
Accuracy of Distributed Data Retrieval on a
Supercomputer Grid

Gabriel Okšaa Marián Vajteršic

aInstitute of Mathematics, Department of Informatics, Slovak Academy of Sci-
ences, Bratislava, Slovak Republic

Technical Report 2005-09 December 2005

Department of Scientific Computing

Computing

cientificS
Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.scicomp.sbg.ac.at

Technical Report Series

Accuracy of Distributed Data

Retrieval on a Supercomputer Grid

Gabriel Okša∗ and Marián Vajteršic†

Abstract. Using the paradigm of the Latent Semantic Indexing, two
models for the encoding of a distributed database are described. In the first
model, the computational system is organized into a grid of individual nodes,
which possess only a restricted inter-communication. The distributed database
consists of mutually uncoupled local databases, which are updated for new doc-
uments/terms, and scanned independently for documents matching a given
query. There is no easy way of comparing the accuracy of retrieval from
individual nodes, because there exists no global approximation of the whole
database. In the second model (which can describe, for example, one node of
a grid), the individual processors are connected by some sort of the commu-
nication network, so that the distributed computation and mutual communi-
cation are possible. We develop a two-stage model—the local and global levels
of approximation—based on the Latent Semantic Indexing of documents for
such a distributed system. Some interesting computational issues are dis-
cussed including the efficiency of a distributed singular value decomposition.
Finally, it is possible to analyze the relationship between the local and global
approximations with respect to the accuracy of retrieval of documents in this
case.

1 Introduction

Human knowledge is growing in all areas of human activity. Despite wars
and terrorism, despite occasional nature catastrophes, despite all kinds of
obstacles—and it seems that this growth is even accelerating. Deep inside

∗Institute of Mathematics, Department of Informatics, Slovak Academy of Sciences,

Bratislava, Slovak Republic, email: Gabriel.Oksa@savba.sk.
†Institute for Scientific Computing, University of Salzburg, Salzburg, Austria, email:

marian@cosy.sbg.ac.at.

each of us lives a desire to know and understand more than our parents have
known and understood ...

One of the main sources of information in our society is the written word.
Since times of Sumerians a written document became the main tool to inform,
to teach, to entertain, to archive the knowledge. Today, some 6000 years
after Sumerians, nothing has changed with respect to the importance of
written text. What has changed significantly, however, is the way people
manipulate texts. Sumerians had large libraries consisting of vast amounts
of cuneiform tables, which have been excavated from sand by archaeologists
in the southern Iraq during last 200 years. We have the linear algebra and
computers.

To become widely available, the knowledge must be manipulated in an
easy and reliable way. The manipulation includes storage, updating and
retrieval of texts stored in huge databases, which reside on some kind of a
computer architecture.

To begin with, we need a mathematical model for the storage of writ-
ten text in a computer. Here comes the linear algebra into play. In the
vector space model, the collection of text documents is represented by a
term-document matrix A = (aij) ∈ R

m×n, where aij is based on the number
of times the term i appears in the document j, m is the number of terms, and
n is the number of documents in the collection. Hence, a document becomes
a column vector. Updating the term-document matrix means either to add
new documents / delete some old documents, or to add new terms / delete
some existing terms. Retrieval is connected with user’s query that can also
be represented as a vector of the same dimension as any document. The sim-
ilarity between a query vector and a document vector is usually measured by
the cosine of the angle between them, and for each query a list of documents
ranked in a decreasing order of similarity is returned to the user.

Latent semantic indexing (LSI) is a concept-based automatic indexing
method for overcoming the two fundamental problems which exist in the
traditional lexical-matching retrieval schemes: synonymy and polysemy [3].
With respect to the synonymy, several different words can be used to express
a concept and the keywords in a user’s query may not match those in the
relevant documents. On the other hand, the polysemy means that the words
can have multiple meanings and the user’s words may match those in the
irrelevant documents. The LSI is an extension of the vector space model for
information retrieval [4, 3].

