires around
(n0+1)n2/4 flops. Assuming that the spectral decomposition of symmetric positive semidefinite
matrices in step 2 is done using some sort of the one- or two-sided Jacobi algorithm with,
say, 4 sweeps, we need here around 8n2

0n flops. Altogether, the initialization requires around
(n/4 + 8n0)n0n flops.

This idea of initialization and recursive updating of three various matrices (instead of updating
A(k), see (1)) is due to Hari [12]. We will see in the next subsection that these updates can
be done very efficiently. Moreover, there is a connection at each step k ≥ 0 of the Jacobi
algorithm:

A(k) = B(k)Q(k), Â(k) = A(k)T A(k), Γ(k) = diag(Â(k)). (8)

3.2 Fast scaled block-orthogonal transformations

Now we need to find recursions for the computation of the matrix triplet B(k), Q(k) and Γ(k)

at step k of the Jacobi process. The main idea here is to use small matrices of order ni, nj

or ni × nj for all updates (computed as matrix multiplications), so that these updates can be
done in the fast cache memory; see [12].

Let us assume that at step k we have B(k), Q(k) and Γ(k) fulfilling (8). Then, according to (4),

7



we need to compute the cross-product matrix Â
(k)
ij for the given pivot pair (i, j):

Â
(k)
ij =

(
Q

(k)
ii

Q
(k)
jj

)T (
B

(k)T
i B

(k)
i B

(k)T
i B

(k)
j

B
(k)T
j B

(k)
i B

(k)T
j B

(k)
j

) (
Q

(k)
ii

Q
(k)
jj

)

=

(
Γ

(k)
i Ã

(k)
ij

Ã
(k)T
ij Γ

(k)
j

)
, where Ã

(k)
ij ≡ Q

(k)T
ii (B

(k)T
i B

(k)
j )Q

(k)
jj . (9)

Thus, using the symmetry of Â
(k)
ij , we have to compute only ninj dot products involving columns

of (B
(k)
i , B

(k)
j ) and two additional matrix multiplications—by Q

(k)T
ii from left and by Q

(k)
jj from

right. Altogether, the formation of Â
(k)
ij requires ninj(n + ni + nj) flops.

Next, we compute the eigendecomposition of Â
(k)
ij according to (5). Having the orthogonal

eigenvector matrix Û (k) , Hari [12] proposed to compute its cosine-sine (CS) decomposition

Û (k) =

(
V

(k)
ii

V
(k)
jj

) (
C

(k)
ii −S

(k)
ij

S
(k)
ji C

(k)
jj

) (
W

(k)
ii

W
(k)
jj

)T

≡ V̂ (k) T̂ (k) Ŵ (k)T , (10)

where the matrix blocks V
(k)
ii , C

(k)
ii , W

(k)
ii (V

(k)
jj , C

(k)
jj , W

(k)
jj ) are square of order ni (nj), and

T̂ (k) =

(
C

(k)
ii −S

(k)
ij

S
(k)
ji C

(k)
jj

)
=



Ini−nj
0 0

0 C(k) −S(k)

0 S(k) C(k)

 , if ni ≥ nj,

C(k) 0 −S(k)

0 Inj−ni
0

S(k) 0 C(k)

 , if nj ≥ ni,

(11)

and

C(k) = diag(c
(k)
1 , . . . , c(k)

νij
), S(k) = diag(s

(k)
1 , . . . , s(k)

νij
),

c
(k)
1 ≥ c

(k)
2 ≥ · · · ≥ c(k)

νij
≥ 0, 0 ≤ s

(k)
1 ≤ s

(k)
2 ≤ · · · ≤ s(k)

νij
,

(c(k)
r )2 + (s(k)

r )2 = 1, 1 ≤ r ≤ νij, νij = min{ni, nj}.

