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Parallel Methods in Updating/Downdating
Problems of the Latent Semantic Indexing

Gabriel Okša∗ and Marián Vajteršic†

Abstract. In the case of large databases, which are encoded on some sort of a parallel com-
puter (e.g., a supercomputer or a cluster of personal computers), it is frequently needed to update
or downdate either documents or terms. This task can be done in parallel based on the theory
of the Singular Value Decomposition (SVD) of a Term-Document Matrix (TDM). However, the
TDM is usually not explicitly stored and only its truncated SVD in the form of a chosen set
of left and right singular vectors and corresponding singular values is at our disposal. More-
over, in the case of huge databases, these components of the truncated SVD may be themselves
distributed over a set of processors rather than placed on one processor. For such a distributed
system, we will analyze the data structure and computation flow in an updating/downdating
problem. It turns out that the most important feature is a special, near-to-triangular form of
the TDM, which has to be processed. Therefore, the first step of our method consists of trans-
forming the TDM to triangular form. For triangular matrices, we design a parallel algorithm
based on the parallel block Kogbetliantz method under the Message Passing paradigm of com-
munication between processors.

1 Introduction

Latent semantic indexing (LSI) is a concept-based automatic indexing method for overcoming
the two fundamental problems which exist in the traditional lexical-matching retrieval schemes:
synonymy and polysemy [5]. With respect to the synonymy, several different words can be used
to express a concept and the keywords in a user’s query may not match those in the relevant
documents. On the other hand, the polysemy means that the words can have multiple meanings
and the user’s words may match those in the irrelevant documents. LSI is an extension of the
vector space model for information retrieval [6, 5]. In the vector space model, the collection of
text documents is represented by a term-document matrix A = (aij) ∈ Rm×n, where aij is based
on the number of times the term i appears in the document j, m is the number of terms, and
n is the number of documents in the collection. Hence, a document becomes a column vector,
and a user’s query can also be represented as a vector of the same dimension. The similarity
between a query vector and a document vector is usually measured by the cosine of the angle

∗Mathematical Institute, Department of Informatics, Slovak Academy of Sciences, Bratislava, Slovak Repub-
lic, email: Gabriel.Oksa@savba.sk.

†Department of Computer Sciences, University of Salzburg, Salzburg, Austria, email: marian@cosy.sbg.ac.at.



between them, and for each query a list of documents ranked in a decreasing order of similarity
is returned to the user.

LSI modifies this vector space model by modeling the term-document relationship using a
reduced-dimension representation (RDR) of term-document matrix A computed by its singular
value decomposition (SVD). Let

A = PΣQT , Σ = diag(σ1, σ2, . . . , σmin{m,n}) , σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ,

be the SVD of A. Then the RDR is given by the best rank-k approximations Ak = PkΣkQ
T
k , k <

min{m, n}, where Pk and Qk consist of the first k columns of P and Q, respectively, and Σk

is the kth leading principal sub-matrix of Σ. Each of the k reduced dimensions represents a
so-called pseudo-concept [6], which may not have any explicit semantic content but helps to
discriminate documents [6, 15].

In rapidly changing environments such as the World Wide Web, the document collection is
frequently updated with new documents and terms constantly being added. Hence, the task
arises to efficiently update the old LSI-generated RDR after an addition of new documents and
terms. In Section 2, the mathematical model of updating is briefly presented, which is based
on algorithms derived in [16]. It turns out that the computationally most intensive task in
the correct updating is the SVD computation of some upper or lower triangular matrix. In
Section 4 we design the parallel SVD algorithm for solving this problem that is based on the
Kogbetliantz method. Section 5 concludes the paper.

2 Two updating problems in LSI

2.1 Updating documents

Let us suppose that the RDR of order k was already computed and stored for some term-
document matrix A, and the original matrix was discarded (e.g. for the memory reasons), so
that only Ak = PkΣkQ

T
k is available in the factored form. Let D ∈ Rm×p be p new documents.

The task is to compute the best rank-k approximation of the column partitioned matrix

B ≡ (Ak, D) .

Using the factorization of Ak, the matrix B can be written as

B =
(
PkΣkQ

T
k , D

)
=
(
Pk, (Im − PkP

T
k ) D

)
·
(

Σk P T
k D

0 Ip

)
·
(

QT
k 0

0 Ip

)
.

Note that Im−PkP
T
k is the matrix representation of the orthogonal projection, which maps the

columns of matrix D into the subspace P⊥k that is orthogonal to the column range of matrix
Pk. Let (Im − PkP

T
k )D = P̂p R be the QR decomposition of the matrix (Im − PkP

T
k )D. Then

B = (Pk, P̂p) ·
(

Σk P T
k D

0 R

)
·
(

QT
k 0

0 Ip

)
. (1)
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The crucial point in the above derivation is the observation that the p orthonormal columns
of matrix P̂p are mutually orthogonal to the k orthonormal columns of matrix Pk because the

columns of P̂p constitute the orthonormal basis of the subspace P⊥k . Note that two exterior
matrices on the right hand side of Eq. (1) are orthogonal, but the inner matrix is not diagonal.
Hence, from the computational point of view, the updating problem is reduced to the SVD of
the inner matrix in Eq. (1).