The LSI modifies this vector space model by modeling the term-document
relationship using a reduced-dimension representation (RDR) of term-document

2

matrix Acomputed by its singular value decomposition (SVD). Let

A = PΣQT , Σ = diag(σ1, σ2, . . . , σmin{m,n}) , σ1 ≥ σ2 ≥ . . . ≥ σmin{m,n} ,

be the SVD of A. Then the RDR is given by the best rank-k approximations
Ak = PkΣkQ

T
k , k < min{m, n}, where Pk and Qk consist of the first k

columns of P and Q, respectively, and Σk is the kth leading principal sub-
matrix of Σ. Each of the k reduced dimensions represents a so-called pseudo-
concept [4], which may not have any explicit semantic content but helps to
discriminate documents [4, 5].

In rapidly changing environments such as the World Wide Web, the doc-
ument collection is frequently updated with new documents and terms con-
stantly being added. Hence, the task arises to efficiently update the old
LSI-generated RDR after an addition of new documents and terms. In ad-
dition, really huge databases can not be implemented on a single computer;
instead, they use networking and documents are stored in a distributed way.

The number of possibilities how to organize a computational architecture
is countless. We restrict ourselves to two basic types. A grid consists of
individual computing nodes which are connected by network. However, indi-
vidual nodes are independent and they do not normally communicate. They
process the information independently of each other. A node can be another
computer or even some kind of a local distributed system—e.g., a cluster of
personal computers or a parallel supercomputer. In contrast, a distributed
system consists of a set of nodes which are connected and communicate with
each other. A good example is the cluster of personal computers (PCs).

In what follows, the implementation of the concept of LSI is discussed
for both types of computational architectures. All three aspects of the LSI—
storage, updating and retrieval—are discussed and compared.

2 LSI implemented on a grid

Let let us assume that the computational grid consists of p nodes. In context
of the LSI, each node can store and maintain its individual database, which
is represented by its own term-document matrix A(i), i = 1, 2, . . . , p.

In the following two subsections we will describe the algorithms, which can
be used for updating of individual databases and the retrieval of documents
in individual nodes.

3

2.1 Storage and updating

Let the index i denote one of the nodes of the grid under consideration,
1 ≤ i ≤ p. This node first accumulates its term-document matrix A(i)

of order m × ni, then computes its RDR of order ki and, finally, stores
the matrices Pki

, Qki
and Σki

. Although the individual nodes of the grid
work independently, we assume that their data-term matrices A(i) describe
information from the same (or very close) areas of interests, so that the terms
are the same for all nodes—hence, the number of rows m is the same across
the nodes.

2.1.1 Updating documents

Since each node of the grid works independently, it can receive new docu-
ments from the outside world. Therefore, it must be capable to update its
term-document matrix A(i). However, the original A(i) is not at our dis-
posal anymore—all, that is left, is only its ki-dimensional approximation in
the factored form. Therefore, a natural question arises, how to compute
a new approximation, which will incorporate a new information from new
documents.

Let D(i) ∈ R
m×wi be wi new documents. The task is to compute the best

rank-ki approximation of the column partitioned matrix

B(i) ≡ (A
(i)
ki

, D(i)) .

Using the factorization of A
(i)
ki

, the matrix B(i) can be written as

B(i) =
(

Pki
Σki

QT
ki

, D(i)
)

=
(

Pki
, (Im − Pki

P T
ki

) D(i)
)

·

(

Σki
P T

ki
D(i)

0 Iwi

)

·

(

QT
ki

0
0 Iwi

)

.

