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Algebraic Properties of Rules of Frege-Hilbert Calculi

Elmar Eder∗

Abstract. Whereas resolution and calculi based on backward cut-free sequent calculi are most
widely used for automated deduction in classical first order logic, the use of Frege-Hilbert calculi
greatly reduces the size of proofs of some formulas. However, the search for a proof in a Frege-
Hilbert calculus cannot be done efficiently in the usual step-by-step manner. Rather, compositions
and factors of rules must be constructed. In this paper, some of the problems and results of investi-
gating the set of rules and its algebraic properties, are discussed.

1. Introduction

The first formalization in the history of predicate logic was Gottlob Frege’s Begriffsschrift [7] pub-
lished in 1879. In his paper Frege also gives a proof calculus for the Begriffsschrift. It turned out that
Frege’s calculus was too strong. In fact, it was contradictory as Bertrand Russel pointed out in a letter
to Frege. Whitehead and Russel showed in their logical formalism of Principia Mathematica [16] how
to avoid the contradictions in the calculus by restricting the language of logic to typed logic. Frege’s
calculus has some features like definitions and the substitution rule which are convenient for the for-
mulation and proof of propositions and also can make formulas and proofs considerably shorter. But
these features can be omitted from the calculus without weakening the expressiveness of the language
or of the proof calculus. David Hilbert and many other logicians set up and studied such calculi which
are similar to Frege’s calculus, but are reduced to the bare minimum. Such calculi are today called
Frege-Hilbert calculi. Whereas calculi set up by Hilbert and others for classical first order predicate
logic are complete (Kurt G̈odel’s completeness theorem of 1930), Kurt Gödel showed in 1931 [9] that
there is no complete calculus for a logic of order higher than one. In the present paper, we consider
only Frege-Hilbert calculi for classical propositional and first order predicate logic.

A Frege-Hilbert calculus consists of a set ofrulesof logic reasoning. Each rule has the formΦ1 ... Φn

Ψ
,

possibly with a condition restricting its applicability. Each of thepremisesΦ1, . . . , Φn of the rule
and theconclusionΨ of the rule areformula schemes. A rule

Ψ
with no premises is called anaxiom

schemeand writtenΨ for short. A formula scheme is a string of symbols which is used to denote a
formula. It may contain meta-symbols denoting formulas, variables, terms, and parameters. Here is
an example of a Frege-Hilbert calculus where “A”, “ B”, “ C”, and “F ” are meta-symbols denoting
formulas, “x” is a meta-symbol denoting a variable, “t” is a meta-symbol denoting a term, and “p” is
a meta-symbol denoting a parameter. “F [x\t]” denotes the result of replacing every free occurrence
of the variablex in the formulaF with the termt.
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A Frege-Hilbert calculus C
A → B → A (A1)

(A → B → C) → (A → B) → A → C (A2)

(¬A → ¬B) → B → A (A3)

∀xF → F [x\t] (A4)

A A → B

B
(R1)

A → F [x\p]

A → ∀xF
with parameter condition (R2)

Rule (R2) may only be applied if theeigenparameterp does not occur in the conclusionA → ∀xF .
Also, in a derivation of a formula from a setS of formulas,p must not occur in any formula ofS.

Despite the restrictions and simplifications of present-day Frege-Hilbert calculi as compared to Frege’s
original calculus, Frege-Hilbert calculi are still very powerful in expressing proof concepts. In fact,
the great amount of freedom they allow in constructing a proof makes it very difficult to use them
for automated deduction, since every node of the search tree has an infinite branching factor. Doing
forward reasoning, i.e., starting from the axioms and applying the rules until the assertion has been
proved, is inefficient because there are infinitely many axioms. Backward reasoning, i.e., starting
from the assertion and applying the rules in a backward direction to arrive at axioms, seems to be a
better approach. But even this is inefficient. The reason is that a Frege-Hilbert calculus has acut rule
such as the Modus Ponens (R1) of calculusC. A cut rule is a rule which has a meta-symbol for a for-
mula occurring in one or more of its premises but not in its conclusion. In (R1) it is the symbol “A”.
If we do backward reasoning inC and we want to prove a formulaB by applying (R1) in backward
direction then we have to find a formulaA such thatA andA → B are provable. But there is an
infinite number of formulas we can choose from forA. There is no way to find the right one at this
stage of the process of construction of a proof.

