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The Clash of Quantum Physics with Gravity

Helmut J. Efinger

Abstract. The author’s nonrelativistic mod€ln the Gravitational Coupling Constant of Elementary
Particleq7] is revisited, especially with regard to the broken scghlimvariance and the breakdown
of the superposition principle in the ensuing nonlinearr®dmger equation. In the light of Wein-
berg’'s paper onTesting Quantum Mechanig¢8], standard homogeneity and linearity of quantum
mechanics are secured with sufficient precision in the pesehexternal fields. The meaning of the
so-called Planck-scale is discussed in various contexageScomputational work on this subject is
briefly addressed.

1. Introduction

1. Quantum Theorys based on complex numbers in a linear vector space of at imfasite
dimensions.

2. The Theory of Gravitatiorformulated within the framework of General Relativity, sded on
real numbers in a nonlinear 3+1-dimensional NonEuclidgates-time.

Ad 1) Complex numbers are necessary for the pobabilisticpré¢ation of that theory. In conjunction
with linearity one then understands interference of supsrd quantum states.

Ad 2) Spacial distances and time-intervals are expresstginm of real numbers. Since relativistic
gravity acts back on itself (equivalence of mass and engtigg)correct theory is nonlinear: Starting
off with Special Relativity, measuring rods and clocks beedtistorted to the extent that space-time
becomes effectively NonEuclidean [1].

Ad 1) and Ad 2) In quantum theory the fundamental linear 8dimger equation has a nonrelativistic
limit. There is also a nonrelativistic limit in the theory gfavitation, called the Newtonian approx-
imation which happens to be also linear. However, in whdovas in this essay, there is no way to
generate a unified linear scheme!

One reason for unifying quantum physics with gravity is tderstand the interrelationship between
fundamental constants: for example, there are

h = Planck's constant (divided )
Gy = Newton's constant of gravitation
¢ = speed of light
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From these constants we derive a fundamental mass-unédahe Planck-mass):

he
— ~107°
\/ c. gram,

which weighs somewhat less than a grownup flea [2].

Penrose has put forward a proposal as to the meaning of thekPtaass, with,, fixed: This funda-
mental mass might come into play when superpositions of tguastates undergogravitationally
induced collaps¢éowards one single state [2], [3].

In recent years string-theory has come up with intriguirgaglabout the the Planck-mass: In models
with large (more than 3+1) extra spacial dimensions it isgved that the corresponding Planckian
energy-scalex£ 10'¢ TeV) can effectively be lowered to the TeV-regime, whichdswin close reach
for accelerators in collision experiments: The actualeedsr this is, so the claim, that gravity then
freely propagates outside so-called three-branes whelparduced in these experiments, see [4]
and the references therein. In this case standard GeneedMRglis supposedly reduced to the low
energy-limit of a high-dimensional quantum gravity theory

| have a different conjecture to this monstrous mass-uniréference to the actual mass-scale of
elementary particles): Thgravitational constanis not fundamental, it varies with the epoch [5], [6].
So, the Planck-mass has no universal meaning!

By comparison, my own ideas are rather simple and straigh#iiat, already showing the clash of
ordinary linear quantum physics with gravity in the nontielatic sector, first developed in [7]:

Let e be a stationary energy state of an isolated quantum obpeetized within a three-dimensional
regiona, then one naively expects
h? Oe
ex——, —=0,
2Ma? da
whereM is theinertial mass however, there is no such stationary value, untess co.

Help comes fronuniversal gravity Since the mas3/ is also gravitational, there will be a self-energy
contribution within that region, s.t.

- hQ M2G0 6870
~ 2Ma2 a = Oa

From this we see at once that for stable stationary stated):

€

MGy 1

h? a

For isolated elementary particle masses the region ofiltatadn is pretty large, so cosmology comes
into play: For example, if one puts fatax(a) ~ 10%® cm (roughly the Hubble-radius at the present
epoch), a tenth of the proton/neutron-mass, possitdgiteeal fundamental masemerges, see [5],
[8]; at any rate, this mass is of a desirable order of maggrifodelementary particles, ardg, would
thus depend on the epoch!



I am now convinced, contrary to what was said in the origireghgy [7], that low mass-patrticles,
electrons or neutrinos, etc., do not fit into this nonrelatie scheme. Incidentally, if the region of
localizationa for free objects were also bounded from below, s.t. possitity(a) ~ //Mc, then, in
nonrelativistic approximation, the Planck-mass would beipper bound for elementary particles at
the present epoch!

2. A Nonlinear Quantum Action

In nonrelativistic classical mechanics, a self-interagtsystem with gravitational magfg, p(z) d°x
in a 3-dimensional regiof has the self-energy proportional to

=5 | [ oK)y,

where K (z — y) is a positive symmetric twopoint-interaction kernel, ani$ the mass density. For
example, in Einstein-Newtonian gravity:

1

K(z) = ——
()=t
i.e. strictly Coulomb.