Note that Im − Pki
P T

ki
is the matrix representation of the orthogonal projec-

tion, which maps the columns of matrix D(i) into the subspace P⊥
ki

that is

orthogonal to the column range of matrix Pki
. Let (Im−Pki

P T
ki

)D(i) = P̂wi
Ri

be the QR decomposition of the matrix (Im − Pki
P T

ki
)D(i). Then

B(i) = (Pki
, P̂wi

) ·

(

Σki
P T

ki
D(i)

0 Ri

)

·

(

QT
ki

0
0 Iwi

)

. (1)

The crucial point in the above derivation is the observation that the wi

orthonormal columns of matrix P̂wi
are mutually orthogonal to the ki or-

thonormal columns of matrix Pki
because the columns of P̂wi

constitute the

4

orthonormal basis of the subspace P⊥
ki

. Note that two exterior matrices on
the right hand side of Eq. (1) are orthogonal, but the inner matrix is not di-
agonal. Hence, from the computational point of view, the updating problem
is reduced to the SVD of the inner matrix in Eq. (1).

Based on these facts, Zha and Simon [6] have derived a method for solv-
ing the problem of updating documents. Their approach is summarized in
Algorithm 1.

Algorithm 1 Algorithm for updating documents

1: Input: ki, Pki
∈ R

m×ki, Σki
∈ R

ki×ki, Qki
∈ R

n×ki, D(i) ∈ R
m×wi.

2: Compute the projection: D̂(i) = (Im − Pki
P T

ki
) D(i).

3: Compute the QR decomposition: D̂(i) = P̂wi
Ri, where P̂wi

∈ R
m×wi , Ri ∈

R
wi×wi.

4: Compute the SVD of matrix

B̂(i) ≡

(

Σki
P T

ki
D(i)

0 Ri

)

∈ R
(ki+wi)×(ki+wi)

in the form:

B̂(i) = (Uki
, U⊥

ki
) · diag(Σ̂ki

, Σ̂wi
) · (Vki

, V ⊥
ki

)T ,

where Uki
, Vki

∈ R
(ki+wi)×ki and Σ̂ki

∈ R
ki×ki.

5: Output: The best rank-ki approximation of B(i) = (Aki
, D(i)) is given

by:

B
(i)
ki

≡
[

(Pki
, P̂wi

) Uki

]

· Σ̂ki
·

[(

Qki
0

0 Iwi

)

Vki

]T

.

end

Notice that Step 4 in Algorithm 1 requires the SVD of the structured matrix
B̂(i), which is upper triangular with the diagonal left upper block of order
ki×ki. At the same time, this step represents the most intensive computation
in Algorithm 1.

2.1.2 Updating terms

In this case, let T (i) ∈ R
qi×ni be the qi new term vectors that should be added

to the existing terms at the bottom of the old term-document matrix. The
task is to compute the best rank-ki approximation of the row partitioned
matrix

C(i) ≡

(

A
(i)
ki

T

)

.

Using steps similar to those in the previous paragraph (see [6]), one gets the
Algorithm 2 for the correct updating of terms.

5

Algorithm 2 Algorithm for updating terms

1: Input: ki, Pki
∈ R

m×ki, Σki
∈ R

ki×ki, Qki
∈ R

ni×ki, T (i) ∈ R
qi×ni.

2: Compute the projection: T̂ (i) = (Ini
− Qki

QT
ki

) T (i)T ∈ R
ni×qi.

3: Compute the QR decomposition: T̂ (i) = Q̂qi
LT

i , where Q̂qi
∈ R

ni×qi, Li ∈
R

qi×qi.
4: Compute the SVD of matrix

Ĉ(i) ≡

(

Σki
0

T (i)Qki
Li

)

∈ R
(ki+qi)×(ki+qi)

in the form:

Ĉ(i) = (Uki
, U⊥

ki
) · diag(Σ̂ki

, Σ̂qi
) · (Vki

, V ⊥
ki

)T ,

where Uki
, Vki

∈ R
(ki+qi)×ki and Σ̂ki

∈ R
ki×ki.

5: Output: The best rank-ki approximation of C(i) =

(

A
(i)
k

T (i)

)

is given by:

C
(i)
ki

≡

[(

Pki
0

0 Iqi

)

Uki

]

· Σ̂ki
·
[

(Qki
, Q̂qi

) Vki

]T

.

end

Similarly to the problem of updating documents, the computationally most
intensive step is the SVD of the lower triangular matrix Ĉ(i) with the upper
left diagonal block.