Next step in the OSBJA is the multiplication of the pivot block-column matrix (A
(k)
i , A

(k)
j )

by Ûk from the left (see (1)) to get the new iteration (A
(k+1)
i , A

(k+1)
j ). Using (8) and the CS

decomposition of Ûk, the next iteration can be written in the factored form:

(B
(k+1)
i Q

(k+1)
ii , B

(k+1)
j Q

(k+1)
jj ) = (B

(k)
i Q

(k)
ii , B

(k)
j Q

(k)
jj ) V̂ (k) T̂ (k) Ŵ (k)T

= (B
(k)
i (Q

(k)
ii V

(k)
ii ), B

(k)
j (Q

(k)
jj V

(k)
jj )) T̂ (k) diag(W

(k)
ii , W

(k)
jj )T ,

which leads immediately to a recursion for matrices B and Q:

(B
(k+1)
i , B

(k+1)
j ) = (B

(k)
i (Q

(k)
ii V

(k)
ii ), B

(k)
j (Q

(k)
jj V

(k)
jj ) T̂ (k), (12)

Q
(k+1)
ii = W

(k)T
ii , Q

(k+1)
jj = W

(k)T
jj .
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(Recall that the new Γ(k+1) is obtained simply by copying ni + nj eigenvalues from Λ̂
(k)
ij to

appropriate places of Γ(k).) It is immediately seen from (12) that the original number of flops
required for updating in (1) is significantly reduced using the new recursion. First, in the

computation of (Q
(k)
ii V

(k)
ii ) and (Q

(k)
jj V

(k)
jj ), only the small dimensions ni and nj are involved.

Second, once these two matrix multiplications are computed, the update of Bi and Bj requires
the matrix multiplication of the form XY , where X is of order n×ni or n×nj, and Y is square

of order ni or nj. The final update of Bi and Bj requires the matrix multiplication by T̂ (k) from

the left, which is equivalent, due to the special structure of T̂ (k), to simple rotations of columns
of length n. Notice that we have eliminated the dimension m � n, which is the main source
of inefficient updating of original A in (1). The price paid is the recursion of three matrices,
where two of them are updated by simple copying of elements. The main idea in this auxiliary
recursion exploits the fact that the dimensions of blocks can be chosen so that all computations
in this phase can be done in fast (cache) memory.

3.3 Modified algorithm

For clarity, we summarize in this section all three parts of step k of the modified algorithm,
where ‘modified’ refers to using the block matrix recursion (12).

• The first part computes the matrix product Z = B
(k)T
i B

(k)
j where (i, j) is the actual pair

of pivot indices defined by the block ordering. This requires ninjn ≈ n2
0n flops and can be

implemented either using ninj dot products or one matrix multiplication. As discussed
in [12], the last option is several times faster when using the BLAS 3 procedure *GEMM
from the LAPACK.

• In the second part, all computations have to be done in the fast (cache) memory. This
part can be divided into four phases:

1. Computation of Q
(k)T
ii ZQ

(k)
jj , which requires n2

i nj + nin
2
j ≈ 2n3

0 flops and can be
implemented by two calls of the BLAS 3 procedure *GEMM. To assemble the matrix
Â

(k)
ij , we take the appropriate ni + nj elements from the vector γ(k) and copy them

onto diagonal of Â
(k)
ij (these are the diagonal blocks Γ

(k)
i and Γ

(k)
j of Â

(k)
ij ). We also

copy zeros into diagonal blocks of Â
(k)
ij outside its diagonal.

2. Diagonalization (eigendecomposition) of Â
(k)
ij . Here we can choose from several op-

tions that preserve the relative accuracy of singular values and vectors:

– Application of a two-sided Jacobi method with a suitable pivot strategy to Â
(k)
ij

(which is symmetric and positive definite). ‘Optimal’ strategies skip zeros and
small elements(i.e., they are not nullified) and some of them were discussed in
[8, 9]. Such a strategy significantly reduces the number of rotations required for

the convergence. Recall that Â
(k)
ij is of order ni +nj. Hari [12] mentions that for

matrices of order 64, having uniformly or normally distributed elements, only
one sweep (i.e., (ni + nj)(ni + nj − 1)/2 rotations) were needed, and for blocks
generated by the OSBJA maximum three sweeps were needed for convergence.
This is caused by the special structure of Â

(k)
ij where there is a lot of zero elements
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in diagonal blocks at the very beginning of its spectral decomposition. Moreover,
the smaller number of rotations has, in general, good impact on the accuracy of
output data.

