
New Clique-Based Parallel Orderings for the
Block-Jacobi EVD/SVD Algorithm

Gabriel Okšaa Marián Vajteršic

aMathematical Institute, Department of Informatics, Slovak Academy of Sci-
ences, Bratislava, Slovak Republic

Technical Report 2006-05 December 2006

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series

New Clique-Based Parallel Orderings for the
Block–Jacobi EVD/SVD Algorithm

Gabriel Okša∗ and Marián Vajteršic†

Abstract. We propose a new method for finding a parallel ordering needed in the parallel
two-sided block-Jacobi EVD/SVD method. For a given matrix A, partitioned into block columns
and block rows, such an ordering defines the subproblems that are solved in parallel in each par-
allel iteration step. Our approach is based on modeling the matrix block partition as a complete,
edge-weighted graph, where the weight of edge (i, j) is defined as the sum of squares of Frobenius
norms of the off-diagonal blocks Aij and Aji. The distinction between the physical and logical
blocking factors enables to compose the SVD subproblems of varying size by using the contexts
of processors under the Message Passing Interface paradigm. We show that finding the ordering
that maximalizes the off-diagonal Frobenius norm of covered matrix blocks is equivalent to find-
ing the partition of a complete graph into disjunct cliques of a given size where the total sum
of all weights through all cliques is maximized. Since this task belongs to the class of NP-hard,
we have designed and implemented a serial genetic algorithm for solving this problem approx-
imately. We report first numerical results using 12 processors and well-conditioned matrices
with a multiple minimal singular value of orders from 1000 to 10000.

1 Introduction

The computation of a singular value decomposition (SVD) belongs to the most intensive com-
putational tasks in the numerical linear algebra. Its application includes the signal and image
processing, latent semantic indexing, analysis of biology-based arrays in the gene research, etc.
Among many other approaches, one- and two-sided block Jacobi SVD algorithms for an arbi-
trary (complex or real) matrix are well-known since the last quarter of the 20th century. They
are based on the decrease of the Frobenius norm of off-diagonal matrix blocks by means of
one- or two-sided unitary (orthogonal) transforms which diagonalize the smaller 2-by-2 block
subproblems.

The order in which the individual subproblems are solved is important for the convergence
of the Jacobi algorithm. In principle, each off-diagonal block has to be nullified during the
computational process. In this context, the ordering of subproblems is a prescribed, static

∗Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Repub-
lic, email: Gabriel.Oksa@savba.sk.

†Department of Computer Sciences, University of Salzburg, Salzburg, Austria, email: marian@cosy.sbg.ac.at.

list according to which the off-diagonal matrix blocks are combined. During one sweep of the
algorithm, each off-diagonal matrix block is nullified exactly once.

In the past, a large effort has been devoted to design many orderings and to investigate their
convergence properties. However, for the parallel SVD computation on p processors, it is
desirable to find such orderings that enable to solve p subproblems in parallel with an optimal
data re-distribution between processors. This task was solved in papers [2, 3, 4] for distributed
memory systems.

The main disadvantage of any serial or parallel block Jacobi algorithm with a static ordering
is the fact that it does not take into account the actual status of a matrix under consideration.
It may happen that some off-diagonal blocks with too small Frobenius norms are combined
during one iteration step so that the decrease of the overall off-diagonal Frobenius norm is
not optimal. On the other hand, one would like to decrease the off-diagonal norm as much as
possible in each iteration step because this approach would lead to the (substantial) reduction
of the number of iteration steps needed for the convergence.