2.2 Retrieval of documents

A retrieval of relevant documents is based on the notion of a query, which
is the m-dimensional binary vector q with ones at positions matching the
terms that should be found and retrieved from the database. Notice that the
dimension of a query is equal to the number of rows of A

(i)
ki

, i.e. to the size
of the set of terms used for coding the documents into a database.

We assume that, despite the fact that the nodes of a grid do not com-
municate regularly, it is possible to send the same query through the con-
necting network to individual nodes. These nodes are capable to receive the
query and search independently for relevant documents in their individual
databases A

(i)
ki

, i = 1, 2, . . . , p. Recall, however, that the low-rank approxi-
mation is stored in each node in its factored form given by matrices Pki

Σki

and Qki
. Therefore, one has to work with these matrices and not with the

explicit matrix A
(i)
ki

, which is never computed explicitly.

6

The query matching is based on the comparison of a query vector q to the
columns of the approximation A

(i)
ki

by means of the acute angle θ
(i)
j between

them; i.e., for j = 1, 2, . . . , ni, one should compute

cos θ
(i)
j =

(A
(i)
ki

ej)
T q

‖A
(i)
ki

ej‖2 · ‖q‖2

=
eT

j Pki
Σki

(QT
ki

q)

‖Σki
QT

ki
ej‖2 · ‖q‖2

.

For a fixed low-dimensional approximations, this computation can be made
more efficient by pre-computing ni values

s
(i)
j = Σki

V T
ki

ej.

Then

cos θ
(i)
j =

s
(i)T
j (P T

ki
q)

‖s
(i)
j ‖2 · ‖q‖2

. (2)

Producing a list of relevant documents is based on the geometric insight
about alignment of two vectors in the ki-dimensional Euclidean space: Two
vectors are the more aligned (more “identical”) the less is the acute angle
between them. Since cosine is the decreasing function in the interval [0, π/2],
this allows for the ordering of retrieved documents by listing a non-increasing
sequence of their cosines. Usually, some sort of thresholding is applied for
retrieved documents—retrieved are only documents for which

cos θ
(i)
j ≥ α(i),

where α(i) is the constant, which can be specific for each node of the grid.

2.2.1 Comparison of retrieval between individual nodes

Since the individual nodes do not communicate, one can not build the “global”
database which would represent the compound matrix A = (A(1), A(2), . . . , A(p)).
Form the mathematical point of view, there is no way to represent the matrix
A by some low, k-dimensional approximation, because there is no way to get
the individual low-dimensional approximations of matrices Ai together and
build upon them the low-dimensional approximation of A.

Therefore, the retrieval of documents is possible only on a local level of
individual nodes. Moreover, because the global approximation is missing,
we can not, strictly speaking, directly compare the results from individual
retrievals of documents on individual nodes. In other words, since the indi-
vidual low-dimensional approximations of Ai were built independently, there
is no way how to compare the accuracy of retrievals coming from two different
nodes.

7

Nevertheless, some general conclusions can be made in a special case.
For the local approximation in each node, the most important parameters
are: i) the number of encoded documents ni, and ii) the dimension of the
approximation vector space ki. If the number of encoded documents is ap-
proximately the same in each node, and if the dimensions of approximations
are also the same, than one can expect the same quality of encoding—i.e.,
when the same terms are used in each node, the structure of individual low-
dimensional vector spaces will be very similar. In this case, one can use the
same threshold in each node and merge and sort p individual lists of matched
documents into one list according to, for example, non-increasing cosines. In
other words, we can expect approximately the same accuracy of retrieval over
the nodes in this special case.

The problem is, of course, how to manage the first requirement above
during the updates. If the nodes of a grid do not communicate at all, there
is no way how to ensure that the local databases will be built from the
approximately same amount of documents. Therefore, next discussion is
devoted to the second model of a distributed system where the inter-processor
communication is available.