– Since the diagonal blocks of Â
(k)
ij are diagonal, and since for larger k the matrix

Â
(k)
ij is almost diagonal, the Mascarenhas strategy described in [18] can be used.

– We can use the Cholesky factorization of Â
(k)
ij followed by the simple one-sided

Jacobi method applied to the factor L
(k)
ij . Details are discussed in [12].

– Use the Cholesky factorization of Â
(k)
ij followed by the Kogbetliantz serial method,

which preserves the triangular structure of L-factor. As shown by Hari and
Matejaš [10], the Kogbetliantz method is relatively accurate for the SVD com-
putation when applied to the triangular factor coming from the QR or Cholesky
decomposition.

In general, the experience from [12] shows that the diagonalization Â
(k)
ij (together

with computing the eigenvector matrix Û (k)) requires around 6(ni + nj)
3 ≈ 48n3

0

flops or less.

3. Computing the CS decomposition of the orthogonal eigenvector matrix Û (k) accord-
ing to (10), and then the matrix products Q

(k)
ii V

(k)
ii and Q

(k)
jj V

(k)
jj . The CS decom-

position requires essentially two SVDs, one for the diagonal block Û
(k)
ii , another for

Û
(k)
jj :

Û
(k)
ii = V

(k)
ii C

(k)
ii W

(k)T
ii , Û

(k)
jj = V

(k)
jj C

(k)
jj W

(k)T
jj ;

then (10) follows with off-diagonal blocks of the middle matrix in form V
(k)T
ii Û

(k)
ij W

(k)
jj

and V
(k)T
jj Û

(k)
ji W

(k)
ii . Usually these blocks are diagonal to working accuracy and define

the diagonal matrices −S
(k)
ij and S

(k)
ji . Only if there are very close diagonal elements

in C
(k)
ii and C

(k)
jj , a special ‘cleansing procedure’ is needed to reliably compute −S

(k)
ij

and S
(k)
ji . This cleansing procedure (see [12]) is also needed in the later stage of

the Jacobi process when Û
(k)
ii becomes close to identity with ‖U (k)

ij ‖2 ≈ ‖U (k)
ji ‖2 ≈√

ε, where ε is the round-off unit. Without cleansing the Jacobi method becomes
stagnant. The CS decomposition with a special cleansing procedure is discussed in
[12].

For the SVD of Û
(k)
ii , one can use, for example, the QR factorization Û

(k)
ii = Q̃

(k)
ii R̃

(k)
ii

followed by the Kogbetliantz method applied to R̃
(k)
ii (or to R̃

(k)T
ii ). Now we show

that both processes, namely the QR factorization of Û
(k)
ii and the SVD of R̃

(k)
ii , can

be used for the computation of the product Q
(k)
ii V

(k)
ii in such a way that V

(k)
ii is not

explicitly needed. First, having Q̃
(k)
ii from the QR decomposition in the factored

from (fast scaled rotations or Householder reflectors), we can apply them directly to

Q
(k)
ii and compute Q̄

(k)
ii = Q

(k)
ii Q̃

(k)
ii . Second, we can apply the (fast scaled) rotations

produced by the Kogbetliantz method directly to Q̄
(k)
ii , so that V

(k)
ii is not explicitly

needed. Thus, at the end we have computed the required matrix product Q
(k)
ii V

(k)
ii .

Obviously, the same strategy can be used to compute Q
(k)
jj V

(k)
jj .