Based on these facts, Zha and Simon [16] have derived a method for solving the problem of
updating documents. Their approach is summarized in Algorithm 2.1. Notice that Step 4 in

2.1 Algorithm for updating documents

1: Input: k, Pk ∈ Rm×k, Σk ∈ Rk×k, Qk ∈ Rn×k, D ∈ Rm×p.
2: Compute the projection: D̂ = (Im − Pk P T

k ) D.
3: Compute the QR decomposition: D̂ = P̂p R, where P̂p ∈ Rm×p, R ∈ Rp×p.
4: Compute the SVD of matrix

B̂ ≡
(

Σk P T
k D

0 R

)
∈ R(k+p)×(k+p)

in the form:
B̂ = (Uk, U⊥

k ) · diag(Σ̂k, Σ̂p) · (Vk, V ⊥
k )T ,

where Uk, Vk ∈ R(k+p)×k and Σ̂k ∈ Rk×k.
5: Output: The best rank-k approximation of B = (Ak, D) is given by:

Bk ≡
[
(Pk, P̂p) Uk

]
· Σ̂k ·

[(
Qk 0
0 Ip

)
Vk

]T

.

Algorithm 2.1 requires the SVD of structured matrix B̂, which is upper triangular with the
diagonal left upper block of order k×k. Simultaneously, this step represents the most intensive
computation in Algorithm 2.1.

2.2 Updating terms

In this case, let T ∈ Rq×n be the q new term vectors that should be added to the existing
terms at the bottom of the old term-document matrix. The task is to compute the best rank-k
approximation of the row partitioned matrix

C ≡
(

Ak

T

)
.

Using steps similar to those in the previous paragraph (see [16]), one gets the Algorithm 2.2
for the correct updating of terms. Similarly to the problem of updating documents, the com-
putationally most intensive step is the SVD of the lower triangular matrix Ĉ with the upper
left diagonal block. Since the upper and lower triangular matrices are related by the matrix
transposition that affects the SVD only by interchanging the left and right singular vectors,
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2.2 Algorithm for updating terms

1: Input: k, Pk ∈ Rm×k, Σk ∈ Rk×k, Qk ∈ Rn×k, T ∈ Rq×n.
2: Compute the projection: T̂ = (In −Qk QT

k ) T T ∈ Rn×q.
3: Compute the QR decomposition: T̂ = Q̂q LT , where Q̂q ∈ Rn×q, L ∈ Rq×q.
4: Compute the SVD of matrix

Ĉ ≡
(

Σk 0
TQk L

)
∈ R(k+q)×(k+q)

in the form:
Ĉ = (Uk, U⊥

k ) · diag(Σ̂k, Σ̂q) · (Vk, V ⊥
k )T ,

where Uk, Vk ∈ R(k+q)×k and Σ̂k ∈ Rk×k.

5: Output: The best rank-k approximation of C =

(
Ak

T

)
is given by:

Ck ≡
[(

Pk 0
0 Iq

)
Uk

]
· Σ̂k ·

[
(Qk, Q̂q) Vk

]T
.

in the following we focus on the upper triangular matrix B̂ in Algorithm 2.1. The conclusions
with respect to the efficiency of the SVD computation will be valid for both updating problems.

3 Two downdating problems in LSI

In downdating problems, there exists the k-dimensional approximation of the original term-
document matrix A in the form Ak = PkΣkQ

T
k . As above we assume that only factors Pk, Σk

and Qk are available. In contrast with updating problems, our task is now either to delete p
documents, i.e. the matrix D of order m×p from the representation Ak = [D, Ãk] (downdating
the documents), or to delete t terms, i.e. the matrix T of order t × n from the representation

Ak =

(
T

Âk

)
. Our new database is represented by matrix Ãk or Âk, and we must end with

the k-dimensional SVD representation of a reduced matrix in either case. Next we describe
effective serial algorithms published in [14], which solve both downdating problems. Since both
algorithms are very similar, we will describe in detail only the algorithm for downdating the
documents and comment on differences by downdating of terms.

3.1 Downdating documents

Let us start with the representation Ak = [D, Ãk] = PkΣkQ
T
k . Let the matrix I1:p

n denote the
first p rows of the identity matrix of order n (we assume n > p, which is natural—not all n
documents are deleted from a database). Let us define the matrix Q̂ as an n×(k+p) orthogonal
matrix of the form

Q̂ = (Qk, S),
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where S contains p orthogonal columns of length n, which are orthogonal also to the columns
of Qk — i.e., QT

k S = 0 (to be sure that such S exists, we assume that k + p ≤ n). Then one
can check by direct computation that the following decomposition is valid:(

Ip 0
0 P T

k

)
·
(

I1:p
n

Ak

)
· Q̂ =

(
Q1:p

k S1:p

Σk 0

)
≡ W.

Thus the right-hand side matrix above, referred to as W , is composed of the first p rows of Qk

followed by the first p rows of S.

The key step now is to reduce W T by orthogonal transformations into a special form, which
will contain the identity Ip as the left upper diagonal block. Since Σk is diagonal, we can write

W T =

(
(Q1:p

k )T Σk

(S1:p)T 0

)
.

