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The Clash of Quantum Physics with Gravity

Helmut J. Efinger∗

Abstract. The author‘s nonrelativistic modelOn the Gravitational Coupling Constant of Elementary
Particles[7] is revisited, especially with regard to the broken scaling-invariance and the breakdown
of the superposition principle in the ensuing nonlinear Schrödinger equation. In the light of Wein-
berg‘s paper onTesting Quantum Mechanics[9], standard homogeneity and linearity of quantum
mechanics are secured with sufficient precision in the presence of external fields. The meaning of the
so-called Planck-scale is discussed in various contexts. Some computational work on this subject is
briefly addressed.

1. Introduction

1. Quantum Theoryis based on complex numbers in a linear vector space of at mostinfinite
dimensions.

2. The Theory of Gravitation, formulated within the framework of General Relativity, is based on
real numbers in a nonlinear 3+1-dimensional NonEuclidean space-time.

Ad 1) Complex numbers are necessary for the pobabilistic interpretation of that theory. In conjunction
with linearity one then understands interference of superposed quantum states.

Ad 2) Spacial distances and time-intervals are expressed interms of real numbers. Since relativistic
gravity acts back on itself (equivalence of mass and energy), the correct theory is nonlinear: Starting
off with Special Relativity, measuring rods and clocks become distorted to the extent that space-time
becomes effectively NonEuclidean [1].

Ad 1) and Ad 2) In quantum theory the fundamental linear Schrödinger equation has a nonrelativistic
limit. There is also a nonrelativistic limit in the theory ofgravitation, called the Newtonian approx-
imation which happens to be also linear. However, in what follows in this essay, there is no way to
generate a unified linear scheme!

One reason for unifying quantum physics with gravity is to understand the interrelationship between
fundamental constants: for example, there are

~ = Planck‘s constant (divided by2π)

G0 = Newton‘s constant of gravitation

c = speed of light
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From these constants we derive a fundamental mass-unit (called the Planck-mass):
√

~c

G0

≈ 10−5gram,

which weighs somewhat less than a grownup flea [2].

Penrose has put forward a proposal as to the meaning of the Planck-mass, withG0 fixed: This funda-
mental mass might come into play when superpositions of quantum states undergo agravitationally
induced collapsetowards one single state [2], [3].

In recent years string-theory has come up with intriguing ideas about the the Planck-mass: In models
with large (more than 3+1) extra spacial dimensions it is believed that the corresponding Planckian
energy-scale (≈ 1016 TeV) can effectively be lowered to the TeV-regime, which is now in close reach
for accelerators in collision experiments: The actual reason for this is, so the claim, that gravity then
freely propagates outside so-called three-branes which are produced in these experiments, see [4]
and the references therein. In this case standard General Relativity is supposedly reduced to the low
energy-limit of a high-dimensional quantum gravity theory.

I have a different conjecture to this monstrous mass-unit (in reference to the actual mass-scale of
elementary particles): Thegravitational constantis not fundamental, it varies with the epoch [5], [6].
So, the Planck-mass has no universal meaning!

By comparison, my own ideas are rather simple and straightforward, already showing the clash of
ordinary linear quantum physics with gravity in the nonrelativistic sector, first developed in [7]:

Let ε be a stationary energy state of an isolated quantum object, localized within a three-dimensional
regiona, then one naively expects

ε ≈
~

2

2Ma2
,

∂ε

∂a
= 0 ,

whereM is theinertial mass; however, there is no such stationary value, unlessa→∞.

Help comes fromuniversal gravity: Since the massM is also gravitational, there will be a self-energy
contribution within that region, s.t.

ε ≈
~

2

2Ma2
−
M2G0

a
,

∂ε

∂a
= 0 .

From this we see at once that for stable stationary states,ε < 0:

M3G0

~2
≈

1

a
.

For isolated elementary particle masses the region of localization is pretty large, so cosmology comes
into play: For example, if one puts formax(a) ≈ 1028 cm (roughly the Hubble-radius at the present
epoch), a tenth of the proton/neutron-mass, possibly acritical fundamental mass, emerges, see [5],
[8]; at any rate, this mass is of a desirable order of magnitude for elementary particles, andG0 would
thus depend on the epoch!
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I am now convinced, contrary to what was said in the original paper [7], that low mass-particles,
electrons or neutrinos, etc., do not fit into this nonrelativistic scheme. Incidentally, if the region of
localizationa for free objects were also bounded from below, s.t. possiblymin(a) ≈ ~/Mc, then, in
nonrelativistic approximation, the Planck-mass would be an upper bound for elementary particles at
the present epoch!

2. A Nonlinear Quantum Action

In nonrelativistic classical mechanics, a self-interacting system with gravitational mass
∫

Ω
ρ(x) d3x

in a 3-dimensional regionΩ has the self-energy proportional to

−
1

2

∫

Ω

∫

Ω

ρ(x)ρ(y)K(x− y) d3x d3y ,

whereK(x − y) is a positive symmetric twopoint-interaction kernel, andρ is the mass density. For
example, in Einstein-Newtonian gravity:

K(x) =
1

4π|x|
,

i.e. strictly Coulomb.