Hari [12] summarized the flops assuming 4 sweeps of the Kogbetliantz method as

follows: (2/3)n3
i flops for R̃

(k)
ii , n3

i flops for Q̄
(k)
ii , 4n3

i flops for C
(k)
ii , 4n3

i flops for V
(k)
ii

10



and 4n3
i flops for W

(k)
ii —in total, around 14n3

i flops for the first SVD. Similarly, we

have around 14n3
j flops for the second SVD. Then we need to compute V

(k)T
ii Û

(k)
ij W

(k)
jj

and V
(k)T
jj Û

(k)
ji W

(k)
ii , which adds 2ninj(ni +nj) flops. Hence, this phase needs in total

around 14(n3
i + n3

j) + 2ninj(ni + nj) ≈ 32n3
0 flops.

Now we can estimate the total number of flops needed in the second part of the modified
algorithm:

ninj(ni + nj) + 6(ni + nj)
3 + 14(n3

i + n3
j) + 2ninj(ni + nj) ≈ 82n3

0 flops.

• Finally, in the third part we have to compute first:

B̃
(k)
i = B

(k)
i (Q

(k)
ii V

(k)
ii ), B̃

(k)
j = B

(k)
j (Q

(k)
jj V

(k)
jj )

and afterwards
(B

(k+1)
i , B

(k+1)
j ) = (B̃

(k)
i , B̃

(k)
j )T̂ (k).

Since the matrix products (Q
(k)
ii V

(k)
ii ) and (Q

(k)
jj V

(k)
jj ) were already computed in the second

part, the computation of (B̃
(k)
i , B̃

(k)
j ) requires only n(n2

i + n2
j) flops. The final matrix

multiplication by T̂ (k) uses the special structure of this matrix (see (11) and can be
implemented using so-called fast scaled rotations using 2n min{ni, nj} flops; details can
be found in [12]. Altogether, the third part of the modified algorithm requires around
n(n2

i +n2
j)+2n min{ni, nj} ≈ 2n(n2

0 +n0) flops. This is to be compared with the standard

algorithm, for which the third part (updating of two block columns of A(k) and V (k))
requires ≈ 8mn2

0; for m = n the modified updating is about 4 times faster. If the standard
algorithm would compute the right singular vectors a posteriori, the saving would be 50
per cent.

In summary, the preprocessing of an original matrix A by QR factorization with column pivoting
together with the recursion applied to three matrices that can be updated in the fast (cache)
memory enables to substantially reduce the number of flops per one iteration step [12]:

Nflop(k) ≈ 82n3
0 + (3n2

0 + 2n0)n. (13)

When m = n, the comparison with (6) shows that we have reduced three times the coefficient
at n2

0n ‘paying the price’ by increasing the coefficient at n3
0 from 64 to 82, i.e. by 28 per

cent. When m � n one step of the modified algorithm can be several times faster than that
of the standard one (despite the fact that we have increased the amount of work in cache)
because the ‘large’ dimension m is not used at all. In addition, due to the concentration of the
Frobenius norm of A towards diagonal by the preprocessing the number of sweeps needed for
the convergence at given precision is also reduced.

3.4 Stopping criterion

The important question is when to stop the Jacobi iterations. If stopped too early, we could
not have the convergence up to given accuracy. When stopped too late, unnecessary sweeps
would be completed spending perhaps much more time than needed.
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For the one-sided block Jacobi method, to define a reliable stopping criterion is more difficult
than for the two-sided block Jacobi method. To understand the problem, let us introduce more
notation to that defined in (9). Let

Â = AT A, D = (diag(Â))1/2, ÂS = D−1ÂD−1,

and for k ≥ 1,

Â(k) = A(k)T A(k) =

 Ã
(k)
11 · · · Ã

(k)
1r

...
...

Ã
(k)T
1r · · · Ã

(k)
rr

 ,

Dk = (diag(Â(k)))1/2 = diag(‖A(k)e1‖, . . . , ‖A(k)en‖) = (Γ(k))1/2,

Â
(k)
S = D−1

k Â(k)D−1
k (scaled matrix).