Based on these considerations, we have designed, implemented and tested the parallel two-
sided block-Jacobi algorithm with the so-called dynamic ordering of subproblems (see [5]). On
a parallel computer with p processors, one parallel iteration step corresponds to p serial iteration
steps. Then the task of decreasing the Frobenius norm of the off-diagonal blocks as much as
possible can be formulated in terms of graph theory as the maximum-weight perfect matching
problem. The nodes of the complete graph are numbered from 0 tol− 1, where l is the blocking
factor for the column-wise partition of matrix A, and the edge (i, j), i < j has the weight equal
to the sum of the Frobenius norms of matrix blocks Aij and Aji. In [5], the complexity of the
whole parallel algorithm was analyzed in detail. Especially, it was shown that the complexity
of the greedy approach for the solution of the maximum-weight perfect matching problem is of
order O(n2/p+p2 log p) per one iteration step, whereas the complexity of 2-by-2 SVD problems
including the matrix multiplications is of order O(n3/p3 + n3/p2) per iteration step. Hence,
the solution of the maximum-weight perfect matching problem does not represent any large
overhead when compared with the number of arithmetic operations needed for the local SVD
in each processor.

In this paper, we develop the concept of dynamic ordering further. Our new strategy for
accelerating the convergence of the parallel Jacobi SVD algorithm is based on the distinction
between the physical and logical blocking factor. This distinction enables to work with the
static data distribution on processors and to create, at the beginning of each iteration step,
an actual set of so-called contexts using the Message Passing Interface (MPI) paradigm of
parallel processing. Each context contains a given number of processors which co-operate at
the solution of one SVD sub-problem. The contexts are produced as a result of an approximate
solution of another problem in the graph theory—namely, the maximum-weight decomposition
of an edge-weighted, complete graph into a given number of cliques (i.e., complete sub-graphs).
Since this problem in NP-hard, we have designed and implemented the genetic algorithm for
its approximate solution.

The paper is organized as follows. In Section 2 we recall the basic features of dynamic ordering in
the parallel block-Jacobi method. New clique-based ordering is described in detail in Section 3
and the new genetic serial algorithm in Section 4. The whole SVD algorithm was implemented

2

on a cluster of personal computers using the MPI communication library. We report first results
from our numerical experiments in Section 5. Finally, Section 6 contains conclusions and an
outlook of future work.

Throughout the paper, ‖A‖F denotes the Frobenius norm of a matrix A, a:j is the jth column
of A, ‖a:j‖ is its Euclidean norm, and κ is the condition number of A defined as the ratio of
its largest and smallest SV. By Ai1:i2, j1:j2 we denote the sub-matrix of A consisting of rows
i1, . . . , i2, and columns j1, . . . , j2.

2 Parallel algorithm with dynamic ordering

We mention only briefly basic constituents of the parallel two-sided block-Jacobi SVD algorithm
(PTBJA) with dynamic ordering; details can be found in [5].

The parallel algorithm for processor me, me = 0, 1, . . . , p − 1, can be written in the form of
Algorithm 1.

Algorithm 1 Parallel block-Jacobi SVD algorithm with dynamic ordering

1: U = Im

2: V = In

3: (i, j) = (2 me, 2 me + 1)
4: while F (A, `) ≥ ε do
5: update(W)
6: ReOrderingComp(i, j,W, me) → dest1 , dest2 , tag1 , tag2
7: copy(Ai, Ui, Vi, i) → Ar, Ur, Vr, r
8: copy(Aj, Uj, Vj, j) → As, Us, Vs, s
9: send(Ar, Ur, Vr, r, dest1 , tag1)

10: send(As, Us, Vs, s, dest2 , tag2)
11: receive(Ai, Ui, Vi, i, 1)
12: receive(Aj, Uj, Vj, j, 2)
13: if F (Sij, `) ≥ δ then
14: . computation of Xij and Yij by SVD of Sij

15: SVD(Sij) → Xij, Yij

16: . update of block columns
17: (Ai, Aj) = (Ai, Aj) · Yij

18: (Ui, Uj) = (Ui, Uj) ·Xij

19: (Vi, Vj) = (Vi, Vj) · Yij

20: else
21: Xij = I(m/p)

22: end if
23: AllGather(Xij, i, j) → XX(t) = (Xrs, r, s), t = 0, 1, . . . , p− 1
24: . update of block rows

3

25: for t = 0 to p− 1 do

26:

(
Ari Arj

Asi Asj

)
= XH

rs,t ·
(

Ari Arj

Asi Asj

)
27: end for
28: end while

end

When using p processors and the blocking factor ` = 2p, a given matrix A is cut column-wise
and row-wise into an `× ` block structure. Each processor contains exactly two block columns
of dimensions m×n/` so that `/2 SVD subproblems of block size 2× 2 are solved in parallel in
each iteration step. This tight connection between the number of processors p and the blocking
factor ` can be released (see [6]). However, our experiments have shown that using ` = 2p
ensures the least total parallel execution time in most cases.

