
Inner Approximation of Polygons and
Polyhedra by Unions of Boxes

Christian Spielberger Martin Held

Technical Report 2006-02 April 2006

Department of Computer Sciences

Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.cosy.sbg.ac.at

Technical Report Series



Inner Approximation of Polygons and Polyhedra by Unions of Boxes∗

Christian Spielberger† Martin Held‡

Abstract

Given a multiply-connected polygonal area P in the
plane and a point set S ⊂ R

2, where some points of
S may lie inside of P , we present a fast approxima-
tion method for finding a largest axis-aligned or ori-
ented rectangle contained in P which does not contain
any points of S. All standard meanings of “largest”
are supported, such as maximum area and maximum
perimeter. This heuristic is extended to finding k
rectangles whose union is largest. Furthermore, we
present an extension of our method to 3D, i.e., to
computing inner approximations of polyhedra (possi-
bly with holes, voids and cavities) by unions of (ori-
ented) boxes.

Our 2D algorithm is based on a discretization of
space by means of a regular mesh of size w×h and on
a discretization of the rotation angles. Let n be the
sum of the number of vertices of P and the number of
points in S. Then an inner approximation by k rect-
angles is found in O

(

mn(w + h) + k2k(mwh)k
)

time
and O(wh + n) space, where m denotes the number
of rotation angles tested. A similar bound is obtained
for the 3D case. Several algorithmic improvements
help to decrease the time complexity in practice con-
siderably, thus making it quite feasible to determine
inner approximations of complex objects by several
boxes within a few seconds of CPU time. Extensive
practical tests have yielded a formula for predicting a
mesh resolution suitable for achieving the approxima-
tion quality sought by a user.

1 Introduction

Motivation. A problem that often arises in metal or
textile industry is to cut a rectangle as large as pos-
sible out of an arbitrarily shaped piece of sheet metal
or cloth [3]. Typically, the term “large” means “max-
imum area” but other measures of size (such as max-
imum perimeter) may also be of interest. Sometimes
the situation is further complicated if discrete spots
of material imperfectness are to be excluded from the
rectangle sought.

Finding one or more maximal boxes that are lo-
cated inside of a shape can also be regarded as an

∗Work supported by the Austrian FWF Project L43-N12.
†Department of Scientific Computing, University of

Salzburg, Salzburg, Austria; christian.spielberger@aon.at
‡Department of Scientific Computing, University of

Salzburg, Salzburg, Austria; held@cosy.sbg.ac.at

inner approximation (or inner cover) of that shape.
For instance, for visibility tests we are asked whether
an object O in the foreground occludes other ob-
jects in the background. Since visibility tests in 3D
scenes are very time consuming for complex objects
O, researchers in graphics have long been interested
in inner approximations of O by one (or more) con-
vex shapes, such boxes, spheres and ellipsoids: rather
than testing a 3D scene for occlusion againstO, it may
be significantly faster to test the scene against an in-
ner approximation of O. Similarly, simple pre-tests
for path planning are based on inner approximations.

Overview of Results. We study the following prob-
lem: Given an integer k, a multiply-connected planar
area A and a set S of n points (in R

2), find k rect-
angles inside of A such that the rectangles do not
contain any point of S and such that their union has
maximum size according to a measure µ. Typically, µ
will denote the area of a rectangle but our algorithm
will be able to deal with any measure µ provided that
µ(A) ≤ µ(B) if A ⊆ B for two planar areas A and
B. In particular, µ could also measure the perimeter
or the length of a rectangle. Depending on the ap-
plication, the rectangles will have sides parallel to the
coordinate axes (axis-aligned) or they will be oriented

rectangles, i.e., they will have arbitrary orientations.

A natural extension to 3D asks to determine k
cuboids inside of a polyhedron P such that the size of
their union is maximum with respect to µ and such
that no point of a set S of points of R

3 is contained in
a cuboid. As for the 2D polygons, the polyhedron P
may contain voids, holes and cavities. Again, we are
interested in both axis-aligned and oriented cuboids.