For any symmetric matrix X,

off(X) =

√
2

2
‖X − diag(X)‖F

is called the departure from diagonal form and equals to the Frobenius norm of its strictly upper
(or lower) triangle. Hari [12] introduced two measures for advancing the Jacobi process:

αk ≡ off(Â
(k)
S ) =

√
2

2
‖Â(k)

S − I‖F,

ωk ≡ off(Â(k)) =

√√√√ p∑
r=1

p∑
t=r+1

‖Ã(k)
rt ‖2

F.

When the Jacobi process converges, all columns of A(k) become more and more orthogonal to
each other so that Â

(k)
S → In as k increases. Notice that αk is the square root of the sum

of squares of cosines of all angles between pairs of columns of A(k) (the scaling by D−1
k is

substantial here!). Hence, αk is the appropriate measure of convergence; if αK ≈ 0 for some K
we should stop the iterations. Since the computation of αk involves n(n − 1)/2 dot products
and the normalized columns of A(k) can be computed with an absolute error as large as nε, the
convergence criterion may have the form

αk ≤ n2ε. (14)

The problem with (14) is the updating of αk; we need to scale the columns of A(k) by their
norms and then to compute n(n− 1)/2 dot products. This requires about n3/2 flops and is too
expensive to be computed at the end of each sweep. On the other hand, the updating of ωk is
cheap. Because off(Ã

(k)
rr ) = 0 = off([Â

(k)
S ]rr) for all k ≥ 0 and for all r, 1 ≤ r ≤ p, one has at

each step of the Jacobi iteration under any pivot strategy

ω2
k+1 = ω2

k − ‖Ã(k)
i(k),j(k)‖

2
F, k ≥ 0. (15)

This recursive update can be extended to sweeps. Each full block sweep consists of N =
r(r − 1)/2 block steps, so that at the end of sweep t + 1 one has

ω2
(t+1)N = ω2

tN −
(t+1)N−1∑

k=tN

‖Ã(k)
i(k),j(k)‖

2
F, t ≥ 0. (16)
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At the beginning (after both steps of preprocessing), one can compute ω0 and, in addition, the

initial value ‖Â(0)‖ =

√
2ω2

0 +
∑

l(γ
(0)
l )2. At step k, the matrix block Ã

(k)
i(k),j(k) is at disposal

and is nullified so that the sum on the left side of (16) can be easily computed at cost of
n(n− 1)/2− r n0(n0 − 1)/2 = (n− n0)n/2 additional flops.

The numerical behavior of the recursion (16) was analyzed in [12]. Assuming the quadratic
convergence of the modified method (this is to be proven yet), the quadratic reduction of ωtN

will begin after, say, t = t0, which would lead to

ω(t+1)N ≤ c ω2
tN , ∀t ≥ t0, (17)

where the constant 1/c is proportional to the minimum distance in the spectrum of Â(0) [22].
Combination of (16) and (17) gives

νtN ≡

√√√√(t+1)N−1∑
k=tN

‖Ã(k)
i(k),j(k)‖2

F = ωtN + O(ω2
tN), t ≥ t0, (18)

i.e., νtN can serve as the estimate of ωtN in the regime of quadratic convergence. Note that νtN

is computed at the end of sweep t + 1.

When the quadratic convergence begins and ω2
k is computed according to (15), a severe cancel-

lation can take place and ω2
k can become quickly negative. Hari [12] shows that the error in the

recursive computation of ωtN can be as large as (n2/2)(γ
(tN)
1 )2ε, where γ

(tN)
1 is the maximum

diagonal element of Â(k) approximating the spectral norm ‖Â(k)‖2. On the other hand, the
computation of νtN according to (18) has a small relative error. As soon as ω2

tN , computed

recursively according to (15), becomes as small as (n2/2)(γ
(tN)
1 )2ε, it has probably lost all its

significant digits and is not reliable anymore. Therefore, it is worth to monitor both parame-
ters, ω2

tN and νtN , because νtN is a reliable estimate of the true value of ω2
tN when the latter