At the beginning of each parallel iteration step, it is necessary to map one 2 × 2 block SVD
subproblem to each of p processors. This can be achieved by some type of ordering. The
so-called dynamic ordering is based on the maximum-weight perfect matching that operates
on the `× ` updated weight matrix W using the elements of W + W T , where (W + W T)ij =
‖Aij‖2

F + ‖Aji‖2
F. Details concerning the dynamic ordering can be found in [5].

Figure 1 depicts an example of matching on a complete graph constructed for p = 3 processors,
i.e., using the block factor ` = 2p = 6. In this case the index pairs (1, 6), (2, 3) and (4, 5)

1V V

V

VV

V6

5 4

3

2

Figure 1: Maximum-weight perfect matching for ` = 6 (p = 3).

were matched so that the first 2× 2 SVD subproblem is given by matrix blocks 11, 66, 16, 61,

4

the second one by 22, 33, 23, 32, and the last one by 44, 55, 45, 54. Based on the location
of matrix blocks in processors during a previous iteration step, current blocks for each SVD
subproblem must be grouped in some processor. This requires a point-to-point communication
of various extent; in [6] an optimal communication algorithm was designed for minimalization
the communication overhead.

After grouping matrix blocks in each processor, the kernel operation is the SVD of 2× 2 block
subproblems

Sij =

(
Aii Aij

Aji Ajj

)
, (1)

where, for a given pair (i, j), i, j = 0, 1, . . . , `− 1, i 6= j, the unitary matrices Xij and Yij are
generated such that the product

XH
ij Sij Yij = Dij

is a block diagonal matrix of the form

Dij =

(
D̂ii 0

0 D̂jj

)
,

where D̂ii and D̂jj are diagonal.

The termination criterion of the entire process is

F (A, `) =

√√√√ `−1∑
i,j=0, i6=j

‖Aij‖2
F < ε , ε ≡ prec · ‖A‖F , (2)

where ε is the required accuracy (measured relatively to the Frobenius norm of the original
matrix A), and prec is a chosen small constant, 0 < prec � 1.

The subproblem (1) is solved only if

F (Sij, `) =
√
‖Aij‖2

F + ‖Aji‖2
F ≥ δ , δ ≡ ε ·

√
2

` (`− 1)
, (3)

where δ is a given subproblem accuracy. It is easy to show that if F (Sij, `) < δ for all i 6= j
then F (A, `) < ε, i.e., the entire algorithm has converged.

After the embedded SVD is computed, the matrices Xij and Yij of local left and right singular
vectors, respectively, are used for the local update of block columns. Then each processor sends
its matrix Xij to all other processors, so that each processor maintains an array of p matrices.
These matrices are needed in the orthogonal updates of block rows.

From the implementation point of view, the embedded SVD is computed using the procedure
ZGESVD from the LAPACK library while matrix multiplications are performed by the procedure
ZGEMM from the BLAS (Basic Linear Algebra Subroutines). The point-to-point as well as
collective communications are realized by the Message Passing Interface (MPI).

5

3 New clique-based block ordering

In contrast to the dynamic block ordering with a fixed blocking factor ` = 2p, we now propose
a more flexible scheme which allows to create larger SVD sub-problems to be solved in parallel.

