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INTRODUCTION

The approximate computation of the definite integral of a function of several variables is
one of the basic problems of numerical analysis. The problem is hard because of the so called
“curse of dimensionality”. This curse consists of the following: applying an integration rule
with N nodes to an univariate function, you will get an integration error, say, ¢ > 0. Apply-
ing the corresponding cartesian product rule to a s-variate function, you will need N * % s
nodes for the same integration error € > 0. In mechanics we deal with at least six-dimensional
functions, but in contemporary financial mathematics occur 300-variate functions. The prob-
abilistic Monte-Carlo-Methods provide error estimates independent of the dimensionality of
the problem. Unfortunately these methods are both slow in convergence end suffer of a lack of
effectiveness as well. The Quasi-Monte-Carlo-Methods, based on number theory, are working
fast and effectively, at least in the case of finite and smooth integrands. Unfortunately, in
reality multivariate functions with singularities do occur. The scope of the present paper is
numerical integration of multivariate functions with singularities. In many cases the proposed
methods are best possible with respect to the order of convergence. Best possible means an
exact order of the error term, essentially not worse than in the univariate case.

1. THE PROBLEM SETTING

Consider functions f(z1,72,...,25) =y, 0 <z, <1, p=1,...,s Let I* = (0,1)° the
open unit cube, and I* = [0,1]® the closed s-dimensional unit cube. We are concerned with
the numerical approximation of the integral of the function f by means of finite sums. Given a

finite set of points in I° or I®, (gcgl)’g;g?)’ .. ,Igs>)7 (@D D9y (Ig\p’ o @53))7
we consider the integration method
1 1 1
Ry = NZf(xgl),...,:vfﬁ) —/ / flay,. ... xg)dzy ... dxs (1)
n=1 0 0

One is interested in small values of Ry, of course. Some known results: If the pointed
(mS}% R acgf)), n=1,...,N, is a set of uniform distributed and independent random vari-

ables, one receives the domical estimation of Monte-Carlo-Integration:



n-0(5)

This convergence rate is rather poor, but independent of the dimensionality of the problem

and independent of the smoothness of the function f(z1,...,zs). Nothing is said about the
constants involved. )
On the other hand we consider the Cartesian Product Rules: Let x1,x2,...,xny € I° and

y = f(z) be a continuous function on I = [0,1]. So we have an one-dimensional integration
rule

N 1
RY = 53 ) = [ flayis (3)

n=1
The principle of the cartesian product rules consists of a repeated application of the one-
dimensional rule to a s-variate function:

(®) 1 X N 1 1
RI(;S:NS Z . Z f(xm,...,a:ns)—/o ”/0 fze, ..., xs)dxy ... dag (4)
=1

ni=1 n

The error term RE\?) will not be better than RE\}), in general. But the computational
complexity is IV°. This fact is the well known Curse of Dimensionality. There are to remedies:
The inequality of Hlawka-Koksma and Korobovs method:

Let 27,2%,...,a5y € [*. Let I(@) =Z:0< 1z, <app=1,...,s,d € I°.
Definition: &
xy, € 1(a
Dy :=sup M —aias...a (5)
P N
is called the *-discrepancy (star discrepancy) of the finite point set #7,...,zx.

The following theorem is essentially due to H. Weyl: Weyl’s Criterion: The infinite se-

quence (27,)0-,, @y, € I°, is uniform distributed if one of the following conditions holds:

(a) for all continuous functions f : I* — C holds

N
Jim = () = | f(@)dz (6)
— 00 n—1 IS
(b) for all m € Z° holds
N -
1 2TIMT,, m 7é 0
dm 5D e { L mld ™)
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Jim, Dy =0

Weyl’s criterion is the guideline for numerical application of number theoretical methods.
At first we cite the Hlawka-Koksma-Inequality:

Theorem: (Hlawka): Let f(Z) be a function with bounded variation in the sense of
Hardy-Krause, V(f(Z)) < oco. Then holds the inequality

N
Rv()l = |5 S 1@ = [ £@az| < DV Q

n=1

There is a huge number of estimations of the discrepancy of special sequences. We give
only two examples.