Notice the special structure of W T . First p columns are dense (in fact, these are the first p
orthogonal rows of the orthogonal matrix Q̂), but next k columns are very sparse, because Σk

is diagonal and the bottom diagonal block is zero. It is this special structure which allows to
use left and right Givens rotations in a so-called non-zero chasing scheme [7, pp.145-149] to
obtain:

GlW
T Gr = Gl

(
Q1:p

k S1:p

Σk 0

)T

Gr =

(
Ip 0

Y B̃

)T

,

where B̃ is the lower triangular matrix. Here Gl and Gr are orthogonal matrices of order (k+p)
constructed as products of individual Givens rotations. It can be shown that GT

r does not act
on first p rows of the composed matrix. Therefore

GT
r

(
Ip 0
0 P T

k

)
=

(
Ip 0
0 P̄ T

k

)
.

However, GT
l reduces exactly p first columns of Q̂ to (Ip, 0)T , so that

Q̂GT
l =

(
Ip 0
0 Q̄k

)
(since the columns of Q̂ are orthogonal and remain so also after the orthogonal transformation,
the block 12 must be zero). Then it follows that(

Ip 0
0 P̄ T

k

)
·
(

Ip 0

D Ãk

)
·
(

Ip 0
0 Q̄k

)
=

(
Ip 0

Y B̃

)
,

and the second row yields the downdated Ãk given by

P̄ T
k ÃkQ̄k = B̃,

where B̃ is the lower triangular, banded matrix of order k. If the full SVD of B̃ is

B̃ = PB ΣB QT
B,

then the SVD of Ãk is given by

ÃK = (P̄k PB) · ΣB · (Q̄k QB)T ≡ P̃k Σ̃k Q̃T
k
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3.1 Algorithm for downdating documents

1: Input: k, Pk ∈ Rm×k, Σk ∈ Rk×k, Qk ∈ Rn×k, D ∈ Rm×p.
2: Complete Qk into the orthonormal matrix Q̂ = (Qk, S) of order n × (k + p) by taking p

random vectors and orthogonalizing them by the modified Gramm-Schmidt process.

3: Form the matrix W =

(
Q1:p

k S1:p

Σk 0

)
and find orthogonal matrices Gl and Gr so that

GlW
T Gr = Gl

(
Q1:p

k S1:p

Σk 0

)T

Gr =

(
Ip 0

Y B̃

)T

,

where B̃ is the lower triangular matrix of order k.
4: Compute P̄k and Q̄k by:

GT
r

(
Ip 0
0 P T

k

)
=

(
Ip 0
0 P̄ T

k

)
, Q̂GT

l =

(
Ip 0
0 Q̄k

)
.

5: Compute the SVD of B̃, B̃ = PB ΣB QT
B. All matrices are square of order k.

6: Output: The best rank-k approximation of Ãk is given by P̃k = P̄k PB, Σ̃k = ΣB and
Q̃T

k = (Q̄k QB)T .

with P̃k = P̄k PB, Σ̃k = ΣB and Q̃T
k = (Q̄k QB)T .

All steps required for deleting a block of documents are summarized in the following Algo-
rithm 3.1. The most computationally demanding task in Algorithm 3.1 is the SVD of the lower
triangular matrix B̃ in step 5.

3.2 Downdating terms

This case is indeed very similar to the above one for deleting documents. Let Ak =

(
T

Ãk

)
=

PkΣkQ
T
k be our original database of order m×n, from which q terms should be removed. These

terms are placed on the top and are present in all documents, so that their influence is defined
by the matrix T of order q×n. Notice that the matrix AT

k has the structure identical to the case
of deleting documents. Hence, to delete a block of terms, one can work with the representation
of AT

k and use the algorithm from previous subsection.

However, similar steps as in the previous subsection, applied directly to the SVD factors of
Ak, lead to Algorithm 3.2. Again, the most computationally expensive task is the SVD of the
upper triangular matrix B̃.

When comparing together Algorithms 2.1, 2.2, 3.1 and 3.2, the computational pattern is
similar—each task requires the SVD of a lower or upper triangular matrix, which can have some
interesting additional structure. Next part of this report describes the parallel Kogbetliantz
variant of the Jacobi method for doing this.
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3.2 Algorithm for downdating terms

1: Input: k, Pk ∈ Rm×k, Σk ∈ Rk×k, Qk ∈ Rn×k, T ∈ Rq×n.
2: Complete Pk into the orthonormal matrix P̂ = (Pk, Z) of order m × (k + q) by taking q

random vectors and orthogonalizing them by the modified Gramm-Schmidt process.

3: Form the matrix H =

(
P T

1:q,k Σk

ZT
1:q 0

)
and find orthogonal matrices Gl and Gr so that

GlHGr =

(
Iq Y

0 B̃

)
,

where B̃ is the upper triangular matrix of order k. Here P T
1:q,k denotes first q columns of

P T
k ; similarly for ZT

1:q.
4: Compute P̄k and Q̄k by:

GlP̂
T =

(
Iq 0
0 P̄ T

k

)
,

(
Iq 0
0 Qk

)
Gr =

(
Ip 0
0 Q̄k

)
.

5: Compute the SVD of B̃, B̃ = PB ΣB QT
B. All matrices are square of order k.

6: Output: The best rank-k approximation of Ãk is given by P̃k = P̄k PB, Σ̃k = ΣB and
Q̃T

k = (Q̄k QB)T .