Suppose a matrix A is divided into p block columns so that each processor owns exactly one
block column. For a fixed number of processors this is a fixed physical blocking factor. In
addition, the matrix can be considered divided into p block rows (at least virtually) so that we
can work with blocks Aij of matrix A. Numerical experiments in [5] have shown that, for a given
matrix A, the number of parallel iteration steps needed for the convergence increases almost
linearly on the blocking factor. Hence, to decrease the actual blocking factor we are dealing
with in the computation (i.e., to increase the size of each SVD subproblem), one can build up
a (variable) logical blocking factor ` over the physical one. In this case the matrix blocks are
physically distributed over processors and the task is to construct larger logical blocks in each
iteration step so as to maximize the decrease of the Frobenius norm of off-diagonal blocks.

This approach can be also formulated in the language of graph theory. Suppose that we work
with a logical blocking factor ` which is connected to the physical blocking factor p via ` = p/r
for some integer r. Consider a complete graph with p nodes where the edge (i, j), i < j, has
the weight equal to the sum of the Frobenius norms of matrix blocks Aij and Aji. Notice
that the blocks on the level of physical blocking factor p are considered for the construction
of the complete graph. In one parallel iteration step, ` local SVDs are computed in parallel
where each SVD subproblem is composed of r(r − 1) off-diagonal blocks of A (together with r
corresponding diagonal blocks) that are given by the physical blocking factor p. To decrease the
off-diagonal Frobenius norm of A maximally is equivalent to finding the partition of complete
graph onto ` disjunct cliques of size r where the weight of cliques (i.e. the sum of weights
through the edges belonging to cliques) is maximized. Notice that this task is a generalization
of the maximum-weight perfect matching problem on a complete graph which we have already
used above. However, a huge step in the computational complexity arises. While the maximum-
weight perfect matching problem on a complete graph has an optimal polynomial algorithm for
its solution, the maximum-weight perfect clique problem on a complete graph with the size of
each clique larger than 2 is NP-hard.

To illustrate the creation of cliques from a complete graph, Figure 2 depicts the decomposition
of a complete graph with p = 6 vertices (processors) into 2 cliques, each one of size r = 3. This
decomposition defines two triples of indices, i.e., two SVD subproblems which are to be solved
in parallel. The first SVD subproblem is given by a triple (1, 3, 5), so that processors 0, 2 and
4 are involved in its solution via one context. Note that processor i contains the whole i-th
block column of matrix A. Therefore, the data within this first context is composed of matrix
blocks 11, 31, 51 (delivered by processor 0), 13, 33, 53 (delivered by processor 2), and 15, 35, 55
(delivered by processor 4). Similarly, the second context is composed of processors 2, 4, 6 which
deliver matrix blocks 22, 42, 62 (processor 1), 24, 44, 64 (processor 3) and 26, 46, 66 (processor
5). Hence, in general, the processors are divided in p/r disjunct contexts, where the number
of contexts is equal to the number of cliques. Each context is responsible for solving one SVD
subproblem. Note that this SVD subproblem is of block size r × r where r is the size of a
clique. It is also clear that for r = 2 we get the maximum-weight perfect matching; however,
now each processor contains only one block column so that even for r = 2 two processors have

6

V V

V

VV

V6

5 4

3

21

CLIQUE 1: INDICES (1, 3, 5) (blocks and processors)

CLIQUE 2: INDICES (2, 4, 6) (blocks and processors)

Figure 2: Clique-based block ordering for p = 6, r = 3.

to collaborate in solving one SVD subproblem.

It turns out that an important parameter with respect to the convergence of the whole algorithm
is the portion of off-diagonal blocks of matrix A covered by all contexts in one parallel iteration
step. If all off-diagonal blocks were covered, the algorithm would converge in one (outer)
iteration. Using the physical blocking factor p, there are together p(p− 1) off-diagonal blocks.
In one iteration step, there are p/r cliques where each clique covers r(r−1) off-diagonal blocks,
so that there are together p(r − 1) off-diagonal blocks covered. Hence, the covered portion of
off-diagonal blocks is given by

pcov =
r − 1

p− 1
,

which is the increasing function of r (when p is fixed). The minimum value of r is 2–each clique
is of size 2 (matching) and there are p/2 contexts (cliques), but only 1/(p − 1) off-diagonal
blocks are nullified in each parallel iteration step. Conversely, the maximum value of r is p/2–
we have only 2 contexts (cliques), but each clique has a maximal possible size–namely, p/2, and
the covering of off-diagonal blocks in each parallel iteration step is also maximal: pcov = p−2

2(p−1)
.