Example 1: Let Ty, . . n, = (%,”—ﬁ,...,%),nl,...,ns =1,...,N. Then D3}. < ZW This

.....

also means the Curse of Dimensionality.

Example 2: Let (a1,...,as) € Z* be optimal coefficients modulo N in the sense of Korobov.
Let z;, = (%,...,”ﬁs)mod n,n=1,...,N. Then
In N)#

D}kV:O((nN)),ﬁSS, 9)

holds. Apart of the logarithmic factor this estimation is independent of the dimensionali-
ty of the problem. Unfortunately, the Hlawka-Koksma-inequality does not take into account
additional smoothness conditions of the function f(Z).
Korobovs method overcomes this flaw:

Let m = max(1,|m|), m € Z. Consider the Korobov classes

Eﬂ@z{ﬂ@ﬂC%Jé—f—gf7;m€W}, (10)

(mlv"'ams

where C(m) means the Fouriercoefficients of f(Z):
C(m) = | f(@)e ™M qz (11)
IS

«s
Remark: If f(Z) is 1-periodic in each variable z1,...,z,, and if 8@87’;& is continuous and
TS |

bounded by C, then f € E¥(C). This can be shown by as-fold partial integrations of formular

(11).



Theorem: (Korobov): If f(#) € E¢(C)and if @ = (a1, ..., as) consists of optimal coefficients
in the sense of Korobov, then the estimation holds:
| CiC(In*SN)
< — 12
1By (Dl = |5 Z I) = | J@dz| < ==, (12)

with an explicit constant C; and some (3 < s. This estimation is best possible apart from
logarithmic factors: There is always a function f(Z) € E¢(C), such that

In*~Y(N
Z N f / F(@)d C(s)in*~( ).

az| > S (13)

More general, there is no integration rule with Ry = 0 ( ) if feE.
All  this methods are classical and can be found in Korobov [3],
Drmota-Tichy [1] or Niederreiter [2].
The methods described are concerned only with proper integrals of bounded functions. Sin-
gularities are not allowed. From the theoretical and also from the practical point of view it is
important to develop integration rules for unbounded functions as well:

Problem: Let f(#): I* — C or I® — C. Find classes of unbounded functions f and

integration rules 25:1 gn, N f(Zn), such that

Jim Zgan i) = [ f(@)dZ. (14)

Is

Furthermore, give estimations for the error term
N
Ry = Z gnNf(@n) — [ [(@)dZ. (15)
n=1 I

2. SOLUTIONS OF THE PROBLEM

We distinguish the two cases:
First case: The location of the singularities of f(#) in I* is unknown.
Second case: The location of the singularities is known. We assume, that f(&) is unbounded
at most on the bonudary of I° = (0, 1)".

For the sake of completeness we refer some of own former results [4].
Given a function f : I* — C, so we define functions fp, fg, B > 0 such that



(@) = f@ ., Hf@) <B
IR S it |f(7)| > B (16)
fo@ = 0, ifl|f(@) <B -

= [fl@) , if[f(Z)|>B

So we have f(Z) = fp(&) + fp(&). We gave a suitable class of functions in the following
manner:

Definition: The class C (3, ) of s-variate functions f(Z),0 < Z < 1, consists of all functions
which fulfill VB > 0:

(a)
I(|f|) = O(B™?) for some 8> 0 (18)

(b)
V(fs) = O(B") for some v > 1 (19)

Here V(.) means again the variation of a function in the sense of Hardy and Krause.
For dimension s = 1 the definition coincide with the usual total variation of an univariate
function. The use of V(.) is natural, because of the functional analytic connection between
the spaces of continuous functions and the spaces of Radon measures, i.e. point measures and
Lebesgue-measure.