3 LSI implemented on a distributed system

We now consider the second possible paradigm with respect to the storage of
documents and their retrieval. In contrast to the grid, in a distributed sys-
tem the individual processors can communicate and mutually exchange data.
Therefore, the term-document matrix A of order m × n can be distributed
column-wise among, say, p processors in the form A = (A1, A2, . . . , Ap) where
Ai is of order m × ni. This distributed system may even correspond to one
node of a grid analyzed above.

Each processor builds its own ki-dimensional approximation of the SVD
of its block Ai as described above. Notice that these computations can be
computed in parallel without any communication between processors. This
means that all computations are perfectly local to processors and can be
realized by some serial numerical library, e.g., using the LAPACK.

After this initial computation, however, comes the main difference be-
tween a grid and a distributed system. In contrast to a grid, a distributed
system can build another “global” approximation of the original matrix A
atop of individual approximations which were computed in individual pro-
cessors. This is something completely new as compared to a grid. This global
approximation is then used in the retrieval of documents.

Next we will describe how such a global approximation can be computed

8

and updated from individual approximations stored in individual processors.

3.1 Building a global approximation

For the sake of simplicity of exposition, let us first consider the case of two
processors, PE1 and PE2. All following derivations can be easily extended
to the case of p processors with p > 2.

Let us assume that PE1 has computed its m × k1 approximation of A1

and stored the corresponding partial factors of SVD P11, Σ11 and Q11. Simi-
larly, PE2 has the local approximation P21, Σ21 and Q21 of A2 at its disposal.
Notice that the first index in these local approximations can be interpreted
as the processor index while the second one denotes a local level of approxi-
mation. Since the original Ai has ni columns, we must have ki ≤ ni, i = 1, 2.

To build a global approximation of local factors, we must first choose the
order k of that approximation. For that purpose, let us organize two local
approximations into a global matrix G,

G = (P11Σ11Q
T
11, P21Σ21Q

T
21),

which is the matrix of order m × n (notice that the first matrix is of order
m × n1, the second one is of order m × n2 and n = n1 + n2).

To compute the k-dimensional global approximation of this matrix, we
must clearly have k ≤ k1 + k2. Notice that

(P11Σ11Q
T
11, P21Σ21Q

T
21) = (P11Σ11, P21Σ21)

(

Q11 0
0 Q21

)T

,

where the rightmost matrix is of order (k1 + k2) × n with orthonormal rows
(after transposition).

Now the k-dimensional global approximation of G is computed in two
steps by Algorithm 3:

Algorithm 3 Algorithm for global approximation

1: Compute the full SVD of the m × (k1 + k2) matrix

(P11Σ11, P21Σ21) = (Ũk, Ũ
⊥
k)

(

Σ̃k 0

0 Σ̃′

)

(Ṽk, Ṽ
⊥
k)T ,

where Σ̃k contains k largest singular values in a non-increasing order.
Here, k denotes the dimension of a global approximation, which must
be chosen (but see next step).

9

2: Now consider the matrix product

Ũk Σ̃k

[(

Q11 0
0 Q21

)

Ṽk

]T

≡ Ũk Σ̃kW̃
T
k .

Notice that W̃k can be computed if and only if k = k1 +k2. In this spe-
cial case it has orthonormal columns so that the above matrix product
is the truncated k-dimensional SVD of G.

end

We have just shown that in the special case, when k = k1 + k2, the global
approximation can be computed quite efficiently. Notice that the formation
of G requires the scaling of the local columns of left singular vectors by
local singular values. This scaling can be performed in parallel without any
communication between processors. Then, the SVD of a distributed matrix
G has to be computed. This can be achieved using the ScaLAPACK library,
or using some new parallel block-Jacobi algorithm—see [1, 2]. Finally, a
distributed matrix multiplication (e.g., by the ScaLAPACK routinePDGEMM)
has to be performed for the computation of new global right singular vectors
W̃k.