4 Kogbetliantz method for triangular matrices

Special form of the Jacobi method for obtaining the SVD of (upper or lower) triangular matrices
was proposed by Kogbetliantz; see [11, 12]. However, in his original proposal the method was
used for the solution of a system of linear equations, where the coefficient matrix was first
transformed to a triangular form by the QR decomposition; then the R-factor was diagonalized
by two-sided unitary (orthogonal, in real case) transformations. However, today his method is
mainly used for the SVD computation of triangular matrices.

From the numerical point of view, the Kogbetliantz algorithm is relatively stable [8], i.e. the
tiniest singular values are computed with high relative accuracy. This property is similar to the
one-sided Jacobi method. The convergence criterion can be checked without any extra cost,
whereas the one-sided Jacobi method requires approximately n2/2 dot products to do this.
However, the main weakness of the Kogbetliantz method is its need to update both matrix
columns and rows, which means twice as many matrix multiplications as compared with an
one-sided method.

We start with the serial approach and describe a special, so-called butterfly form of triangular
matrix. The second ‘brick’ of the method is the modulus pivot strategy, which essentially
preserves the butterfly form during the whole iterative process. Although the scalar algorithm
which deals with individual elements of a matrix can be parallelized, better efficiency is achieved
when working with matrix blocks because the BLAS-3 algorithms for matrix multiplication can
be used. Therefore, the last subsection describes the approach when a matrix is divided into
blocks and possible parallelization of the Kogbetliantz algorithm is also discussed.
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4.1 Butterfly form of triangular matrices

For n = 6 and n = 7, the butterfly form of a square matrix A of order n has the following form:

A =


x 0 0 0 0 0
x x 0 0 0 x
x x x 0 x x
x x x x x x
x x 0 0 x x
x 0 0 0 0 x

 and



x 0 0 0 0 0 0
x x 0 0 0 0 x
x x x 0 0 x x
x x x x x x x
x x x 0 x x x
x x 0 0 0 x x
x 0 0 0 0 0 x


.

It is shown in [9] that each dense square (even rectangular) matrix A can be reduce to the
butterfly form by a series of Householder reflections and Givens rotations applied from the left.

In our updating/downdating problems, a matrix under interest is upper or lower triangular.
Let us concentrate to the upper triangular form (the lower triangular case is similar and by
transposition can be brought to the upper triangular one). If T is a general, upper triangular
matrix, then an example in [9] shows how T can be transformed into B, which is in the butterfly
form, using a very cheap similarity transformation by a permutation matrix: B = P T TP . The
permutation matrix P is composed of the product of simple transposition matrices:

P =

{
I12I13(I14I23)(I15I24)(I16I25I34) · (I1,nI2,n−1 · · · Ik,k+1) if n = 2k,
I12I13(I14I23)(I15I24)(I16I25I34) · (I1,nI2,n−1 · · · Ik,k+2) if n = 2k + 1.

Here, Ipq = (e1, . . . , eq, . . . , ep, . . . , en), p < q, is the transposition of columns p and q, where ei

is the ith column of the identity matrix In. The parenthesis emphasize those transpositions that
can be performed in parallel, because the corresponding pairs of indices are mutually disjunct.
For example, for n = 6 we have k = n/2 = 3, and the transformation can be depicted as follows:

x ? x x x x
0 x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

 7→


x 0 ? x x x
x x x x x x
0 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

 7→


x 0 0 ? x x
x x ? x x x
x 0 x x x x
0 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x



7→


x 0 0 0 ? x
x x 0 ? x x
x 0 x x x x
x 0 0 x x x
0 0 0 0 x x
0 0 0 0 0 x

 7→


x 0 0 0 0 ?
x x 0 0 ? x
x 0 x ? x x
x x 0 x x x
x 0 0 0 x x
0 0 0 0 0 x

 7→


x 0 0 0 0 0
x x 0 0 0 x
x x x 0 x x
x x x x x x
x x 0 0 x x
x 0 0 0 0 x

 .

The symbol ? denotes the position of one pivot element, the subscripts of which define the rows
and columns which are to be swapped. It can be easily seen that the whole transformation can
be performed in n − 1 parallel steps on n/2 processors. This is an example of a ‘fine-grained’
parallelism, because the number of processors increases linearly with the matrix order n, which
is not feasible for very large n.
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4.2 Modulus pivot strategy

In general, the pivot strategy is a fixed list containing the order in which the off-diagonal matrix
elements of matrix A are nullified. For triangular matrices, the special, so-called modulus
strategy was proposed in [13]. It is defined by the modulus ordering of the set Pn = {(p, q) :
1 ≤ p < q ≤ n} and is illustrated below for n = 7.

. 6 9 11 14 16 19
. 12 15 17 20 1

. 18 21 2 4
. 3 5 7

. 8 10
. 13

.



S1 = {(2, 7), (3, 6), (4, 5)}
S2 = {(3, 7), (4, 6), (1, 2)}
S3 = {(4, 7), (5, 6), (1, 3)}
S4 = {(5, 7), (1, 4), (2, 3)}
S5 = {(6, 7), (1, 5), (2, 4)}
S6 = {(1, 6), (2, 5), (3, 4)}
S7 = {(1, 7), (2, 6), (3, 5)}



. 2 3 4 5 6 7
. 4 5 6 7 1

. 6 7 1 2
. 1 2 3

. 3 4
. 5

.