parameter becomes very small (or even negative). At the end of sweep t + 1 one has according
to (17) ω(t+1)N / c ν2

tN . Hence, if

νtN ≤ n

√
γ

((t+1)N)
1 ε (19)

we have
ω(t+1)N / c n2 γ

((t+1)N)
1 ε ≈ c n2 ‖Â((t+1)N)‖2 ε ≤ c n2 ‖Â((t+1)N)‖F ε,

so that ω(t+1)N/‖Â((t+1)N)‖F is as tiny as c n2 ε. Therefore, (19) gives the stage at which one can
compute α(t+1)N using n3/2 flops and check the convergence of the Jacobi iterations according
to (14).

Now there are two possibilities. Either (14) holds and we stop the process, or the stopping
criterion is not fulfilled and we need to estimate the number of sweeps till the convergence. For
this purpose we would need the quadratic convergence result for α(t+1)N similarly to the simple
(not block) one-sided Jacobi method (see [19]), which is not proved at the moment. Hence, we
can prescribe a small number of sweeps (say, 2) and then check the parameter αk again.
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4 Parallelization Strategy

Next we describe main ideas behind the parallelization of one-sided block-Jacobi SVD method.
We start with discussion of data layout and parallel block ordering. Afterwards, we shortly
discuss a possible parallel implementation of all phases of the algorithm.

4.1 Data layout, preprocessing and block parallel ordering

In this section we are interested in the parallelization of the above algorithm assuming the
distributed paradigm of parallel processing. In particular, we would like to implement the
OSBJA using the Message Passing Interface (MPI) and BLACS libraries for communication,
and the ScaLAPACK library for a distributed computation. The serial computation inside each
processor can be performed using the standard LAPACK library.

Since the cross-product matrix Â
(k)
ij in (4) is to be computed at the beginning of the OSBJA

using two block columns, to keep the interprocessor communication at minimum in this stage
of computation it is natural to assume that this cross-product is made in one processor (so that
no distributed matrix-matrix multiplication is necessary, which would slow-down the algorithm
considerably). Hence, having p processors, the natural data layout consists of two block columns
per processor, i.e. the blocking factor (the number of block columns) is r = 2p. At the
beginning, we can assign two consecutive block columns to consecutive processors. Notice that
the similar data layout was used in [2, 3, 4] for the two-sided block-Jacobi method.

At the beginning, we have a distributed original matrix A with two block columns per processor.
Then the first preprocessing step is needed. We compute the QR factorization of A with
column pivoting (QRFCP) followed by an optional LQ factorization (LQF) of the R-factor. In
particular, the QRFCP and the LQF can be implemented by the ScalAPACK’s routine PDGEQPF
and PDGELQF, respectively.

The second preprocessing consists of the initialization that consists of a spectral decomposition
of p diagonal blocks of the cross-product matrix Â(0) = LT L (when using two factorizations in
the preprocessing); see those 5 steps at the beginning of section 3.1.2. This means that each
processor that stores two block columns i and j will compute serially exactly two cross-products
Â

(0)
ll = LT

l Ll, l = i, j and then, again serially, two spectral decompositions of two symmetric,

positive definite matrices Â
(0)
ll . Recall that we need to preserve a high relative accuracy, so

that these spectral decompositions can be computed, e.g., by the Kogbetliantz method—see
remarks in section 3.3.

Having diagonalized the diagonal blocks of the cross-product matrix Â(0), next we need to
choose r pivot pairs (i, j) that define r subtasks, which can be computed in parallel. This
means to assign one pivot pair per one processor, and to move (at most) two block columns
with block indices equal to the pivot pair to that processor. This data movement must be
repeated at the beginning of each parallel step. In other words, we need to design a proper
parallel block ordering.