Therefore most automatic theorem provers use much more restricted calculi such as Robinson’s reso-
lution calculus [12] or calculi based on backward reasoning in cut-free versions of Gentzen’s sequent
calculus [8]. The latter include, for example, Bibel’s connection method (see [3]) and various versions
of Beth’s and Smullyan’s tableau calculus [1, 2, 13]. The full sequent calculus has a cut rule which
makes automatic reasoning in it inefficient. But Gentzen has proved in [8] that applications of the cut
rule can be eliminated from any proof in his calculus. Therefore, the sequent calculus without the cut
rule is still complete. Backward reasoning in it can be used and has been used as a basis for calculi
for automated reasoning.

However, Statman [14] and Orevkov [11] have proved that cut elimination necessarily extremely
blows up the size of shortest proofs of some formulas. These formulas are not just academic examples.
Rather, they occur naturally as theorems in established disciplines of mathematics, e.g. in the theory
of combinatorial logic. So it seems that, even for everyday automated deduction, we must find a way
to use calculi with a cut rule.

I have shown in [5] that, by a sort of unification on the level of formulas rather than terms, the
infinite branching of the search tree can be avoided in backward reasoning in calculi with cut. One
way to learn more about backward reasoning, forward reasoning, and mixed forward and backward



reasoning in such calculi, is to study compositions of rules. The simplest calculi with cut are Frege-
Hilbert calculi. Once composition of rules is understood for Frege-Hilbert calculi, it should not be
too difficult to understand composition of rules in other calculi such as sequent calculi with cut. This
paper is meant to show some of the problems and results in trying to understand the composition of
rules in Frege-Hilbert calculi.

2. The formula concept

In the introduction, the (axiom schemes and) rules of a Frege-Hilbert calculusC have been given
using meta-symbols for formulas, for variables, for terms, and for parameters. In order for such rules
to make sense, it is necessary to say what we mean by a formula, variable, term, or parameter. In
the literature of classical first order predicate logic, there is no general agreement about the concept
of a formula. One aspect upon which there is disagreement in literature is whether a formulaF is to
be regarded as identical to a formula obtained fromF by renaming free occurences of variables. For
example, should the formula∀xP (x) and the formula∀yP (y) be identified with each other?

Most authors do not identify these two formulas. The most frequently used formula concept considers
a formula as a string of symbols. Concepts using other data structures, e.g. trees, are isomorphic to
it. So, we shall here only consider strings of symbols. Strings of symbols which are formulas in this
sense, will be calledformula strings. As an example, here is an inductive definition of the concept of
formula strings based on the set of logical symbols{¬,→,∀} used for the calculusC.

1. If P is ann-ary predicate symbol andt1, . . . , tn are terms then the stringP (t1, . . . , tn) is a
formula string.

2. If A is a formula string then so is the string¬A.

3. If A andB are formula strings then so is the string(A → B).

4. If x is a variable andF is a formula string then the string∀xF is a formula string.

The definition is similar for sets of logical symbols other than{¬,→,∀}.

Note that, for the set of logical symbols{¬,∧,∨,∀,∃}, the string∀x∃xP (x) is a formula string.
In it, the occurrence of the variablex in P (x) is in the scope of two quantifier prefixes∀x and∃x.
The innermost (i.e., rightmost) of these two quantifier prefixes, namely∃x, is considered to bind the
occurrence ofx in P (x). A formula string like this is rather confusing to read. However, you can
rename its bound variables so that no variable is quantified twice. Just rename any occurrence of
a bound variable according to the quantifier occurrence binding it. In the above example, rename
variables bound by∀ by u and variables bound by∃ by v, and you get a formula string∀u∃vP (v)
which is semantically equivalent to the original formula string.

Therefore, there are different concepts of formulas according to whether a variable is allowed to be in
the scope of more than one quantifier occurrence for that variable.

1. According to the most liberal concept of formulas, any formula string is formula.



2. A more restricted concept requires that an occurrence of a variable in a formula must not be in
the scope of two quantifier prefixes for that same variable.

3. The most restrictive policy in this respect would not allow two distinct quantifier occurrences
quantifying the same variable within a formula.