Thus one can expect more parallel iteration steps needed for the convergence in the former case
than in the latter.

4 Genetic algorithm for the clique-based block ordering

To solve the NP-hard problem approximately, we have designed and implemented a serial
genetic algorithm for finding the cliques, which is called in processor 0 at the beginning of each
parallel iteration step in the two-sided parallel block-Jacobi method. This partition into cliques

7

provides the ordering of off-diagonal matrix blocks, which is then broadcasted to all processors.
Processors are then grouped into ` contexts, each context having r processors. One context is
responsible for solving one SVD sub-problem of the block size r × r.

Now we shortly describe the main constituents of our genetic algorithm. The first thing to be
solved is the representation of a decomposition of complete graph with p vertices into ` = p/r
disjunct cliques where each clique is of size r. This is done in the form of a two-dimensional
(2D) binary string (matrix) of dimensions ` rows × p columns–such table is called a genome.
Each row of a genome encodes one clique in the form of a 1D binary string of length p, whereby
the value 1 at position i means that the vertex i is contained in a given clique. Note that each
row of a genome must contain exactly r 1s and each column of a genome must contain exactly
one 1. Such a genome is called valid, because it encodes (as a whole) one valid decomposition
of a complete graph into disjunct cliques.

Next we must somehow evaluate the quality of a genome. In the framework of the theory of
genetic algorithms it means to compute the score of a genome. In our case the quality of a
genome is interpreted as the total weight of all cliques encoded in that genome. Recall that the
complete graph is edge-weighted, whereby the weight of edge (i, j) is given by ‖Aij‖2

F + ‖Aji‖2
F.

Based on the binary encoding of each clique in a genome, we can compute the weight of each
clique individually and then the score of a genome as the sum of weights of all cliques present
in that genome. Recall that we want to find the maximum-weight decomposition of a complete
graph into disjunct cliques. This gives us the criterion for judging the quality of a genome: the
greater its score, the higher its quality.

A genetic algorithm works with a population of genomes and the population size is its one
parameter. At the beginning of a solution process this population is created randomly, each
genome is evaluated by its score, and then the evolution phase begins. Two current genomes
(parents) meet in the crossover and produce two new genomes (a son and a daughter) with
some probability pcr. In our case, to maintain the quality of best genomes reached during the
computation, a son is always a copy of the better parent, i.e., of the parent with higher score. A
daughter is created from both parents by using the cycle through the individual genes (cliques)
of both parents and copying the better gene (i.e., the clique with higher score) from a given
pair of genes into a daughter. Of course, this copy may lead to a genome which is not valid
since the cliques, chosen from two parents, may not be disjunct. Therefore each daughter is
checked for validity and if not valid it is repaired. Finally, its score is evaluated.

To keep some level of random changes in genomes, we use the mutation of a genome. Any gene
in a given genome can be changed into its opposite value randomly with a given probability pmt.
Of course, this change creates a genome which is not valid, so that it must be repaired. Note
that the mutation changes randomly the score of a genome and it can also decrease it. Hence
the mutation, in some sense, acts against the selection of best genomes in the crossover function
and prevents the genetic algorithm from reaching the steady-state too soon. (The steady-state
can be understood as a population of genomes with a small dispersion of their scores, so that
one cannot expect a substantial increase of a score in future generations.)

Usually a genetic algorithm runs for a given number of generations of genomes. When finished,
the best genome (i.e., the one with the highest score) is picked up. In our case, the best
genome represents the decomposition of a complete graph into disjunct cliques with the highest

8

achieved total weight. Of course, this solution is only an approximation of a maximum-weight
decomposition of a complete graph into cliques. What we hope for is that our genetic algorithm
will produce the solution which is not far from the optimum.