The leftmost matrix represents the ordering in which the pivot elements are annihilated within
one sweep. By St, 1 ≤ t ≤ 7, we denote the so-called rotation sets containing index pairs of
matrix elements which can be annihilated simultaneously because all index pairs are mutually
disjoint (or commuting). Finally, the rightmost matrix depicts the pivot positions according to
rotation sets which can be zeroed in parallel.

Hence, the modulus pivoting for triangular matrices enables to introduce a parallel algorithm
based on rotation sets. At parallel step t, the rotation set St determines which elements will be
nullified. Since the Kogbetliantz method is iterative, the algorithm goes through a sequence

S1,S2, . . . ,Sn,S1,S2, . . . ,Sn, . . . ,

until convergence is achieved.

Let Piv(t) denote the pivot set that is currently used as a rotation set. We start with B[1] = B,
and at the beginning of time step t, t ≥ 1, all rotation matrices (i.e., all rotation angles)

U
[t]
ij , V

[t]
ij , (i, j) ∈ Piv(t) are computed using the elements of the same matrix B[t]. Then the

transformation

B[t+1] = U [t]T B[t]V [t], U [t] =
∏

(i,j)∈Piv(t)

U
[t]
ij , V [t] =

∏
(i,j)∈Piv(t)

V
[t]
ij (2)

is performed. Here U [t] and V [t] are not computed explicitly; only all V
[t]
ij , (i, j) ∈ Piv(t) are

applied simultaneously, and afterwards the same is done with U
[t]
ij , (i, j) ∈ Piv(t). If the right

and/or left singular vectors are needed, then the right transformation V [t] can be accumulated
into the orthogonal matrix V during iterations, and then U can be computed a posteriori from
the equation B V = U Σ. Alternatively, one can accumulate U [t] into U and then compute V a
posteriori.

The advantages of using the butterfly form together with the modulus pivot strategy in the
Kogbetliantz method is discussed in detail in ][9]. If B is in the butterfly norm then it is
permutationally similar to the upper triangular matrix (B is PST). Therefore, it is also essen-
tially triangular (ET) since it holds: bpq bqp = 0 for p < q. Moreover, it can be shown that if
one starts with a triangular matrix in the butterfly form, then all matrices generated by the
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Kogbetliantz method using the modulus strategy are PST. In particular, when B[t] denotes the
iterated matrix in the time step t with t > n (n is the size of B), then B[t] and B[t−n] have
zero structures which are transposed to each other. Each matrix B[t] is PST, therefore it is ET,
and can be compactly stored in the upper triangle of square array. Hence, the upper triangular
matrix G[t] can be defined by prescription

G[t] + G[t]T = B[t] + B[t]T .

Then the Kogbetliantz method with modulus strategy (KMMS) can be formulated in terms of
matrices G[t] (see [9]). The result is a sequential KMMS algorithm which works with the upper
triangular matrices and in each step applies approximately n/2 non-commuting rotations.

These rotations can be applied in parallel, but the disadvantage of such ‘direct’ parallelization
of the KMMS is its low efficiency. We need approximately n/2 processors to exploit fully
the inherent parallelism of the algorithm, which is certainly not efficient for large n. The
parallelization strategy, which uses the number of processors as a (linear) function of the matrix
size, belongs to a ‘fine-grained’ approach and can be very inefficient with respect to the cost
of inter-processor communication for large n. Much better way is to work with matrix blocks,
whereby the size of a block is given by the size of the matrix divided by a given number of
processors. Next we describe a parallelization approach for the block KMMS.

4.3 Block version and parallelism

When working with matrix blocks, the numerical algorithms become much more efficient in
general, because the memory hierarchy of modern computers can be used. However, the size
of matrix blocks should be tuned according to the size of fast cache memory of a processor.
Ideally, the whole matrix block should fit into the cache so that no additional calls for data will
be made when working with that matrix block. In this way the algorithm can use the advantage
of so called BLAS-3 matrix multiplications which are very fast. They are implemented also
in modern linear algebra libraries, e.g., LAPACK and ScaLAPACK. Moreover, working with
matrix blocks leads to the ‘coarse-grained’ parallelism, in which the number of processors is
given beforehand and can be quite small.

We start with the block upper triangular matrix T of order n in the form

T =


T11 T12 . . . T1m

0 T22 . . . T2m
...

...
. . .

...
0 0 . . . Tmm.


Each diagonal block Tii is of order ni ≥ 1, so that M = {n1, n2, . . . , nm} is the partition of n.
We can assume n1 = n2 = · · · = nm = n/m.

To reduce T to the block butterfly form we can use permutations similar to the scalar case.
However, Iij is now a product of simple transpositions The effect of IT

ij T is to swap block rows
i and j of T ; similarly, T Iij means swapping the appropriate block columns.

10



4.3.1 Parallel step zero

Let B[0] = B be a matrix in the block butterfly form. Before starting the iteration process,
some matrix preprocessing is needed which is called the parallel step zero. It can be described
as follows:

B[1] = U [0T ]B[0]V [0], U [0] =
∏

(i,j)∈piv(m)

U
[0]
ij , V [0] =

∏
(i,j)∈piv(m)

V
[0]
ij ,

where piv(m) = {(1, m), (2, m− 1), . . . , (m/2, m/2 + 1)} is the mth pivot set associated with
the block algorithm (notice that it is defined w.r.t. the block index).