In the past, the parallel orderings were designed mostly for the scalar Jacobi method and
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perhaps the best discussion is provided in [16]. In those days, some 20 years ago, the empha-
sis was given to the requirement that the processors should exchange their elements on the
nearest-neighbor basis, and the amount of communicated data should be minimalized. Today,
working with modern parallel architectures, the requirement of the nearest neighbor commu-
nication is not so important, whereas it is still useful to keep the amount of exchanged data
at minimum due to the start-up time and transfer time per one double variable needed for the
synchronous/asynchronous data transfer, which can be several orders of magnitude larger than
that for computation. Luk and Park [16] analyzed the caterpillar-track and caterpillar-tractor
orderings, odd-even ordering, round-robin ordering. They showed that they are equivalent for
n odd or n even (n is the matrix order). However, the main disadvantage of these parallel
orderings (with exception of the round-robin ordering) is the low exploitation of the computa-
tional power: only at each second stage there are n/2 parallel rotations, which ‘cover’ all n/2
processors (for simplicity, we take here n even). The round-robin parallel ordering is optimal:
for n even, each stage consists of exactly n/2 parallel rotations, which can be implemented ex-
actly on n/2 processors. Unfortunately, the convergence of the Jacobi method with the parallel
round-robin ordering is not guaranteed for n even. As was shown in [17], there exists a matrix
of even order (albeit with a very special structure), for which, when applying the one-sided
Jacobi SVD algorithm with the round-robin ordering, its off-diagonal norm does not converge
to zero (it stagnates).

All above mentioned parallel scalar orderings can be easily and directly extended to the block
case. Recall that our blocking factor r = 2p is even (p is the number of processors). With
respect to the convergence of parallel block-Jacobi SVD algorithms, the actual situation can
be described as ‘terra incognita’. We know only one paper [13], which proves the global con-
vergence of a serial block-oriented quasi-cyclic Jacobi method for symmetric matrices. To our
best knowledge, there are no global convergence results for any parallel block-Jacobi method.
Therefore, we should try the block version of the most-efficient scalar parallel ordering—namely,
the round-robin ordering and conduct extensive numerical experiments. Alternatively, we could
try to somehow adapt our dynamic ordering that was designed for the parallel two-sided block-
Jacobi algorithm in [4].

4.2 Individual phases of the algorithm

When two block columns are assigned to each processor, all computations in the modified
algorithm (see section 3.3) are performed in parallel for p = r/2 subtasks. No inter-processor
communication of any kind is needed during this computation, because all computations and
updates are local. Recall that assigning a pivot pair (i, j) to a processor actually means (in the
worst case) the transfer of matrix blocks Bi, Bj, Qii, Qjj and vectors γi and γj to that processor.
It is therefore useful to minimize the amount of transferred data by choosing a suitable block
parallel ordering, which , for example, would transfer only one half of data (i.e., essentially only
one block column).

In contrast to local computations in the modified algorithm, the implementation of the stopping
criterion requires some sort of global communication between processors. The update of ω2 in
(16) and of ν in (18) requires the local computation of the squared Frobenius norm of each
nullified matrix block in each processor, then the global sum of local squares and, finally,

15



the broadcast of an updated value to all processors. This can be implemented using routines
MPI ALLREDUCE and MPI ALLGATHER from the ScaLAPACK. The computation of α is even more
complex, because one needs to scale the columns and rows of B by the values stored in vector
γ. This means that all elements of vector γ must be known to all processors (the routine
MPI ALLGATHERV), and, after local scaling, the Frobenius norm of a whole scaled matrix must
be computed from the local Frobenius norms (routines MPI ALLREDUCE and MPI ALLGATHER).

5 Conclusions

We have summarized and analyzed in some detail recent new ideas for accelerating the serial
one-sided block-Jacobi method. The most important features of the modified algorithm are:
the preprocessing of an original matrix by the QRF with column pivoting (with the optional
LQF of R-factor), working with matrix blocks rather than with matrix elements, the special
initialization, the block-matrix recursion and the CS decomposition. The analysis of a possible
parallelization strategy is also provided. In the near future, we plan to implement the parallel
one-sided block-Jacobi algorithm with all accelerating features on a parallel computer with
distributed memory.
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