
Approximating Linear Image Operations in
the Wavelet Domain

Rade Kutil

Technical Report 2005-08 September 2005

Department of Scientific Computing

Computing

cientificS
Jakob-Haringer-Straße 2
5020 Salzburg
Austria
www.scicomp.sbg.ac.at

Technical Report Series

Approximating Linear Image Operations in the

Wavelet Domain

Rade Kutil

Salzburg University, Dept. of Scientific Computing, Austria
rkutil@cosy.sbg.ac.at

http://www.scicomp.sbg.ac.at/staff/rade.kutil.html

Abstract

Wavelet based methods get more and more widely used in image pro-
cessing applications. This increases the need for standard image opera-
tions to be performed in the wavelet domain. As the wavelet transform
lacks some basic properties such as shift invariance and a convolution the-
orem similar to the Fourier transform, this turns out to be a non trivial
task. This work presents a strategy to implement linear image operations
in the wavelet domain. Experimental results are shown for the pixel-wise
product, the shift operation and the convolution. Because of good results
for the convolution, this operation is optimised for timing performance to
show that it is a competitive alternative to the pixel based operation.

1 Motivation

Wavelet transformed data can nowadays be found in several image coding algo-
rithms [1] and standards [2]. A major disadvantage of the wavelet transform is
that there are few operations which can be performed efficiently in the wavelet
domain (e.g. denoising). Note that the discrete cosine transform (DCT) owns
the same problem. This makes it difficult to manipulate encoded data.

There are several reasons to perform standard image operations in the wavelet
domain:

• If a wavelet compressed image has to be modified or analysed, it usually
has to be decompressed completely before (and compressed after) the de-
sired operations are performed on non-compressed data. If the operation
can be performed in the wavelet domain, the wavelet transform can be
avoided in the compression/decompression process. Note that the wavelet
transform is usually the most time consuming part of a wavelet compres-
sion scheme.

• If it is sufficient to approximate the operation by limiting it to the most
important (or coarse scale) wavelet coefficients, execution time can be
saved. This means that the operation can be approximated.

• In some cases, there is evidence that the operation is faster when per-
formed on transformed data. The convolution operation, for instance, is

1

very time consuming. However, the convolution theorem for the Fourier
transform shows that a frequency based decomposition can help to speed
up the operation.

Apart from intensity based operations on images (which are, of course, easily
adapted to wavelet coefficients), the shift operation is the most simple operation
on pixels. Unfortunately, the wavelet transform is known as not shift invariant
[3]. Therefore, the shift operation will be a complicated task in the wavelet do-
main. Nevertheless, it is included in this discussion for the sake of completeness.

Another two important operations, which are closely related to each other,
are the pixel-wise product and the convolution. Whereas for the Fourier trans-
form, the existence of the convolution theorem shows in an analytical way that
the pixel-wise product transforms into convolution when changing from pixels
to Fourier coefficients and vice versa, there is no such theorem for the wavelet
transform [4]. Only in some special cases, a similar theorem can be stated [5].

The application of the pixel-wise multiplication includes masking of image
regions and shading. Furthermore, overwriting (or overlaying) of image regions
must be divided into two steps: masking out the covered image regions and
adding the desired new image parts. Again, masking involves pixel-wise mul-
tiplication. Adding pixels simply corresponds to adding wavelet coefficients in
the transformed domain.

The application of the convolution is the search for image objects such as li-
cence plates. Note that the maximum of convolution result yields the minimum
mean squared error (MSE) at the corresponding displacement position. Thus,
after the convolution of an object (smaller image) with an image, the maximum
of the resulting convolution image indicates the position of the best match be-
tween the object and the image. The high complexity of the convolution (n2)
longs for a speedup because it is usually too costly. Apart from that, there are
many 1-D applications using convolution in signal processing (e.g. filtering with
large filters).

2 A Universal Approach

One can consider an image as the sum of a collection of wavelet functions
(wavelets). The wavelets’ magnitude is determined by their wavelet coefficients.
If an operation is performed on the image, the operation garbles the wavelet
functions. Therefore, one wavelet falls into several other wavelets. This means
that one wavelet coefficient affects several neighbouring coefficients when an op-
eration is performed. The problem is now to find a direct way to calculate these
energy relocations.