The result of this zero step can be summarized as follows:

• The matrix blocks B1,m, B2,m−1, . . . Bm/2,m/2+1 on the upper half of the main block anti-
diagonal are nullified. Recall that B is in the block butterfly form so that the lower part
of the main block anti-diagonal is zero.

• All diagonal blocks Bii are diagonalized by computing their SVDs. For this, any numeri-
cally reliable serial SVD algorithm can be used.

Moreover, B[1] and all subsequent iteration matrices B[2], B[3], . . . are represented in the fac-
tored form

B[t] = E[tT ] C [t] F [t],

where E[t] and F [t] are block diagonal and orthogonal. The main idea behind the factorization
is to work with relatively small matrix blocks in updating matrix iterates, so that all matrix
multiplications can be done in the fast cache memory by calling the appropriate data only once
[8]. In addition, the diagonal elements of the current iterate B[t] are kept separately in the
vector γ[t].

Consequently, the parallel step zero must provide the formulae for computing E[1], C [1], F [1] and
γ[1]. Let B[0] = (B

[0]
1 , B

[0]
2 , . . . , B

[0]
m ) be the block column partition of B[0]. Then the algorithmic

description of the parallel step zero is depicted below as Algorithm 4.1.

Several remarks are in order to better understand the various tricks ‘behind the scene’:

1. The trick with the factorization of B[0] into the product of three matrices, B[t] = E[t]T C [t] F [t],
is taken from [10]. The main idea here is to arrive at small enough matrices with nice
numerical properties (e.g., orthogonality) which can be handled in the cache memory of
a processor. It is well known that the cache memory is up to 6− 8 times faster than the
main memory. Therefore, even when the number of flops using the three-term recursion
is larger than the direct approach to updating, the exclusive use of the cache memory can
overcome this shortage w.r.t. the time complexity of the whole algorithm.

2. Consequently, all matrix multiplications in subsequent step for updating B, B′ and B̄′

are made in the cache memory—hence, they are fast.
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3. The cosine-sine (CS) decomposition of an orthogonal matrix has a special structure and
special properties; see [10]. It is still an open question how to compute it in a numeri-
cally reliable way for this class of matrices. Another interesting problem is its efficient
parallelization.

4. The logical variable left controls which set of singular vectors is computed during iter-
ations. Only one set of singular vectors is computed in step zero (and in the iterative
process below), The other set is computed a posteriori after finishing the process by
solving the linear systems of equations

B V = U Σ or BT U = V Σ.

This approach almost halves the number of matrix multiplications in each iteration step
as compared to the iterative computation of both sets of singular vectors.

Algorithm 4.1: Parallel step zero

1: for i = 1 to m/2 in parallel do
2: Set j = m + 1− i.
3: Compute the SVD: (

B
[0]
ii B

[0]
ij

0 B
[0]
jj

)
= U

[0]
ij Γi V

[0]T
ij .

4: Compute the CS decomposition of U
[0]
ij and V

[0]
ij :

U
[0]
ij =

(
U̇ii 0

0 U̇jj

)
Θij

(
Üii 0

0 Üjj

)
, V

[0]
ij =

(
V̇ii 0

0 V̇jj

)
Φij

(
V̈ii 0

0 V̈jj

)
.

5: Apply: B′
i = BiV̇ii, B′

ij = BjV̇jj.
6: Apply: (B′′

i , B′′
j ) = (B′

i, B′
j) Φij.

7: Transpose: B̄ = (B′′)T and let B̄ = (B̄1, B̄2, . . . , B̄m) be the block column partition of
B̄.

8: Apply: B̄′
i = B̄i U̇ii, B̄′

j = B̄j U̇jj.
9: Apply: (B̄′′

i , B̄′′
j ) = (B̄′

i, B̄′
j) Θij.

10: Transpose: C [1] = (B̄′′)T .

11: Copy: E
[1]
ii = Üii, E

[1]
jj = Üjj, F

[1]
ii = V̈ii, F

[1]
jj = V̈jj.

12: Copy the first ni and last nj diagonal elements of Γi into the appropriate parts of the
vector γ[1].

13: if (left) then
14: U [1] = E[1]T

15: else
16: V [1] = F [1]T

17: end if

18: end for
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4.3.2 Iterative process

Recall that after the parallel step zero the matrix B[1] is is the block-butterfly form. In the
iterative process, the block-modulus pivot strategy is applied in each parallel step until conver-
gence. Thus, the algorithm in the parallel step t proceeds by annihilating the off-diagonal pivot
submatrices B

[t]
ij , (i, j) ∈ piv(t) and by diagonalizing the diagonal blocks B

[t]
ii , B

[t]
jj . Hence, at

the beginning of the parallel step t + 1 the new Frobenius off-norm is given by

‖Ω(B[t+1]‖2 = ‖Ω(B[t]‖2 −
∑

(i,j)∈piv(t)

‖B[t]
ij ‖2.

Since B[t] is kept in the factored form of a matrix triple E[t], C [t], F [t], one has to derive the
recursions for updating these matrices together with vector γ[t].