In the case of p processors with p > 2, the above matrix G consists of p
blocks with ni columns, i = 1, 2, . . . p. If we choose the special value of global
approximation by k = k1 + k2 + . . . kp, then the local approximations are
again not needed in full – only the locally scaled left vectors are needed in
each processor. Hence, one has to compute explicitly only the SVD of matrix
G of order m× k instead of a “full” matrix of order m× n. Therefore, when
k � n the substantial saving in computation time can be achieved.

At this moment, the new global approximation is available in the form of
a triple Ũk, Σ̃k, W̃k, whereby each matrix is distributed through p processors.
We can either collect this global approximation into one (or each) processor
by using the procedure GATHER (or ALLGATHER), or leave the computed global
k-dimensional approximation in the distributed form. The latter approach is
more advantageous from the point of view of storage requirements, since each
processor stores the m× ki submatrix of the global left singular vectors, one
vector of ki global singular values and the n×ki submatrix of the global right
singular vectors. This means that no processor has to store the complete k-
dimensional factors; since k =

∑p

k=1 ki, this means a substantial saving in
storage space per processor.

With respect to the global approximation, the requirements for each pro-
cessor are the same if k1 = k2 = · · · = kp. The local approximation in
each processor can require different amount of storage if ki’s differ across

10

the processors. However, if we consider a set of processors which process the
qualitatively same database (i.e., documents from very similar areas of inter-
est, e.g., mathematics, physics and astronomy), then there is no reason why
the local orders of approximation ki should differ too much. This is true pro-
vided that the individual ki-dimensional approximations of local databases
in individual processors are based on the roughly same amount of informa-
tion, i.e., the starting column dimensions ni of local databases are roughly
the same. Hence, we require that ni ≈ n/p where n is the initial number of
documents in the whole (huge) database, which should be distributed among
p processors. To provide an initial “portion” of information equally to each
processor, we can randomly choose n/p items from the initial set of docu-
ments and send them to a given processor. This starting phase ensures that
local approximations can be computed with the same dimension across the
processors (i.e., k1 = k2 = · · · = kp), and the accuracy in approximating the
original local databases will be approximately the same in each processor.

3.2 Updating

When new documents are to be inserted into an existing database, it is
necessary to decide which processor(s) should receive either all documents
or a portion of documents. From the computational point of view, it is
not advisable to add documents into database one by one. Instead, new
documents should be added in a batch of, say, d items with d � 1. When
necessary, a new batch of documents can be divided among, say, p1 processors
with p1 ≤ p, where p is the total number of processors. Let us call these p1

processors locally active.
After receiving new documents, locally active processors modify (update)

their local databases in parallel using Algorithm 1. Notice that no inter-
processor communication is needed at this stage of computation. After fin-
ishing local updates in locally active processors, however, the update on the
global level is needed. All processors must participate in the global update
and they perform Algorithm 3. After finishing the global update, a new
global, k-dimensional approximation of the distributed database is available,
whereby this global approximation is itself distributed.

Updating terms is a bit different. Here, even on the local level, all pro-
cessors must be active because all processors built their local, ki-dimensional
approximations over the same set of terms (vocabulary). Hence, after receiv-
ing new terms, all processors perform Algorithm 2 in parallel. Therefore,
there are no inactive processors as opposed to the local updating of docu-
ments, where some processors may be idle (if they do not receive a batch of
new documents). After finishing local updates of terms, all processors are

11

involved in the computation of a new global k-dimensional approximation by
performing Algorithm 3.

3.3 Retrieval of documents

In subsection 2.2, the retrieval of documents was described for the set of non-
communicating processors in a grid. In the view of our two-stage procedure
for building the database of documents for the distributed LSI, we can call
this approach a local retrieval. Since the processors in a distributed system
build their local as well as global representation of a database, there is in
this case also the possibility of a two-stage retrieval of documents. This
possibility opens a new, interesting approach to the estimation of the quality
of retrieval.