The serial genetic algorithm for the maximum-weight clique partition has been implemented in
C++ using the free available library GALIB (v.2.4.6) from MIT, USA. A typical run on pro-
cessor 0 at the beginning of each parallel iteration step was defined by population size = 20,
number of generations = 104, pcr = 0.8 and pmt = 0.01. The best genome (which represents
the current partition of a complete graph into disjoint cliques) was broadcast to all remaining
processors. Based on this information, ` actual contexts were created and, subsequently, ` SVD
subproblems were solved in parallel.

5 Implementation and experimental results

The cluster of PCs consisted of 36 nodes arranged in a 6×6 two-dimensional torus. Nodes were
connected by the Scalable Coherent Interface (SCI) network; its bandwidth was 385 MB/s and
latency < 4µs. Each node contained 2 GB RAM with two 2.1 GHz ATHLON 2800+ CPUs,
while each CPU contained a two-level cache organized into a 64 kB L1 instruction cache, 64
kB L1 data cache and 512 kB L2 data cache.

All computations were performed using the IEEE standard double precision floating point
arithmetic with the machine precision εM ≈ 1.11×10−16. By default, the constant prec = 10−13

was used for the computation of ε and δ (see Eqs. (2) and (3)). The number of processors p
was p = 12, and the matrix A was of order form n = 1000 to n = 10000 have been used.

Matrix elements in all cases were generated randomly, with a prescribed condition number κ and
a known distribution of SVs 1 = σ1 ≥ σ2 ≥ · · · ≥ σn = 1/κ. More precisely, A = Y DZT , where
Y and Z were random orthogonal matrices with their elements from the Gaussian distribution
N(0, 1), and D was a diagonal matrix with a prescribed distribution of SVs on its main diagonal.

With respect to κ, we present here the results for well-conditioned matrices with κ = 10 and
with a multiple minimal SV with σ1 = 1 and σ2 = σ3 = · · · = σn = κ−1. It is well known that
the SVD of matrices with multiple or clustered SVs is harder to compute as compared to the
case of well-separated SVs.

Numerical computations were performed using standard numerical libraries, either from lo-
cal (LAPACK) or distributed (ScaLAPACK) software packages. Collective communication
between processors was performed using the communication libraries BLACS (Basic Linear
Algebra Communication Subroutines) and MPI.

Results of our numerical experiments are summarized in Table 1. The first column denotes
the matrix order. The the results for two extreme cases are reported using 2 and 6 cliques,
respectively, in each parallel iteration step. For each number of cliques the results are presented
in three columns. The first column contains the number of parallel iteration steps needed for
convergence, the second one contains the total parallel execution time Tp in seconds, and the
third one the percentage of Tp spent in the serial genetic algorithm executed only in processor

9

Table 1: Performance for p = 12, prec = 10−13, κ = 10, multiple minimal SV. Tp is in seconds,
RGA = (TGA/Tp) ∗ 100.

2 cliques 6 cliques
n niter Tp RGA niter Tp RGA

1000 37 98.8 4.3 409 866.1 7.5
2000 39 463.5 1.0 416 1544.8 4.2
3000 38 1393.3 0.3 406 3922.6 1.6
4000 36 3084.8 0.1 402 8054.4 0.8
5000 37 6144.0 0.1 403 15101.6 0.4
6000 37 9994.2 < 0.1 427 25951.0 0.2
7000 37 15926.5 < 0.1 412 39925.8 0.2
8000 35 23757.1 < 0.1 423 61874.0 0.1
9000 37 34040.0 < 0.1 417 85072.0 < 0.1

10000 38 56532.5 < 0.1 431 125658.6 < 0.1

0.