In the sequel we present a fast heuristic for find-
ing such a set of k large boxes in 2D and 3D. Our
algorithm is based on a discretization of space by
means of a regular mesh of size w × h. Furthermore,
we apply a straightforward discretization of the ro-
tation angles. Let n be the sum of the number of
vertices of P and the number of points in S. Then
the worst-case time complexity of the 2D algorithm is
O

(

mn(w + h) + k2k(mwh)k
)

, where m denotes the
number of rotation angles tested; its space complex-
ity is O(wh + n). A similar bound is obtained for
the 3D case. Several algorithmic improvements help
to decrease the time complexity in practice consider-
ably, thus making it quite feasible to determine inner
approximations of complex objects by several axis-

1



aligned or 2–3 oriented boxes within a few seconds.

Since our algorithm depends on the resolution of the
mesh it cannot guarantee a constant-factor approxi-
mation of the true maximum size of an optimum set
of k boxes. Furthermore, there is an obvious trade-off
between the quality of the inner approximation and
the resolution of the mesh. Based on extensive prac-
tical tests we came up with a formula that allows to
predict a mesh resolution such that the approxima-
tion quality sought by a user can be expected to be
achieved with a user-specified probability.

Our algorithms for inner approximation by k boxes
have been implemented in C++ for both the 2D and
the 3D case. In the sequel, we will mostly focus on
the 2D case, though.

Related Work. Restricted versions of our problem
have received considerable interest in the past. For
the 2D case, if P is restricted to a rectangle A, the
problem of finding the largest rectangle inside of A
whose sides are parallel with those of A and which
does not contain a point of S was discussed in a va-
riety of papers, see [8] for a survey. (In most papers,
“largest” means “largest area”.) The fastest algo-
rithm that solves this problem runs in O(n log n + s)
time, where s is the number of axis-aligned rectangles,
whose edges contain a point of S or are contained in
the border of A [8]; its expected time complexity is
O(n log n). It is notable that this algorithm uses only
O(n) memory. A more general problem is to find the
largest empty oriented rectangle bounded by a point
of S on each of its four sides. This problem can be
solved in O(n3) time [2, 6].

A largest-area axis-aligned rectangle (LAR) inside
of a multiply-connected polygonal area can be found
in O(n log2 n) time [3]. For polygons without islands
an O(n log n) algorithm is presented in [1]. Note that
none of those papers considers additional point con-
straints within P . (That is, the set S is empty.) Also,
nothing is known for finding k (oriented) rectangles
(LORs) such that their union has maximum size.

For the 3D case of a set S of n points inside of
a bounding cuboid, a largest empty cuboid can be
computed in O(n3) time and O(n2 log n) space in the
worst case, see [4]. In [7], it is claimed that all locally
maximal cuboids can be reported in O(c + n2 log n)
time and O(n) space, where c is bound by O(n3).

No algorithms are known for finding largest axis-
aligned and largest oriented cuboids inside a poly-
hedron. As in 2D, an inner approximation by k > 1
axis-aligned or oriented boxes also is an open problem.

2 Finding a LAR Inside a Polygon

Our heuristic for computing a maximum axis-aligned
rectangle (relative to the measure µ) uses a regular

mesh for discretizing the plane. A rectangle that con-
sists entirely of mesh cells is called a mesh rectangle.
Our algorithm finds the largest mesh rectangle which
lies completely in the given polygon P and does not
contain any point of S.

Consider a regular mesh M := {0, 1, . . . , w − 1} ×
{0, 1, . . . , h−1} with resolution w×h. In the first step,
all cells M(a, b) that are intersected by the boundary
∂P of the polygon are determined and their cell values
are set to zero. Then all cells that include at least
one point of S are set to zero. Both can be done
in O(n(w + h)) time. Then all outer cells are set to
−1 in O(wh) time. The inner cells are set to the
values specified by the chessboard distance. Several
algorithms are known for computing the chessboard
distance on a w × h mesh in O(wh) time, see, for
instance, [5]. We use a modified flood-fill algorithm:
in the first step, all eight neighbor cells of zero cells
that currently have undefined values get the value one.
Then the neighbor cells of 1-cells get the value 2, and
so on. (In Fig. 1, the shaded cells depict the zero cells
occupied by ∂P and the points of S). The resulting
value obtained for a cell M(a, b) is denoted by d(a, b).