All of these formula concepts are equivalent to each other with respect to their expressive power.
By renaming of bound variables, it can always be guaranteed that no variable is quantified twice.
However, 3. is not suitable for Frege-Hilbert calculi since, e.g.,∀xP (x) → U → ∀xP (x) would not
be a formula. For the calculusC this would mean that the formulaA in (A1) has to be quantifier-free.
Otherwise,A → B → A would not be a formula according to 3. Likewise,F in (A4) would have to
be quantifier-free. This would imply that the formula∀x∀yP (x, y) → P (a, b) would not be provable
in C, and thusC would not be complete. Likewise other Frege-Hilbert calculi would be incomplete
if a formulation of the concept of formulas according to 3. was used. Note, however, that sequent
calculi and tableau calculi can cope with such a notion of formula.

For formula concepts according to 1. or 2., the corresponding Frege-Hilbert calculi are equivalent to
each other in the following sense. IfF is a formula according to 2. then it is also a formula according
to 1. Then, any proof ofF in a Frege-Hilbert calculus according to 2. is also a proof in the correspond-
ing Frege-Hilbert calculus according to 1. And any proof ofF in a Frege-Hilbert calculus according
to 1. can be transformed to a proof ofF in the corresponding Frege-Hilbert calculus according to
2. The transformation is stepwise and does not increase the number of steps or the complexity of
the proof. Moreover, ifF is a formula according to 1. thenF can be transformed to a semantically
equivalent formulaF ′ according to 2. just by renaming of bound variables. Moreover, every proof
of F in a Frege-Hilbert calculus according to 1. can be stepwise transformed to a proof ofF ′ in the
corresponding Frege-Hilbert calculus according to 2., and vice versa.

So it seems that, if formulas are defined to be formula strings subject to some restriction, all restric-
tions to formula strings which are widely used in literature, either are not suitable for Frege-Hilbert
calculi, or Frege-Hilbert calculi using them behave the same as Frege-Hilbert calculi using the con-
cept of (unrestricted) formula strings. There seems to be no point in restricting the concept of formula
strings in the study of Frege-Hilbert calculi.

Some authors do, however, identify two formula strings which are obtained from each other by re-
naming of variables. Again, there are several ways to do this. One way is to define an equivalence
relation on the set of formula strings. Two formula stringsF andG are equivalent to each other if
and only ifG is obtained fromF by replacing bound occurrences of variables inF by variables in
such a way that if the variable at a placeκ in F is bound by the quantifier at a placeλ in F then the
variable at placeκ in G is bound by the quantifier at placeλ in G. We speak of “equivalence mod-
ulo renaming of bound variables”. Then, a formula is defined to be an equivalence class of formula
strings. Another way is to choose a representative of each equivalence class, a kind of normal form
for all formula strings of the equivalence class. For example, let the variables of the language of logic
be brought into an orderx1, x2, x3, . . . . Then a formula string withn quantifier occurrences may be
considered to be in normal form if its quantifier occurrences quantify the variablesx1, . . . , xn in this
order. Then a formula would be defined as a formula string in normal form. Of course, a transfor-
mation to normal form would have to be performed after every construction of a formula string from
sub-formula strings using propositional connectives or quantifiers. Likewise, the definition ofF [x\t]
has to involve transformation to normal form. Usually authors just say they identify formulas which



are obtained from each other by renaming of bound variables. They do not state which way they
choose to do this. The reason for this is that all ways to achieve this lead to isomorphic concepts of
formulas and are therefore equivalent to each other.

As has been shown in [6], a formula modulo renaming of variables can be transformed to a formula
string such that a Frege-Hilbert proof of a formula modulo renaming of variables is transformed to
a Frege-Hilbert proof of the corresponding formula string. And, of course, identification modulo
renaming of bound variables maps Frege-Hilbert proofs to Frege-Hilbert proofs. However, since
these transformations are not inverses of each other, not all formulas which have short proofs with
identification modulo renaming of bound variables, also have short proofs without this identification.
A counterexample is the formula∀xP (x) → U → ∀yP (y) given in [6]. Thus, Frege-Hilbert calculi
with and without identification modulo renaming of bound variables are equivalent with respect to
their expressive power, but still they seem not to be isomorphic to each other in any reasonable sense
of the word. So it should be interesting to investigate both kinds of calculi.