We proved the following theorem:

Theorem: If f(Z) € C(8,~) and if the discrepancy of the set of nodes #1, 43, ..., 2x is DY,
—1
then for B = (D}) @+ the estimation holds:

N
1) = % 3 f() + O ()75 (20)

Remark: We also proved, that the order of convergence stated in (20) is best possible even
in the case s = 1, provided f(Z) € C(8,~). Now we come to the case two, the new and much
more efficient results concerning the case, that the singularities of the integrand are concen-
trated on the boundary 0I° of the unit cube.

The idea of the method: Consider an univariate function f(z), f : (0,1) — C, which has
singularities at = 0 or = 1, and which fulfills some smoothness conditions in (0, 1). We ask



for an integral-preserving transformation of f(z) which also continuates the differentiability
conditions of f(x) to I =]0,1].

Let p(t) = x be a function, which is strictly increasing in [0, 1] and which fulfills differentiability
conditions of sufficient high order. Then we have for functions p(t) with p(0) = 0,p(1) = 1:

/0 f(a)dz = / () (t)dt = / o(t)dt (21)

If p(t) does not tend to fast to p(0) = 0 and p(1) = 1, then one will be able to remove
singularities at x = 0,1 by means of (21).
We propose the function

p(t) = p(t) = po [ (r(1 — 7)) 7dr,

po = (fy (r(1 = 7))7dr)

(22)

The connection of p(t) with the incomplete Beta-Integral is clear. We state some important
properties of p(t):

)
(c) p(")(()) :p(”)(l) =0forn=1,2,...,ng <7y
(@) p™ @) <p,t(1—t) " for1<n<y+land0<t<1
€) Py = Po i+2':n%
(€) Py < PO iyajn 2

1 4427 (y41) 1
6 soawm =~ aaor

(8) p(t) < LRt 1 —p(t) < BH(1—t)* for 0<t <1

Some proofs of the parts of the Lemma are straight forward, some are not.
We now introduce a suitable class of functions, having singularities on 0I°:

Definition: H?%(C) consists of all functions f(z1,...,2),0 <z, <1,p=1,...,s, such
that for all ny,...,n,,0<n, <ao,p=1,...,s, holds:

3”1+-"+”5f(3317--"m5) < ¢

ni n2 Ng — S n 23
Ox}'0x5 ... 0xs" (szl(xp(l—xp))ﬁJf ”) (23)




whereas all the derivatives are continuous, and 0 < 8 < 1.

The introduction of the class H?%(C) was motivated by the univariate éxtremefunction
f(z) = (z(1 —2))7%,0 < B < 1. We remind (21) for general s = 1,2,... :

1 1 1 1
/ / f(:vl,xg,...,xs)dxldxg...dxs:/ / g(t1, ..., ts)dt1dls (24)
0 0 0 0

gty ..., ts) = f(p(t1),p(t2), ..., p(ts))p' (t1)p (t2) . .. D' (ts) (25)

with

We consider now the reactors of nodes

Ty = (g + 28, 4 202 oL 4 28) mod N, where @ = (a1,...,a,) are optimal coeffi-
., N. We get the integration rule

N
1
[N(f) = N Z f(p(tl,n)ap(tln) s ;p(ts,n))pl(tlyn)apl(t2,n)’ cee ,p/(tsm), (26)
n=1
with tp, = 5% + 52,0 =1,...,s

Now we are able to state the

Theorem: If f € H?*(C), and if v > Cf%rg, then

(In N)"’ﬁ

S @D

1 1
/ / f(l'l,.--,l's)dl’l...dl’s*IN(f) SCl(Oé,ﬁ,'Y,S)O
0 0

where the constant Cy(«, 3,7, s) is explicit. The proof makes heavy use of the lemma and
makes use of an explicit and complicated estimation of all of the derivatives of g(t1,...,ts).

Remark 1: According to (13), our theorem can not be improved significantly, even in the
case of boundedness of f(Z).

Remark 2: The use of the classical optimal coefficients is only one example of the application
of number theoretical methods to improper integrals.

We have further methods, using e.g. the Weyl-sequences, (né), especially the sequences
n(e™, e, ..., e"),n = 1,2,...,r; # r, € Q, i # k. Estimations of Ry = [fdx — In(f)
via the Diaphony are available as well.
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