-1

-1

-1

-1

-1

-1-1-1

-1-1-1-1

-1-1-1-1-1-1-1

-1-1-1-1-1-1-1-1-1-1-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1

-1-1-1-1-1-1-1-1-1-1-1-1

0

0

0

0

0

0

0

00

0

0 0

00

0

0

0

0

0

0

0

0

0 00

0 0 0

0

00

0 0

0

0

00

0

00

0

0

11

11

1

1

1

1 1

1 1 1 1 1

1

1

1 1

1

1

1111

1

1

1

1

222

2 2 2

2

2222

3

Figure 1: Discretization of a polygon.

The square anchored at cell M(a, b) is defined as
the square with lower left cell M(a−(d−1), b−(d−1))
and upper right cell M(a+(d−1), b+(d−1)), where
d = d(a, b). It is easy to see that every such square is
fully contained in P\S.

For an inner cell M(a, b) the number of cells which
are to the right of it and which have a cell value of
at least d(a, b) is given by the horizontal length code

h(a, b). Similarly, a vertical length code v(a, b) is de-
fined for each inner cell. The horizontal length code
for each cell of a row M(., b) can be set in O(w) time
by stepping from cell M(w− 1, b) to cell M(0, b) and
by performing the following tasks for each inner cell
M(a, b).

• If d(a, b) > d(a+1, b) then the length code h(a, b)

2



stays 0.

• If d(a, b) = d(a+1, b) then the length code h(a, b)
is set to h(a + 1, b) + 1.

• If d(a, b) < d(a + 1, b) then the length code is
set to the value h(a + 1, b) + h(c, b) + 2, where
c = min{x ∈ N : x > a and d(x, b) = d(a, b)}.

Suppose d = d(a, b). The value h(c, b) is the length
code of the next d-cell in this row. This value is stored
in an array with index d. Thus, it can be retrieved in
constant time. These tasks are done for each row in
the mesh. The vertical length code is set in a similar
manner, by stepping downwards through the cells of
columns. The calculation of the length code takes
O(wh) time.

The mesh rectangle with lower-left cell M(la, lb)
and upper-right cell M(ua, ub) is denoted by
R[(la, lb), (ua, ub)]. For any inner cell M(a, b) the
mesh rectangle rech,1(a, b) := R[(a − d + 1, b − d +
1), (a + h + d − 1, b + d − 1)], where d = d(a, b) and
h = h(a, b), is the horizontal mesh rectangle anchored

at cell M(a, b) with a one-row core. If d(a, b + 1) ≥
d(a, b) ≥ 1, the mesh rectangle rech,2(a, b) := R[(a −
d+1, b−d+1), (a+h2+d−1, b+d)], where d = d(a, b)
and h2 = min(h(a, b), h(a, b + 1)), is the horizontal

mesh rectangle anchored at cell M(a, b) with a two-

row core. Similarly, vertical mesh rectangles with
one- and two-column cores are defined. Since an ar-
bitrarily anchored mesh rectangle can be covered by a
set of anchored squares, it is fully contained in P\S.

Theorem 1 For an arbitrary mesh rectangle R in P
that does not contain any point of S there is an an-

chored mesh rectangle which covers R.

Theorem 2 Given an arbitrary n1-vertex polygon P
in the plane, a point set S with n2 points, and a mesh

M with resolution w × h covering P , a largest mesh

rectangle contained in P\S can be found in O(n(w +
h) + wh) time using O(wh + n) memory, where n =
n1 + n2.

Proof. Setting the zero cells and the outer cells can
be done in O(n(w+h)+wh) time and O(wh+n) space.
The cell values in the interior of P can be calculated
without further costs. The length code can also be
set in O(wh) time for the whole mesh.