With respect to the number of parallel iteration steps, there is more than one order difference
between 2 cliques and 6 cliques. In the previous section we have predicted the now observable
trend (also for 3 and 4 cliques, not shown here) that the number of parallel iteration steps
needed for the convergence will increase with increasing number of cliques due to the decreasing
number of off-diagonal blocks covered in each parallel iteration step. However, there is more
than tenfold increase of this number between 2 and 6. Clearly, the choice of six cliques is
acceptable neither from the point of view of parallel iteration steps needed for the convergence,
nor from the point of view of Tp. At the moment, we cannot answer the question of why is
the deterioration of performance so large when using progressively larger number of cliques.
We suspect that the quality of our genetic algorithm itself substantially deteriorates with an
increasing number of cliques, but we need more experiments and analyses to document it.

The portion of Tp spent in the serial genetic algorithm decreases with an increasing matrix
dimension and reaches less than 0.1 percent for 2 and 6 cliques by n = 6000 and n = 9000,
respectively. This number is less than 8 per cent for matrix orders ≈ 1000. Therefore we
can conclude that the genetic algorithm itself does not represent any significant computational
burden and is successfully incorporated (from the point of view of timing) into the whole parallel
software package.

6 Conclusions

We have presented a new strategy for accelerating the convergence of the two-sided block
Jacobi SVD algorithm based on the decomposition of a complete, edge-weighted graph into
a prescribed number of disjunct cliques where the total weight over all cliques is maximal.
Since this problem is NP-hard, we have designed and implemented the genetic algorithm as a
heuristics for solving the above problem approximately. First numerical results show quite a
satisfactory performance of our new algorithm when using 2 cliques. However, the performance

10

deteriorates quite rapidly for a larger number of cliques. More experiments are needed together
with a better understanding of a genetic algorithm. We suspect that the genetic algorithm
might be very sensitive to a variation of some of its parameters (e.g., population size, number
of generations, probability of crossover) so that it will be not easy to improve its performance
substantially.

References

[1] Z. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. van der Vorst, Templates for the solution of
algebraic eigenvalue problems: A practical guide, First ed., SIAM, Philadelphia, 2000.

[2] M. Bečka, S. Robert and M. Vajteršic, Experiments with parallel one-sided and two-sided
algorithms for SVD, in: P. Zinterhof, M. Vajteršic and A. Uhl, eds., Parallel Computation,
LNCS 1557 (1999) 48–57.

[3] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems:
I. Hypercubes and rings, Parallel Algorithms Appl. 13 (1999) 265–287.

[4] M. Bečka and M. Vajteršic, Block-Jacobi SVD algorithms for distributed memory systems:
II. Meshes, Parallel Algorithms Appl. 14 (1999) 37–56.

[5] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel block-Jacobi SVD
algorithm, Parallel Computing 28 (2002) 243-262.

[6] M. Bečka and G. Okša, On variable blocking factor in a parallel dynamic block-Jacobi
SVD algorithm, Parallel Computing 29 (2003) 1153-1174.

[7] Å. Björck, Numerical methods for least squares problems, First ed., SIAM, Philadelphia,
1996.

[8] T. F. Chan, Rank revealing QR factorizations, Linear Algebra Appl. 88/89 (1987) 67-82.

[9] J. Demmel and K. Veselić, Jacobi’s method is more accurate than QR, SIAM J. Matrix
Anal. Appl. 13 (1992) 1204-1245.

[10] Z. Drmač and K. Veselić, New fast and accurate Jacobi SVD algorithm, 2004, in prepara-
tion.

[11] G. H. Golub, Numerical methods for solving least squares problems, Numer. Math. 7
(1965) 206-216.

[12] V. Hari and J. Matejaš, Scaled iterates by Kogbetliantz method, Proc. First Conf. Applied
Mathematics and Computation, Dubrovnik, Croatia, September 13-18, 1999, 1-20.

[13] Y. P. Hong and C.-T. Pan, Rank-revealing QR factorizations and the singular value de-
composition, Math. Comp. 58 (1992) 2 13-232.

[14] G. W. Stewart, The QLP approximation to the singular value decomposition, SIAM J.
Sci. Comput. 20 (1999) 1336-1348.

11

[15] S. Van Huffel and J. Vandewalle, The total least squares problem, First ed., SIAM,
Philadelphia, 1991.

12