2.1 Transformation of the Linear Operator

The basic idea is that – as the wavelet transform is a linear operation on image
data (representable by a matrix W) – each linear operation on image data can be
transformed into a linear operation on transformed data. Let x be a vector that
contains all image pixels and W the matrix that performs the wavelet transform
such that the transformed vector x̂ = Wx contains all wavelet coefficients. Let
furthermore O and b be a matrix and a vector representing a linear image
operation such that y = Ox + b is the resulting image after application of the

2

linear operation. Because image addition simply transforms into addition of of
wavelet coefficients, we will, henceforth, ignore b by setting it 0.

Now, the transformed operator Ô that performs the same operation as O in
the wavelet domain ensues as follows:

ŷ = Wy = WOx = WOW−1x̂ =: Ôx̂

Note that all of the operations mentioned above are linear operations: For
the shift operation, O basically consists of shifted identity matrices. For the
product operation, O is a diagonal matrix with the pixels of the multiplier
image as diagonal elements. For the convolution operation, the rows of O are
vectors containing shifts of the object image (the image that is to be convolved
with the original image). This means that the convolution image is hidden in
the operator O.

2.2 Calculation of Operator Elements

To calculate the elements of Ô, we choose a very simple approach following the
above equation:

Ôi,j = (WOW−1ej)i

Here, ej is a unit vector with all elements set to 0 except for the j-th coefficient
which is set to 1. Thus, we calculate the wavelet W−1ej corresponding to
coefficient j, perform the operation O on it and transform the result back into
the wavelet domain again. There we can read off the columns of the matrix Ô.

As the matrices O and Ô have a size of the square of the image size, it is not
possible to store all matrix elements in memory. However, depending on the
operation, many elements will be 0 or near 0. Only a relatively small amount of
elements is kept in these lists. If too many elements are non-zero, small elements
are discarded – resulting in an approximation of the operation.

So, we hope that only a small subset of the elements is significant and the
rest can be neglected. The significant elements Ôi,j shall be stored in a list
together with their positions (i, j).

Of course, this process is very time consuming. Therefore, applications are
preferable in which the calculation of Ô can be done once “off-line” and Ô is
applied several times. For instance, think of looking for licence plates in the
frames of a video sequence. Ô only depends on the shape of the licence plate.
It can be calculated once and used for convolution in each frame of the video
sequence.

2.3 Significance Weighting

The decision which element Ôi,j to drop and which to store is based on its
significance si,j which is basically its absolute value: si,j = |Ôi,j |. However,
as the coefficients of lower frequency sub-bands (higher decomposition level)
usually are bigger, the significance of corresponding matrix elements should
be higher. We choose to multiply the significance by 2l(n) where l(n) is the
decomposition level of the coefficient x̂n. As there are two coefficients associated
with each single matrix element (ŷi and x̂j for Ôi,j), there are four possibilities:
source – si,j = |Ôi,j |2l(i), dest – si,j = |Ôi,j |2l(j), both – si,j = |Ôi,j |2l(i)+l(j) and
bare – si,j = |Ôi,j |.

3

3 Implementation Issues

3.1 Matrix Redundancies

For distinct operations, Ô has distinct properties:

• Ô is symmetric if and only if O is symmetric which is true for the product
and the convolution operation.

• If the operation is shift invariant (i.e. OSdx = SdOx for all d and x,
where Sd shifts image x by 2-D vector d), then Ô satisfies the condition
Ôi,j = Ôi+d,j+d where i+ d is the index of the coefficient which is located
in the same sub-band as xi but translated within this sub-band by d ·
2−l(i). Of course, the coordinates of d must be divisible by 2max(l(i),l(j)).
This restricted shift invariance is valid for the shift and the convolution
operation.

These two properties can be used to reduce the memory demands for the storage
of Ô as well as the computation time for calculating the elements of Ô.

3.2 Performance of Operator Generation

Although the calculation of Ô is not considered as the time-critical part of the
method, it owns such a high complexity that we will take a look at how to
optimise it.

The calculation of the wavelets W−1ej can be reduced due to the following
facts:

• A whole wavelet transform is not really needed. Each reverse filtering step
only needs to process coefficients created in the previous step.

• A 2-D wavelet is an outer product of two 1-D wavelets.

• Only one wavelet W−1e0 has to be calculated for each sub-band. The
other wavelets are shifts of this wavelet: W−1e0+d = Sd(W−1e0).

The application of O on the wavelet W−1ej can be reduced to those pixels
that are located within the wavelet. The shape of the result OW−1ej depends
on the operation. The shift and product operations do not extend the size of
W−1ej ; the convolution increases the size by the object image size horizontally
and vertically. Thus, the subsequent wavelet transform can be reduced to the
size of OW−1ej .