Within an extended quantum theory, which should encompass gravity in nonrelativistic approxi-
mation, we then postulate anonlinear functionalover a complex vector field|φ〉 with a Lagrange-
parametere:

Iφ =

〈

φ

∣

∣

∣

∣

(

T −
1

2
〈φ|K|φ〉

)
∣

∣

∣

∣

φ

〉

− e
(

〈φ|φ〉 − λ2
)

,

whereT denotes the kinetic energy. By minimizing we thus get:

∂Iφ
∂ 〈φ|

= (Hφ − e) |φ〉 = 0 ,

〈φ|φ〉 = λ2 ,

where the Hamiltonian, depending on the stateφ, is given byHφ = T − 〈φ|K|φ〉, with λ2 denoting
the gravitational coupling constant.

Note: Strictly speaking, ifλ2 were zero (no gravity, see remark 2), then∀φ : |φ〉 ≡ 0 !

Remark 1: Note that, (compare with [8], [9])

1. this model is nothomogeneous, i.e. there is no scaling-invariance under the transformation

|φ〉 7→ α |φ〉 ,

whereα is some arbitrary complex number;

2. there is nolinear superpositionof quantum states.
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3. A Nonlinear Schrödinger Representation

For the Hamiltonian in the extended Schrödinger picture we should have

Hφ = −△ −

∫

R3

|φ(y)|2K(x− y) d3y ,

where△ is the Laplacian, andφ(x) being the Schr̈odinger amplitude, s.t. the overall gravitational
self-energy inR3 is given by:

−
1

2

∫

R3

∫

R3

|φ(x)|2 |φ(y)|2K(x− y) d3x d3y ,

in correspondence to the above classical expression.

The nonlinear Schrödinger eigenvalue equation then reads [10]:

[−△− Vφ(x)]φ(x) = e φ(x) ,
∫

R3

|φ(y)|2K(x− y) d3y = Vφ(x) ,
∫

R3

|φ(x)|2 d3x = λ2 .

Note that the Lagrange-parametere is synonymous with the eigenvalue- parameter of the ensuing
Schr̈odinger equation.

Remark 2: After little thought, the above elementary estimate onε < 0 leads to

λ2 =
8πG0M

3

~2
.

Note that computational work has been done, for example, some time ago by Synge [11], and more
recently by Adomian [12], with the simplified assumption that K behaves like a Yukawa-kernel; for
general methods of integration, also see [13].

A fundamental theorem: Let the kernelK be a bounded operator, withe < 0 : thenλ2 is bounded
from below; this was proved rigorously for certain finite norms ofK in Lp(R3) [10]. There is thus a
lower bound on the mass of gravitating particles, in agreement with the original conjecture [7].

Interpretation: If this mass-bound is fundamental, and of the right order of magnitude in the above
sense, with the Hubble-radius being the effective range ofK: then thegravitational constantdepends
on the cosmological epoch, compare with [5]; thusG0 drops off as the universe expands!

Note, withG0 strictly decreasing, the evolution of the universe would probably not be cyclical, which
might have some bearing on the second law of thermodynamics [14]. At any rate, the standard
Einstein-Friedmann cosmology is at stake!

4. Transition to Ordinary Linear Quantum Physics

One may wonder why ordinary quantum mechanics is extremly applicable, with an unprecedented
degree of accuracy [9]:
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SinceG0 6= 0, we simply transformφ 7→ λφ, then by remark 2 we get the following set of equations,
also introducing anexternal potentialU(x):

[

−
~

2

2M
△+ U(x)− Vφ(x)

]

φ(x) = ε φ(x) ,

4πM2G0

∫

R3

|φ(y)|2K(x− y) d3y = Vφ(x) ,
∫

R3

|φ(x)|2 d3x = 1 .

Note: For the time dependent scheme, referring to free objects, see the Appendix.

Now, scaling-invariance and linearity can be secured for all practical purposes, since in all tested
applications we usually have:

|〈φ|U |φ〉| ≫ |〈φ|Vφ|φ〉| .

Note that, in this approximation, statistical averaging can be done with sufficient precision in the usual
manner, compare with [9].

However, given the hypothesis that gravity changes with theepoch, we cannnot be certain as to the
validity of this inequality in the cosmolological past. Here one is reminded of certain critical remarks
by the late R.P. Feynman on the law of gravity [15].

Appendix

I present a time-dependent version in the Schrödinger picture, wherebyφ(x) 7→ ψ(x, t), which also
works in the variation ofG0 with the epoch. For free objects we should have:

(

−
~

2

2M
△− Vψ

)

ψ = i~
∂ψ

∂t
,

4πM2G0

∫

|ψ(y, t)|2K(x− y) d3y = Vψ ,
∫

|ψ(x, t)|2 d3x = 1 .

The dimensionless formulation:

Let x 7→ µ−1x, andt 7→ (µ2
~/2M)

−1
t , whereµ−1 is the effective range ofK, bounded inLp(R3),

scaling Coloumb-like:K 7→ µK.
With µ varying slowly asψ evolves unitarily as a function oft, we obtain the following dimensionless
scheme:

(−△− Vψ) = i
∂ψ

∂t
,
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∫

|ψ(y, t)|2K(x− y) d3y = Vψ ,

∫

|ψ(x, t)|2 d3x =
λ2

µ
;

thus, according to remark 2,G0 then varies proportional toµ: Sinceµ−1 is supposedly the Hubble-
radius, thegravitational constantG0 decreases in an expanding universe!
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