Within an extended quantum theory, which should encompeagty in nonrelativistic approxi-
mation, we then postulatersonlinear functionalover a complex vector fielth) with a Lagrange-

parametee:
1= (o (7 gteliion) o) - e (toter - )

whereT" denotes the kinetic energy. By minimizing we thus get:

Mo
s = (Ho=e)19) =0,
(0lo) = A,

where the Hamiltonian, depending on the statés given byH, = T — (¢|K|$), with A? denoting
the gravitational coupling constant.

Note: Strictly speaking, i\? were zero (no gravity, see remark 2), thén: [¢) = 0!

Remark 1: Note that, (compare with [8], [9])

1. this model is nohomogeneouys.e. there is no scaling-invariance under the transfaonat

|¢) — al9)
where« is some arbitrary complex number;

2. there is ndinear superpositiorof quantum states.



3. A Nonlinear Schrodinger Representation

For the Hamiltonian in the extended Setimger picture we should have

Ho==0 = [ 1WPK@-yd

whereA is the Laplacian, and(x) being the Sctirdinger amplitude, s.t. the overall gravitational
self-energy inRk? is given by:

1
5 [ [ R 6P -y ey,
R3 JR3
in correspondence to the above classical expression.

The nonlinear Sclidinger eigenvalue equation then reads [10]:
—A=Vy(0)]¢(z) = ed(z),
/|¢ K@ -y dy = Vila).

/ |p(z)]? dPx = N,
R3

Note that the Lagrange-parameteis synonymous with the eigenvalue- parameter of the ensuing
Schibdinger equation.

Remark 2: After little thought, the above elementary estimateson 0 leads to

87TG0M3
2
Note that computational work has been done, for examplegdone ago by Synge [11], and more

recently by Adomian [12], with the simplified assumptionttiiabehaves like a Yukawa-kernel; for
general methods of integration, also see [13].

A2 =

A fundamental theorem: Let the kernel be a bounded operator, with< 0 : then\? is bounded
from below; this was proved rigorously for certain finite merof K in £7(R3) [10]. There is thus a
lower bound on the mass of gravitating particles, in agregmwéh the original conjecture [7].

Interpretation: If this mass-bound is fundamental, and of the right order agnitude in the above
sense, with the Hubble-radius being the effective rang€:ahen thegravitational constantepends
on the cosmological epoch, compare with [5]; tiigsdrops off as the universe expands!

Note, withG strictly decreasing, the evolution of the universe woulohably not be cyclical, which
might have some bearing on the second law of thermodynarhi}s [At any rate, the standard
Einstein-Friedmann cosmology is at stake!

4. Transition to Ordinary Linear Quantum Physics

One may wonder why ordinary quantum mechanics is extrempjicgble, with an unprecedented
degree of accuracy [9]:



SinceGy # 0, we simply transformp — A\¢, then by remark 2 we get the following set of equations,
also introducing aexternal potential/(z):

{_QH—MA +U(z) — V¢(x)] o(z) = eo(z),

4 MGy / BWIPK (@ —y)dy = Vi),
R3

/ P ds = 1.
R«?)

Note: For the time dependent scheme, referring to free tdhjsee the Appendix.

Now, scaling-invariance and linearity can be secured fbpiactical purposes, since in all tested
applications we usually have:

[(2lU19)| > [{8]Vsl9)] -

Note that, in this approximation, statistical averaging lba done with sufficient precision in the usual
manner, compare with [9].

However, given the hypothesis that gravity changes witheth@ch, we cannnot be certain as to the
validity of this inequality in the cosmolological past. ldayne is reminded of certain critical remarks
by the late R.P. Feynman on the law of gravity [15].

Appendix

| present a time-dependent version in the $dimger picture, whereby(z) — v (z,t), which also
works in the variation o7, with the epoch. For free objects we should have:

h? L O

MG,y / Wy OPK (@ —y)dy = Vi

/]w(x,t)|2d3x ~

The dimensionless formulation:

Letz — pu'z, andt — (u2h/2M) "'t , wherepu ! is the effective range ok, bounded inc?(R?),
scaling Coloumb-like K — pK.

With 1 varying slowly as) evolves unitarily as a function of we obtain the following dimensionless
scheme:

%

(—A — Vw) = ’la ;

5



/ Wy OPK (@ —y) Py = Vi
)\2

/ Bl f dr =

thus, according to remark 23, then varies proportional to: Sinceu~! is supposedly the Hubble-
radius, thegravitational constanty, decreases in an expanding universe!
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