Logicians often consider classical first order predicate logic without function symbols, which is as
expressive as classical first oder logic with function symbols. For automated deduction it is useful
to have function symbols since they often allow to express propositions more concisely. Moreover,
Skolemization using function symbols together with unification is a powerful tool for automatic de-
duction.

Another point of disagreement among authors is about variables in formulas. Some authors distin-
guish between free and bound variables. If we allow function symbols, we do not need this distinc-
tion, since constants (nullary function symbols) can play the role of free variables. Some authors
allow variables to occur free in premises and conclusions of rule instances. They have to add an extra
condition on rules such as (A4) stating that the varialbex must not occur free in the formulaF within
the scope of a quantifier binding a variable which occurs in the termt. If we require that all premises
and conclusions of rule instances are closed formulas then this condition is automatically fulfilled.

Parametersplay the role of auxiliary constants introduced by rules of the calculus such as (R2). In its
premise occurs a parameterp. For the purpose of proving a formula, it suffices to consider parameters
as constants of the given language. This does not work, however, if the calculus is used to derive a
formula from an infinite setS of formulas. The reason is that the parameter condition requires that
the parameterp must not occur inS. Now, if every constant of the logical language occurrs in some
formula ofS then there is no constant left which obeys the parameter condition. Thus, the calculus
becomes incomplete for deriving a formula from an infinite set of formulas. Therefore, it is better to
enlarge the set of constants by a countable infinite number of auxiliary constants, calledparameters.
Now, if a formulaF is to be derived from a setS of formulas, thenF and the elements ofS must
be closed formulas of the original logical language. However, the premises and conclusions of rule
instances are closed formulas of the enlarged logical language. Some authors use variables rather than
auxiliary constants as parameters.

In this paper, we mean by aformula a formula string with or without parameters. Asentenceis
a closed formula. The set of sentences is denotedSpar and the set of parameter-free sentences is
denotedS. Thus, the calculus is used only to prove a sentence ofS or to derive it from a set of
sentences ofS. But the derivations use sentences ofSpar. In fact, the set of formulas which underlies
the calculus is the setSpar. So, an investigation of algebraic properties of a Frege-Hilbert calculus
will deal with the setSpar rather than with the setS.



3. Rules and deduction relations

For the following concepts we need a few notations. The set{0, 1, 2, . . . } of natural numbers is
denotedN. A tuple of objectsz1, . . . , zn is denoted〈z1, . . . , zn〉. For a setZ, the set

⋃
n∈N Zn of

tuples of elements ofZ is denotedZ∗.

An instanceof a rule Φ1 ... Φn

Ψ
is a pair〈〈F1, . . . , Fn〉, G〉 whereF1, . . . , Fn, G are sentences obtained

from Φ1, . . . , Φn, Ψ, respectively, by consistently replacing meta-symbols for formulas, variables,
terms, and parameters, with actual formulas, variables, terms, and parameters, respectively. If there
is a condition attached to a rule, the condition is required to hold for the rule instance. The formulas
F1, . . . , Fn are called thepremisesof the rule instance, andG is called theconclusionof the rule
instance. For example, ifF andG are sentences then〈〈F, F → G〉, G〉 is an instance of the modus
ponens rule (R1) with premisesF andF → G and conclusionG.

A deduction relation(on Spar) is a subset ofSpar∗ × Spar. If B is a deduction relation then an
instanceof B, for shortB-instance, is an element ofB. If 〈〈F1, . . . , Fn〉, G〉 is a B-instance then
we write〈F1, . . . , Fn〉 B G. The sentencesF1, . . . , Fn are called thepremisesof theB-instance, and
G is called theconclusionof the B-instance. AB-derivationof a sentenceG ∈ Spar from a set
S ⊂ Spar of sentences is a tuple〈F0, . . . , FN〉 of sentences ofSpar such thatFN = F and eachFi

(with i = 0, . . . , N ) is an element ofS or the conclusion of aB-instance whose premises are among
the sentencesF0, . . . , Fi−1. A B-proof of a sentenceF ∈ Spar is aB-derivation ofF from the empty
set. IfS ⊂ Spar andE ∈ Spar thenS `B E means that there is aB-derivation ofE from S.