The main equation of the Kogbetliantz method is given by (2). For each pair (i, j) ∈ piv(t)
this orthogonal transformation can be written as

B
[t]
ij =

(
B

[t]
ii B

[t]
ij

0 B
[t]
jj

)
= U

[t]
ij Γi V

[t]T

ij , Γi is diagonal. (3)

Notice that this equation is the SVD of B
[t]
ij . We assume that the diagonal blocks B

[t]
ii and

B
[t]
jj are diagonal matrices which is certainly true, by construction, for the initial matrix B[1].

Here, U
[t]
ij and V

[t]
ij are orthogonal matrices of order (ni + nj)× (ni + nj); they are called block

rotations in [10].

However, B[t] is given in its factored form, so that the upper-triangular matrix B
[t]
ij can be

computed as follows:(
B

[t]
ii B

[t]
ij

0 B
[t]
jj

)
=

(
E

[t]
ii 0

0 E
[t]
jj

)T (
C

[t]
ii C

[t]
ij

0 C
[t]
jj

) (
F

[t]
ii 0

0 F
[t]
jj

)
=

(
E

[t]T

ii C
[t]
ii F

[t]
ii E

[t]T

ii C
[t]
ij F

[t]
jj

0 E
[t]T

jj C
[t]
jj F

[t]
jj

)
.

Since B
[t]
ii and B

[t]
jj are diagonal, we can fill them by zeros and then copy appropriate diagonal

elements from the vector γ[t] onto the diagonal of B
[t]
ii and B

[t]
jj (hence, the diagonal blocks of

B
[t]
ij are not computed explicitly). After that we need to compute E

[t]T

ii C
[t]
ij F

[t]
jj on the processor

which is associated with the pair (i, j) ∈ piv(t) using the fast BLAS-3 LAPACK routine *GEMM.

Next, the SVD of B
[t]
ij is computed according to (3). Since B

[t]
ij is upper triangular with diagonal

blocks being diagonal matrices, one can here choose among several fast and accurate serial
methods, e.g., the one-sided Jacobi or (cyclic or modulus) Kogbetliantz algorithm. This SVD

is computed serially for one B
[t]
ij , but, of course, m/2 processors compute in parallel for m/2

pairs of indices (i, j), 1 ≤ i < j ≤ n.

The next step is the CS decomposition of orthogonal matrices U
[t]
ij and V

[t]
ij , which can be

written in the form (see [10])

U
[t]
ij =

(
U̇

[t]
ii 0

0 U̇
[t]
jj

)
Θ

[t]
ij

(
Ü

[t]
ii 0

0 Ü
[t]
jj

)
, V

[t]
ij =

(
V̇

[t]
ii 0

0 V̇
[t]
jj

)
Φ

[t]
ij

(
V̈

[t]
ii 0

0 V̈
[t]
jj

)
. (4)
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The matrices Θ
[t]
ij and Φ

[t]
ij are orthogonal products of at most min{ni, nj} commuting plane

rotations (see [10]).

Now comes the parallel computation of the next iteration matrix, B[t+1], using all available
pairs (i, j). It is computed as

B[t+1] = U [t]T (B[t] V [t]),

where U [t] and V [t] is composed from all available matrices U
[t]
ij and V

[t]
ij , respectively. However,

B[t+1] is never computed explicitly. Recall that we have it in the factored form, so actually
we need recursions how to compute E[t+1], C [t+1] and F [t+1]. To this end, let us introduce the
matrix Jij = (Ji, Jj) where In = (J1, J2, . . . , Jm) is the block-column partition of the identity.
Then

B[t] Jij = (B
[t]
i , B

[t]
j ).

and
B[t+1] ≡ E[t+1]T C [t+1] F [t+1] = U [t]T (E[t]T C [t] F [t]) V [t].

Post-multiplying the last equality above by Jij and writing the identity between C and F on
both sides as JT

ijJij, we obtain:

E[t+1]T (C
[t+1]
i , C

[t+1]
j )

(
F

[t+1]
ii 0

0 F
[t+1]
jj

)
= U [t]T E[t]T (C

[t]
i , C

[t]
j )

(
F

[t]
ii 0

0 F
[t]
jj

)
V

[t]
ij

= U [t]T E[t]T (C
[t]
i , C

[t]
j )

[[(
F

[t]
ii 0

0 F
[t]
jj

) (
V̇

[t]
ii 0

0 V̇
[t]
jj

)]
Φ

[t]
ij

] (
V̈

[t]
ii 0

0 V̈
[t]
jj

)
.

Hence, we have immediately the first set of updates:

F
[t+1]
ii = V̈

[t]
ii , F

[t+1]
jj = V̈

[t]
jj , (C̄

[t]
i , C̄

[t]
j ) = (C

[t]
i , C

[t]
j )

(
F

[t]
ii V̇

[t]
ii 0

0 F
[t]
jj V̇

[t]
jj

)
Φ

[t]
ij . (5)

These updates can be performed in parallel for all (i, j) ∈ piv(t). This results in the matrix
F [t+1] and auxiliary matrix C̄.

The second set of updates starts with the equation

E[t+1]T C [t+1] = U [t]T E[t]T C̄ [t].