The insertion of elements in the storage object can be a critical part of the
process if the size of the storage is big. Therefore, it has to be implemented
carefully. We choose to use the set-class of the C++ standard template library
(STL) which is a sorted balanced tree (to be precise: a red-black tree). Thus,
element insertion as well as the removal of the smallest element has logarithmic
complexity.

4 Experimental Results

For experimentation we will use a square image with 256 × 256 pixels and 8
bpp. It will be decomposed to depth 5 using the 8-tap orthogonal Daubechies

4

filter with cyclic border handling. Note that the decomposition (as well as
the reconstruction) involves 2 · 8 · (2562 + 1282 + 642 + 322 + 162) = 1, 396, 736
multiplications and if data is given in wavelet coefficients the alternative to each
operation performed in the wavelet domain is to perform a reconstruction and
apply the operation as usual on pixels followed by a wavelet decomposition if
necessary. The number of multiplications necessary to obtain a reasonable image
quality when performing the operation in the wavelet domain will determine if
and in which cases our method is useful.

4.1 Shift Operation

Figure 1: Shifted image by pixel (left) and in wavelet domain after 10000 mul-
tiplications (right)

Figure 1 shows the result of a sample shift operation in the wavelet domain
and pixel-wise for comparison. Because shifts by a power of 2 are easier (high
frequency sub-bands can simply be shifted), odd numbers are chosen as coordi-
nates of the shift vector: 87 horizontally and 193 vertically. Here and in further
examples, a small number of multiplications (10000, i.e. 0.15 multiplications per
pixel) is chosen to make the errors visible.

Figure 2 shows the quality of the shift operation in the wavelet domain de-
pending on the number of multiplications (i.e. the number of matrix elements
kept in the storage). Compared to the alternative of wavelet reconstruction,
pixel-wise shift plus reconstruction, the break-even point (same number of mul-
tiplications) is reached at a PSNR of about 35 dB.

One can see that the methods source and both for weighting the significance
of elements of Ô produces the best results. This means that it is important to
process coefficients with bigger expected values first. This result also holds for
all other operations.

4.2 Product Operation

Results of the product operation can be seen in Figure 3. A circular mask is
chosen as image for the pixel-wise product. The relevant errors are located at

5

10

15

20

25

30

35

40

45

1000 10000 100000 1e+06

P
S

N
R

multiplications

source
both
dest
bare

Figure 2: Quality of shift operation

Figure 3: Masked image by pixel (left) and in wavelet domain after 10000
multiplications (right)

6

the border of the mask. This is where neighbouring coefficients affect each other
in a non-trivial way. All wavelet coefficients corresponding to wavelets that are
located entirely within the circle simply keep their value. The number of these

10

15

20

25

30

35

40

45

50

100 1000 10000 100000

P
S

N
R

multiplications

source
both
dest
bare

Figure 4: Quality of product operation

coefficients causes the sudden ascent in the curves in Figure 4 above about 20000
multiplications: After they are processed (copied to the destination coefficient
set) the complicated handling of mask borders completes the task. This has
another consequence: If the mask mainly consists of 1s and 0s (as in this case)
then the diagonal elements of Ô can be handled differently. The diagonal of Ô
can be stored in a separate array and groups of 1s and 0s can be accumulated,
thus, saving a lot of memory.

Compared to the pixel-wise product (involving 2562 multiplications) not
including the wavelet transform, the break-even point (same number of multi-
plications) is reached at about 40 dB.

4.3 Convolution Operation

For the convolution operation, we choose a part from the center of the image
(face) as object image. The convolution should “find” this object image. Figure
5 shows the results. The convolution image is scaled and shifted in terms of
grey values so that it covers the whole range of grey values.

Note that the pixel-wise convolution involves more than 4 · 109 multiplica-
tions. Figure 6 shows that a very good image quality can be obtained with much
less work if the convolution is performed in the wavelet domain. This method
can even speed up the convolution if the image and the convolution result must
be non-transformed because this adds only 2.8 · 106 multiplications.