The set of instances of a rule of a Frege-Hilbert calculus is a deduction relation. Likewise, the set
of rule instances of a Frege-Hilbert calculus is a deduction relation. By aderivationof F from S in
a Frege-Hilbert calculus we mean a derivation ofF from S with respect to this deduction relation,
provided thatF and the sentences ofS have no parameters.

Rules of Frege-Hilbert calculi usually have a fixed arity, i.e., number of premises. Similarly, we say
that a deduction relationB ⊂ Sparn ×Spar hasarity n.

4. Composition and factorization of deduction relations

On the set of deduction relations which have an arity, the two operations of composition and factor-
ization are defined as follows.

For i = 1, . . . , n, the i-th compositionB1iB2 of two relationsB1 ⊂ Sparm × Spar and B2 ⊂
Sparn ×Spar is defined by

B1iB2 = {〈〈G1, . . . , Gi−1, F1, . . . , Fm, Gi+1, . . . , Gn〉, H〉 |
〈F1, . . . , Fm〉 B1 Gi and〈G1, . . . , Gn〉 B2 H}

Here is a picture form = 2, n = 4, andi = 3. It shows an instance〈〈F1, F2〉, G3〉 of B1 and an
instance〈〈G1, G2, G3, G4〉, H〉 of B2. Each of these instances is shown as a box with the premises
written below its upper edge and the conclusion written above its lower edge. The picture looks
similar to an electric circuit and, in fact, the composition of deduction relations can be depicted as
plugging together two boxes. The free ends represent the instance〈〈G1, G2, F1, F2, G4〉, H〉 of the
compositionB1iB2.



G1 G2 G3 G4

H

F1 F2

G3

If K1, . . . , Kk are the equivalence classes of{1, . . . , n} with respect to some equivalence relation,
then the〈K1, . . . , Kk〉-factor of ann-ary deduction relationB ⊂ Sparn×Spar is thek-ary deduction
relationB′ ⊂ Spark ×Spar defined by

〈F1, . . . , Fk〉 B′ G :⇐⇒ 〈Fj1 , . . . , Fjn〉 B G

whereji is defined byi ∈ Kji
for i = 1, . . . , n. We say thatB′ has been obtained fromB by factor-

ization. Here is a picture forn = 4, k = 3, K1 = {1, 3}, K2 = {2}, andK3 = {4}. In this example,
〈F1, F2, F3〉 B′ G holds if and only if〈F1, F2, F1, F3〉 B G holds. Factorization can be depicted as
wiring together some of the premises. The free ends represent the instance〈〈F1, F2, F3〉, G〉 of the
factorB′.

F1 F2 F1

XXXXXX

F3

G

If D is a set of deduction relations with arities then theclosureCcf(D) of D with respect to compo-
sition (c) and factorization (f) is the smallest set of deduction relations which contains all deduction
relations ofD and is closed under composition and factorization. The setsCc(D) andCf(D) are
defined similarly.

Now, as was already said above, each rule of a Frege-Hilbert calculusC defines a deduction relation.
Let DC be the set of all these deduction relations. Then the set of all deduction relations obtained
by combining applications of rules of the Frege-Hilbert calculus and by possibly identifying some of
the premises with each other, is exactly the setCcf(DC). So, if we make a proof attempt and start
to somehow combine rules of the calculus without knowing yet exactly which formulas we should
take, then the result can be described by a deduction relation inCcf(DC). So, the next goal is to
learn more about composition and factorization of deduction relations defined by rules of Frege-
Hilbert calculi, and to determine the closureCcf(DC). It is, however, difficult to do computation with
deduction relations, since deduction relations are infinite sets. Therefore, deduction relations should
be represented by finite structures. We know already that rules can represent deduction relations. So,
we should define operations of composition and factorization on rules.

5. Composition, factorization, and partial instantiation of rules

Rules of Frege-Hilbert calculi can be composed with each other as has been shown in [5]. As a simple
example, let us consider the modus ponens rule (R1). The first composition (R1)1(R1) of (R1) with
itself can be obtained in analogy to the composition of deduction relations. Let us draw a picture.



A A → B

B

A A → B

B

Here, “A” and “B” are meta-symbols for formulas. They are local to each of the boxes. So, for
example, “A” in the upper box in general does not refer to the same formula as “A” in the lower box.
We should better rename the meta-symbols in the lower box. Then we get

A A → B

B

A′ A′ → B′

B′

=
A A → B B → C

C

As we see, the composition of rules involves a unification, not on terms but on formulas. Composition
of rules for quantification is a lot more complex and involves constraints, in particular in form of
equations between formulas, in addition to simple unification. Details can be found in [5].