After pre-multiplying it by JT
ij (JT

i X is the ith block-row of X) and using the decomposition
of identity I = Jij JT

ij between E and C on both sides, we obtain:(
E

[t+1]
ii 0

0 E
[t+1]
jj

)T (
JT

i C [t+1]

JT
j C [t+1]

)
= U

[t]T

ij

(
E

[t]
ii 0

0 E
[t]
jj

)T (
JT

i C̄ [t]

JT
j C̄ [t]

)

=

(
Ü

[t]
ii 0

0 Ü
[t]
jj

)T
Θ

[t]T

ij

(
U̇

[t]
ii 0

0 U̇
[t]
jj

)T (
E

[t]
ii 0

0 E
[t]
jj

)T (
JT

i C̄ [t]

JT
j C̄ [t]

) ,

and we have the second set of updates:

E
[t+1]
ii = Ü

[t]
ii , E

[t+1]
jj = Ü

[t]
jj , (C

[t+1]T

i , C
[t+1]T

j ) = (C̄
[t]T

i , C̄
[t]T

j )

(
E

[t]
ii U̇

[t]
ii 0

0 E
[t]
jj U̇

[t]
jj

)
Θ

[t]
ij . (6)
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Again, these updates can be performed in parallel for all (i, j) ∈ piv(t). Notice, that the
auxiliary matrix C̄ [t], which was computed in (5), is to be transposed in (6). Then it is updated
from the right hand side and C [t+1]T is obtained. Finally, the diagonal elements of Γi are copied
to the appropriate positions of the vector γ[t+1].

Equations (3), (4), (5) and (6) constitute one iterative step of the parallel block-Kogbetliantz
algorithm. The parallelism is achieved by computing all updates for pivot indices (i, j) ∈ piv(t)
simultaneously. This means that there are p = m/2 processors (recall that m is the blocking
factor) whereby each processor works over 2 block columns of matrix data.

We write the iterative part in the form of a pseudocode. The iteration index [t] is omitted.
The array C is n × n, arrays E and F are nb × nb where nb = maxi{ni}. The block-column

partition of C is given by C = (C1, . . . , Cm). We denote E
[t]
ii by Ei and similarly for Fi. The

vector g is for γ[t] and several arrays U, B, V are of size 2nb×2nb. The matrices of left or right
singular vectors are updated in arrays VECL or VECR, respectively, according to the logical
variables left and right.

Algorithm 4.2: Iteration step

1: for (i, j) ∈ piv(t) in parallel do
2: Compute: B12 = ET

i Cij Fj.
3: Copy the appropriate elements from g to diag(B11) and diag(B22).

4: Form: B =

(
B11 B12

0 B22

)
where diagonal blocks are diagonal matrices.

5: Compute the SVD: B = U Γ V T .
6: Update: g ← Γ (copy to appropriate positions).
7: Compute the CS decompositions

U =

(
U1 0
0 U2

)
H

(
U3 0
0 U4

)
, V =

(
V1 0
0 V2

)
K

(
V3 0
0 V4

)
.

8: Compute: X = Fi V1, Y = Fj V2.
9: Update block columns of C: Ci ← CiX, Cj ← CjY .

10: If (right) update: VECRi ← VECRi X, VECRj ← VECRj Y .
11: Update: (Ci, Cj)← (Ci, Cj) K.
12: If (right) update: (VECRi, VECRj)← (VECRi, VECRj) K.
13: Update: Fi ← V3, Fj ← V4.
14: Transpose: C ← CT .
15: Compute: X = Ei U1, Y = Ej U2.
16: Update block columns of CT (i.e., block rows of C): Ci ← CiX, Cj ← CjY .
17: If (left) update: VECLi ← VECLi X, VECLj ← VECLj Y .
18: Update: (Ci, Cj)← (Ci, Cj) H.
19: If (left) update: (VECLi, VECLj)← (VECLi, VECLj) H.
20: Update: Ei ← U3, Ej ← U4.
21: Transpose: C ← CT (back to the original form of C).

22: end for

Similarly to the parallel step zero, several comments are in order also for the iterative part of
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the algorithm:

1. The recursions have one important purpose—namely, to arrive at small enough matrices
(or matrix blocks) which can be stored at once in the fast cache memory. These are the
diagonal blocks of E, F and all factors of the CS decompositions. These all are square
matrices of size nb, which is substantially smaller than the size n of the original upper
triangular matrix provided that the blocking factor m is large enough. Perhaps more
importantly, given n, the number of processors p and the blocking factor m (p = m/2)
can be chosen in such way that all small blocks will indeed be stored in the cache memory
at once. This means great time savings in computing updates by matrix multiplications.

2. The only matrix without any structure used in recursions is C. We see that C is updated
in two steps, whereby the second update works with CT . The reason is that using the
transposition one can update both block columns and block rows by matrix multiplications
from the right, whereby the updating matrices X and Y are small and should fit in the
cache. Such updating will be very fast. If each processor contains two full block columns
of C, then all updates can be computed locally in processors and there is no need to use
the distributed matrix multiplication. The price paid for this ‘comfort’ is the need of
two transpositions of C which can be slow on distributed parallel architectures (e.g., on
a cluster of PCs). In other words, one needs some fast, parallel (distributed) algorithm
for the matrix transposition.

5 Conclusions

We have shown that the updating/downdating problems in the LSI can be reduced to the
computation of SVDs of upper or lower triangular matrices. For this purpose, the parallel block-
Kogbetliantz algorithm was described and analyzed from the point of view of its implementation
on a parallel distributed architecture. Next step should be its actual implementation on a cluster
of PCs.
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