Let S′ be the set of all anchored mesh rectangles.
Due to Theorem 1, the set S′ is a sufficient search
space for the largest mesh rectangle inside P . Since
there are only O(wh) mesh rectangles in S′, for each
inner cell one, searching S′ does not increase the time
and space complexity further. �

An inner cell M(a, b) is called a horizontal upward

cell, if d(a, b) > d(a − 1, b) or
d(a, b) = d(a, b + 1) and d(a, b) > d(a − 1, b + 1).

Similarly, an inner cell M(a, b) is called a vertical up-

ward cell, if d(a, b) > d(a, b − 1) or
d(a, b) = d(a + 1, b) and d(a, b) > d(a + 1, b − 1).

A mesh rectangle which is anchored in an upward
cell is called upward anchored.

Theorem 3 For any anchored mesh rectangle R
there is an upward anchored mesh rectangle which

covers R.

Thus, the search space can be reduced to the set of
all upward anchored mesh rectangles. Each upward
cell gets a pointer to the next upward cell for this
reason. The first cell in a mesh row (column) gets the
pointer to the first upward cell in this row (column).
Hence, many cells can be left out during the search.
This does not reduce the worst-case time complexity
but tends to decrease the practical run-time of the
program considerably.

3 General Orientation

By using the method of Section 2 a simple heuristic
for the LOR can be built. Again, given is an arbitrary
polygon P and a point set S. The angle range [0 . . π

2 ]
is discretized. The input data is rotated by the an-
gles 0, δ, 2δ, . . . , (m − 1)δ, where m is an integer with
m ≥ 2, and δ := π

2m
. The LAR is calculated for each

of the rotated data sets. The largest mesh rectangle
returned by the LAR algorithm is the result of the
LOR algorithm. (Of course, this mesh rectangle has
to be re-transformed to the original orientation.)

4 Generalization to 3D Space

We extended the described method to approximate
the maximum volume cuboid inside a given polyhe-
dron P such that no point of S is included. A 3D
mesh was used to discretize the space. However, the
length code can not be adopted directly to the 3D
mesh. Instead the length codes have to be calculated
for each of the three coordinate planes xy, xz and
yz. In addition a 3D chessboard distance is used to
retrieve the maximal thickness of each cuboid.

5 Inner Approximation by Several Objects

Let F be a finite set of shapes in R
d. (In our appli-

cation, d = 2, 3.) Let k ≥ 2 be an integer. Given
a region R ⊂ R

d and a set of points S ⊂ R
d, we

want to find k shapes C1, . . . , Ck ∈ F such that
∪1≤i≤k Ci ⊆ R \ S and µ (∪1≤i≤kCi) is maximum.

Note that the shapes Ci may intersect. Let
(

F
k

)

be the
set of all k-elemental subsets of F . The proposed algo-
rithm performs a brute-force search of the set

(

F
k

)

for
the largest union of k shapes relative to the measure
µ. Let s be the cardinality of F . The algorithm has

3



to check
(

s

k

)

shape combinations by a k-times nested
loop. Thus the union of k shapes has to be calculated
O(sk) times.

The calculation of µ for such a union is done
by the inclusion-exclusion principle, by relying on
∑k

i=1

(

k
i

)

= 2k calculations of µ (∩C∈BC), where B
can have at most k elements. How long it takes to
calculate the intersection of k shapes depends on the
complexity of the shapes and has to be analyzed for
each specific type of shapes. For example, computing
the common intersection of k axis-aligned rectangles
takes O(k) time. Thus the calculation of the union
volume of k axis-aligned rectangles needs O

(

k 2k
)

time, and our shape selector needs at most O
(

k 2ksk
)

time in total.
Two improvements may reduce the average time

complexity drastically. First, let F ′ be the set of all
shapes in F that are not contained in another shape
in F . The shape set F ′ is a sufficient search space for
the shape combination that maximizes µ. The second
improvement relies on F ′ being arranged in decreasing
order according to µ. Our shape selector uses a k-
times nested loop to determine C1, . . . , Ck, starting
with the the j-largest shape in loop j. During each
pass through the body of a loop the next smaller shape
is tested. Suppose that the current candidate shapes
selected in loops 1 to (j − 1) are Ci1 , Ci2 , . . . , Cij−1

,
and we are to select a shape in loop j. Let Cij

be the
next smallest shape after Cij−1

in the ordered list of
shapes. If

M > µ(Ci1 ∪Ci2 ∪ · · · ∪Cij−1
) + (k − j + 1) ∗ µ(Cij

),

where M is the size of the union of the best selection
of shapes obtained so far, then an early termination
of the loops j to k is possible (since no better result
will be obtained) and the next smaller shape is tested
in loop j − 1.