The first possibility is—as in the case of a grid—the local retrieval of
documents. The query q is sent to all p processors and all of them go through
their ki-dimensional approximations of local databases computing the cosines
according to the Eq. 2. Each processor provides its own list of relevant
documents according to the algorithm described in subsection 2.2, and there
is no need for the inter-processor communication in this stage of retrieval from
the local databases. When assuming that the local databases were built by
encoding approximately the same amount of documents in each processor,
then the thresholds αi for cosines can be chosen the same (say, 0.5) in all
processors, i.e., αi = β for all i. Individual lists can be sent to a marked
processor, which can then sort all matched documents into a final list L1

according to the local cosines obtained in processors.
However, since also the global k-dimensional approximation has been

built in the case of a distributed system, one can try also the different re-
trieval of documents by using the distributed factors Ũk (order m × k), Σ̃k

(order k×k) and W̃k (order n×k). This is the global retrieval of documents.
It proceeds by computing the cosines

cos θ̃j =
s̃T

j (ŨT
k q)

‖s̃j‖2 · ‖q‖2
, j = 1, 2, . . . , n, (3)

where s̃j are n pre-computed values given by

s̃j = Σ̃kW̃
T
k ej. (4)

Both above equations require the clever data organization in computing the
required matrix-vector products with distributed factors and final scalar
products. Let us suppose that the matrices Ũk and W̃ T

k are distributed
column-wise, so that processor i contains the respective blocks of dimension

12

m × ki and k × ni. Then, according to Eq. (4, s̃j is computed in two steps:
i) take the jth column of W̃ T

k residing as as a whole in some processor, and
ii) scale its `th component by σ̃`, ` = 1, 2, . . . , k. These two steps are most
easily performed locally if each processor contains all k global singular values
from Σ̃k. Then, for the computation of θ̃j according to Eq. (3), one has: i) to
compute the distributed matrix-vector product ỹ = (ŨT

k q) with the query q
residing in each processor, ii) to compute the distributed scalar product s̃T

j ỹ,
and, finally, iii) to scale the scalar product by 1/(‖s̃j‖2 ·‖q‖2). All these com-
putations can be performed by appropriate functions from the ScaLAPACK
library.

The global retrieval ends with sorting of the set {cos θ̃j} and thresholding
them by some threshold α. Assume that the same threshold is used as in the
case of the local retrieval, i.e., α = β. Thus, a list of matched documents L2

is produced.
Now comes an interesting part of the retrieval process—the comparison

of lists L1 and L2. This comparison enables to make some conclusions with
respect to the accuracy of local and global retrieval. It is assumed that
the global and local threshold for retrieving documents are the same. Fur-
thermore, it is assumed that all retrieved documents are indeed relevant,
so that one can compare both lists without caring about wrongly matched
documents.

In general, the following scenarios with respect to the number of items
|L1| and |L2| and their contents are thinkable:

1. |L1| = |L2| and both lists contain the same documents. This is the
ideal situation, which says that both approximations on the local as
well as global level are equally accurate.

2. |L1| = |L2|, but the lists do not contain the same documents. Hence,
there are at least two different documents D1 and D2 such that D1 ∈
L1, D1 /∈ L2 and D2 ∈ L2, D2 /∈ L1. Since we assume k = k1 + k2 +
· · · + kp for the dimension of global approximation, it is unlikely that
this discrepancy is based on the fact of wrong dimensions in the ap-
proximations. It is more likely that some documents with low ranking
in the global list will be not found in the local list because of falling
just below the local threshold (and vice versa). Lowering the threshold
should help to achieve the matching of the same documents on both
levels (both lists can be then larger than the original ones).

3. |L2| > |L1|. This situation tells us that the global approximation is
more accurate that the local one. This can happen, for example, when

13

one (or more) local databases differ substantially in their column di-
mensions ni, i.e., they locally encode widely differing numbers of doc-
uments. Then the use of the same dimensionality of approximation at
the local level (i.e., k1 = k2 = · · · = kp) leads to the under-estimate of
optimal dimension because this value must be derived from the portion
Ani

having the least number of documents (columns). It is best to
prevent such a situation by keeping the number of documents encoded
in individual processors approximately the same. In other words, at
the beginning, n documents should be divided evenly among proces-
sors, and, at the updating, a new batch of documents of large enough
size should be processed so that, again, each processor receives approx-
imately the same number of documents for its local update. Conse-
quently, the new global update will be computed from locally balanced
updates.