Factorization of rules is rather similar since it is also done by unification of formula schemes contain-
ing meta-symbols. Here, however the premises of a rule are unified with each other. But the problems
and the ways to solve them are the same as for the composition of rules.

It follows that the operations on deduction relations which we are interested in, can be carried out ex-
plicitly and automatically on the rule representations of deduction relations. Moreover, the deduction
relations inCcf(DC) actually have representations as rules. However, these rules are more complex
than those Frege-Hilbert rules which we are used to from literature.

In addition to the operations of composition and factorization, the set of rules has the operation ofpar-
tial instantiation. A rule R′ is apartial instanceof a ruleR if R′ is obtained fromR by consistently
replacing meta-symbols for formulas and for terms with formula schemes or term schemes, respec-
tively, and by injectively replacing meta-symbols for variables and for parameters with meta-symbols
for variables, or parameters, respectively. For example, the rule¬F ¬F→G∧H

G∧H
is a partial instance of

the modus ponens rule (R1), since it is obtained from (R1) by consistently replacing “A” with “ ¬F ”
and “B” with “ G ∧ H”. Every instance of a partial instance of a ruleR is also an instance ofR.
Therefore, a partial instance of a ruleR is a weaker rule thanR. As for deduction relations, closures
with respect to composition, factorization, but also with respect to partial instantiation, are defined
for sets of rules. In particular, for a Frege-Hilbert calculusC, the closureCcfi(C) is the smallest set of



rules which contains all rules ofC and which is closed under composition (c), factorization (f), and
partial instantiation (i). It can be shown that the deduction relation defined byCcf(C) is the closure of
the deduction relation defined byC: It holdsBCcf(C) = Ccf(BC) and likewise forCc andCf .

6. Figures

A figurehas the formF1 ... Fn

G
whereF1, . . . , Fn, G are closed formulas. Letting the function sym-

bols, predicate symbols, variables, and parameters ofF1, . . . , Fn, G play the role of meta-variables, a
figure can be considered as a rule. The advantage of this approach is that we can use concepts like va-
lidity and semantic entailment for the formulasF1, . . . , Fn, G. Also, we can make use of well-known
theorems such as the deduction theorem to prove properties of Frege-Hilbert calculi. The rules of the
Frege-Hilbert calculi known from literature can be presented as figures. A disadvantage of figures is
that there seems to be no obvious way to represent a composition of two figures as a figure in first
order logic. Either constraints have to be added to the figures or a composition of two figures must be
represented as a possibly infinite set of figures.

Yet, a number of interesting results can be obtained from studying figures. For example, ifC is a
sound and complete Frege-Hilbert calculus of propositional logic which contains the modus ponens
rule (R1) then all valid rules can be obtained just by composition and partial instantiation of rules of
C. Factorization is not necessary. More precisely,Cci(C) = Ccfi(C). The idea of the proof is that a
rule R of Ccfi(C) can be presented as a figureF1 ... Fk

G
. ThenFk → . . . → F1 → G is a valid

formula and has therefore a derivation inC. Let R0 be the composition of rules ofC corresponding to
this derivation. ThenR is a partial instance of the rule(. . . ((R02(R1))2(R1)) . . . 2(R1)).

F3

H
HH

...
F3 → F2 → F1 → G

�
��

F2

H
HH

F2 → F1 → G
�

��

F1

HHH
F1 → G

���

G

If, however, (R1) is replaced byA A A→B A→B
B

then factorization is necessary to obtain all valid
rules from the rules of the calculus. Here is another interesting result for propositional logic:

1. A derivation of a valid formula in one adequate Frege-Hilbert calculusC can be simulated at
linear cost in any other Frege-Hilbert calculusC ′.

2. If (R1) ∈ Cc(C ′) then this holds also for tree derivations.

7. Future research

Among the tasks and questions to be addressed in future research are the following. Lift some of
the results known for propositional logic to the first order and classify calculi according to which
operations are necessary to generate all valid rules from their rules. Is partial instantiation necessary
to generate all valid rules? How can one Frege-Hilbert calculus be simulated by another one?
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