6 Choosing a Suitable Mesh Resolution

Let A be the area of the true LAR and let A′ be the
area of the largest mesh rectangle obtained by our al-
gorithm. The ratio α = A′/A is called approximation

ratio and should be as close to 1 as possible. Let B

be the bounding box of P . The ratio aP = a(P)
a(B) is

called the relative area of P , where a is a measure for
the area. Let p(P) be the perimeter of P . Further,
let p(B) be the perimeter of the bounding box of P .

The ratio pP = p(P)
p(B) is called relative perimeter of

P . Furthermore, we call the ratio tP = aP/pP the
thickness of P . It is an attempt to cast an intuitive
understanding of the “thickness” of a polygon into a
numerical number.

Tests indicated that the higher the thickness of a
polygon is the lower the resolution of the mesh can
be in order to achieve the same approximation ratio.

Let w×w be the resolution of the mesh M used. The
value w2 tP is called weighted resolution of M rela-
tive to P . Since the number of inner cells grows with
the thickness, the approximation ratio grows with the
weighted resolution. Our 2D algorithm was tested
over a variety of polygons with different mesh resolu-
tions. As a result we obtained a look-up table and a
formula for the mesh resolution. The parameters for
the formula are the weighted resolution, which can be
read off from the table, and the area and the perime-
ter of the polygon. The row index of the table is the
desired approximation ratio α and the column index
is the probability that α will be achieved.

7 Conclusion

We use a regular mesh to discretize 2D and 3D
space for computing inner approximations of polyg-
onal/polyhedral shapes by one or more axis-aligned
or oriented boxes. The time consumption of the al-
gorithm depends on the mesh resolution which, on
the other hand, influences the quality of the approx-
imation obtained. Although the basic idea is rather
simple, several algorithmic improvements make our
approach quite feasible for the approximation of com-
plex shapes by several boxes. Based on extensive tests
we have come up with a heuristic to predict a suitable
resolution of the mesh relative to the approximation
quality requested by a user.

References

[1] R. P. Boland and J. Urrutia. Finding the Largest Axis-
aligned Rectangle in a Polygon in O(n log n) Time. In
Proc. 13th Canad. Conf. Comput. Geom., pages 41–44,
2001.

[2] J. Chaudhuri, S. Nandy, and S. Das. Largest
Empty Rectangle Among a Point Set. J. Algorithms,
46(1):54–78, 2003.

[3] K. Daniels, V. Milenkovic, and D. Roth. Finding the
Largest Area Axis-Parallel Rectangle in a Polygon.
Comput. Geom. Theory and Appl., 7:125–148, 1997.

[4] A. Datta and S. Soundaralakshmi. An Efficient Algo-
rithm for Computing the Maximum Empty Rectangle
in Three Dimensions. Informat. Sciences Appl. An

Int. J., 128(1):43–65, 2000.

[5] T. Hirata. A Unified Linear-Time Algorithm for
Computing Distance Maps. Inform. Process. Lett.,
58(3):129–133, May 1996.

[6] A. Mukhopadhyay and S. V. Rao. On Computing a
Largest Empty Arbitrarily Oriented Rectangle. Inter-

nat. J. Comput. Geom. Appl., 13(3):257–271, 2003.

[7] S. C. Nandy and B. B. Bhattacharya. Maximum
Empty Cuboid Among Points and Blocks. Comput-

ers & Math. with Appl., 36(3):11–20, 1998.

[8] M. Orlowski. A New Algorithm for the Largest Empty
Rectangle Problem. Algorithmica, 5:65–73, 1990.

4