4. |L1| > |L2|. Can the retrieval at local level yield more documents
than that at global level? Since k = k1 + k2 + · · · + kp, each locally-
approximating LSI space is the subspace of the globally-approximating
LSI space. Hence, all the latent couplings between terms and docu-
ments, which exist in the local databases, exist automatically also in
the global database. (Notice that the reverse is not true.) Therefore,
this situation should not occur in practice.

4 Conclusion

We have described two models of a distributed database of documents that
are encoded using the paradigm of the LSI. The first model is devoted to
the grid, when the individual nodes have a very limited possibility of mutual
communication. In this case, the documents are encoded on individual pro-
cessors without any connection between them. All updates of documents /
terms are also performed independently as well as the retrieval of documents.
If the grid consists of p nodes, the retrieval of documents for a given query
yields p lists, which have no mutual relations. In particular, one can not com-
pare the accuracy of retrieval from individual nodes. In general, it is possible
to say only that the accuracy of individual nodes will be approximately the
same when each node encodes approximately the same number of relevant
documents (provided that the dimensions in approximation are the same in
each node).

The more interesting situation arises in the case of a distributed database,
when p processors are connected with some sort of inter-processor network

14

(this can be, for example, one node of a large grid). In this case, we have
developed a two-stage compression of the latent semantic information. In the
first step, the local approximation of the whole database is constructed by
dividing the whole database evenly among the processors. Since the proces-
sors can communicate, the global approximation of the whole database can
be built in the second step. We have shown that the SVD computation at the
global level can be made very efficient when the dimension of global approx-
imation is equal to the sum of dimensions of local approximations. We have
briefly discussed the implementation issues and shown that the retrieval of
documents will require the use of distributed numerical libraries like ScaLA-
PACK. Finally, it is now possible compare the accuracy of the locally and
globally encoded database by considering the lists produced when answering
the same query. We have discussed some interesting scenarios that can arise
in real life.

The next step should consist of implementation of a distributed database
and of some experimental work in retrieving the documents at both levels—
local and global.

References

[1] M. Bečka, G. Okša and M. Vajteršic, Dynamic ordering for a parallel
block-Jacobi SVD algorithm, Parallel Computing 28 (2002) 243-262.

[2] M. Bečka and G. Okša, On variable blocking factor in a parallel dynamic
block-Jacobi SVD algorithm, Parallel Computing 29 (2003) 1153-1174.

[3] M. W. Berry and M. Browne, Understanding Search Engines: Mathe-
matical Modeling and Text Retrieval, First ed., SIAM, Philadelphia, PA,
1999.

[4] M. W. Berry, Z. Drmač and E. R. Jessup, Matrices, vector spaces, and
information retrieval, SIAM Review, 41 (1999), pp. 335–362.

[5] H. Zha, A subspace-based model for information retrieval with applica-
tions in latent semantic indexing, in Proceedings of Irregular ’98, Lecture
Notes in Computer Science 1457, Springer Verlag, New York, NY, 1998,
pp. 29–42.

[6] H. Zha and H. D. Simon, On updating problems in latent semantic
indexing, SIAM J. Sci. Comput., 21 (1999), pp. 782–791.

15

[7] H. Zha and Z. Zhang, On matrices with low-rank-plus-shift structure:
partial SVD and latent semantic indexing, SIAM J. Matrix Anal. Appl.,
21 (1999), pp. 522–536.

[8] Z. Zhang and H. Zha, Structure and perturbation analysis of truncated
SVD for column-partitioned matrices, SIAM J. Matrix Anal. Appl., 22
(2001), pp. 1245–1262.

16