4.4 Timing of Convolution

Since the results for the convolution are surprisingly good, we want to take a look
at the actual program performance. Both versions of the convolution (direct and

7

Figure 5: Convolution image by pixel (left) and in wavelet domain after 20000
multiplications (right) for a 60× 40 = 2400 pixel object image. Darker regions
are better matches

10

15

20

25

30

35

40

45

50

1000 10000 100000 1e+06

P
S

N
R

multiplications

source
both
dest
bare

Figure 6: Quality of convolution operation for a 80 × 60 = 4800 pixel object
image

8

0.1

1

10

30 35 40 45 50

tim
e

[s
]

PSNR

20x15
40x30
80x60

160x120

1

10

100

1000

25 30 35 40 45 50

tim
e

[s
]

PSNR

20x15
40x30
80x60

160x120

Figure 7: Timing of the convolution without (left) and with operator generation
(right). Wavelet decomposition depth is 4

1

10

100

1000

10000

100000

25 30 35 40 45 50

sp
ee

du
p

PSNR

20x15
40x30
80x60

160x120

1

1.5

2

2.5

3

25 30 35 40 45 50

sp
ee

du
p

PSNR

20x15
40x30
80x60

160x120

Figure 8: Speedups of the convolution without (left) and with operator genera-
tion (right) compared to direct pixel-based convolution

in the wavelet domain) are implemented using double precision floating point
numbers. Experiments were conducted on a 400MHz Pentium II.

Figure 7 shows the timing of the convolution in the wavelet domain. Execu-
tion times of operator generation (calculation of Ô) are separated from those of
the application of the operator. Of course, the execution time increases with the
desired convolution image quality. The operator generation time also increases
with the object image size because operator generation includes the convolution
of wavelets and the object image. Interestingly, the execution time of operator
application decreases with increasing object image size. The reason is probably
that matches for bigger objects can be found more easily. Therefore, the PSNR
grows faster.

These results have to be compared to the corresponding execution times
for direct pixel-based convolution. This is done in Figure 8. The speedups
of operator application are extraordinary. These speedups are only valid if
operator generation is “off-line”, though. However, even together with operator
generation there are noticeable speedups, especially for big object images.

In all timing experiments above, a wavelet decomposition depth of 4 was
used. However, the decomposition depth has impact on operator generation
time as well as on operator PSNR performance as can be seen in Figure 9. The
execution time of operator generation increases with the decomposition depth
because the size of W−1ej increases with the decomposition depth. The ex-

9

0.01

0.1

1

10

2 2.5 3 3.5 4 4.5 5

tim
e

[s
]

decomposition depth

PSNR=35
PSNR=40
PSNR=45

1

10

100

2 2.5 3 3.5 4 4.5 5

tim
e

[s
]

decomposition depth

PSNR=35
PSNR=40
PSNR=45

Figure 9: Execution time of convolution operator application (left) and operator
generation (right) for varying wavelet decomposition level. Search object size is
80× 60

ecution time of operator application decreases with the decomposition depth
because the wavelet based convolution simply works better for higher decompo-
sition depths.

5 Conclusions

We have seen that it is not impossible to perform basic image operations in
the wavelet domain. A direct method using a list of factors for manipulation
of wavelet coefficients is able to transform all linear operations into the wavelet
domain (operator generation). Unfortunately, the operator generation may take
a lot of computation time and is not or hardly parameterisable. However, if the
operation has to be executed several times, the method is able to outperform a
direct implementation, especially if image data is given as wavelet coefficients
(e.g. in a wavelet compressed format). The method is quality scalable, i.e. less
quality can be done faster.

In the case of the convolution operation, speedups are very good. Even
together with operator generation, speedups of up to 2.5 are possible.

Acknowledgements

The author was partly supported by the Austrian Science Fund FWF, project
no. P13903.

References

[1] Said, A. and Pearlman, W. A. ‘A new, fast, and efficient image codec
based on set partitioning in hierarchical trees’. IEEE Transactions on Cir-
cuits and Systems for Video Technology, June 1996. 6 (3) pp. 243–249

[2] ISO/IEC JPEG committee. ‘JPEG 2000 image coding system —
ISO/IEC 15444-1:2000’, December 2000

10

[3] Kingsbury, N. G. ‘Complex wavelets for shift invariant analysis and filter-
ing of signals’. Applied and Computational Harmonic Analysis, May 2001.
10 (3) pp. 234–253

[4] Lindsey, A. ‘The non-existence of a wavelet function admitting a wavelet
transform convolution theorem of the fourier type’. Technical report, Ohio
University, Athens, Ohio, 1994

[5] Guo, H. and Burrus, C. ‘Convolution using the undecimated discrete
wavelet transform’. In Proceedings of the Int. Conf. Accust., Speech, Signal
Processing, ICASSP-96 (Atlanta, 1996)

11

