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A Bifurcation Model of Quantum State Reduction on
the Unit Circle: a nonlinear unitary extension of the
Schrodinger equation

Helmut J. Efinger

In a two-dimensional Cartesian space | first consider a pBimtith coordinateqz, y) moving on
Stst |z(8)]? + Jy(t)]> = 1, Vt € [0,7], wheret is some time lapse, together with initial data
{z(0),y(0)}. A certain nonlinear dynamics is established, along wiitable initial conditions, s.t.
the angular speed @& depends explictly oz, 3): theevolutionof P then bifurcates o att = 0,
with zy = 0 att = 7.

Although no example is known in classical mechanics, it fered that such a nonlinear model
quite appropriately provides a framework fguantum state reductioim a two-dimensional Hilbert
space: the poinP is then replaced by guantum statgof unit /2-norm), wherein the Cartesian
data {|z(0)|? |y(0)|*} are to express the associatgdantum probabilitiefor mutually exclusive
outcomes.

PACS: 03.65, 42.50, 03.67, 42.79.F Key words: Newtonian aecis, collapse of quantum states,
measurement process.

1. A nonlinear classical model on the unit circle

In Cartesian space | first consider a pdihtvith coordinategz, y), and parametrization:
r=cosp(t), y=sino(t),
where¢ depends on the time-variables.t. there exists a vector

V= ( “;’ ) , with derivative% =MV ; (1)

hereM is a 2x2-matrix, given by ( (1) _01 ) ,w= 1%
Let M” = —M denote the transpose matrix, then®h: V7V = 1, V¢ € [0, 7], wherer is some
given time lapse.

Remark:Note that‘il—‘t’ is linear inV if the angular speedv does not depend dB(z, y). Indeed, this
model is nonlinear ifv depends explicitly o®(z, ), for example [1]:

w:—L, te(0,7),
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whereg, is, for the sake of simplicity, some real valued constantabsuming the followingnitial
condition [ go dt = 2(0)y(0), then :

1 T
¢ = §sin_1 (2/ godt) , Vt €0, 7];
t

incidentally, one could choose, insteadygf a more general functiog(z, y, t).

Let us operate within the first quadrant, thems either0 or 7 att = 7, i.e. the initial point with
coordinateq z(0), y(0)} is a bifurcation-point: for > 0 the evolution ofP is thendeterminedy the
nonlinear differential equation

v g (0 -1
E—_(ﬂﬂ—?ﬁ)(l 0 )v, @

yetV is not computable, i.e.: the poilt € S is developingparallel histories one history ending at
¢ = 0 and the other ab = 7.

Remark:No such evolution is known in classical physics, where ose@ates witiP amassive par-
ticle abiding with Newtonian mechanics. However, developmepiaoéllel historieshas come about
in quantum mechanics within the realm guiantum state reductiofsee ref. [1] and the references
therein); thenr would be thecollapsing timeor this reduction!

2. A nonlinear unitary quantum model of reduction

Transition to Hilbert space: Let us associate witla quantum statep), say (replacing the above
Cartesian vectoy’) in a two-dimensional Hilbert space, s.t. [1]

d
Ry e 0.7) ©)
dt
whereR = w (Z _OZ > , being a Hermitian matrix (replacing the abdvB; then there exists dual
description
dp| _
BTl (PR, t € (0,7)

with the choice(p|p) = 1, Vt € [0, 7] (replacing the above Cartesian not V' = 1).

Note that this model, eq.(3), admits the following formalsion:

Ip) = ( g ) , S.t. forreal amplitudesé = cos ¢, n = sin ¢,
Where_qé is time_-dependent, withh = %; then, for example, eq.(2) is replaced by the nonlinear
evolutionequation

dlp) g [0 —i o |
= (10 ) i [ = o) @



this integral-condition orj0, 7] ensures that suitable detectors will select a single outcyom a
set of two alternatives (see below, eq.(6)). Also note thgemeralization tacomplex amplitudes
(accounting for interference-effects: see appendix) tifbcult, i.e. [1]

dp) 1 0 —igo ith [ godt =
- (s o ) e ounwin [ — o

whereg, is a complex valued constant. This equation can be made evenganeral ify, is replaced
by some appropriate complex functigf€, n,t) .

Remark:Notice that eq.(3) bears resemblance toSkhibdingerequation

d|p)
——==H 5
= p) (5)
where theHamiltonianH is a linear Hermitian operator; however, this fundamergakgion of quan-

tum theory only holds prior to measurement, fat (—oc, 0), say.

A simple exampleConsider a photon beam incident on a semi-transparent piinfsbeam splits up
into a reflected ray and a second one (of equal amplitudeptsses through the mirror; the overall
quantum state, denoted k), will satisfy eq.(5) with a Hamiltonian given by

H =27v ( (1) (1) ) , Wherev is the frequency of the beam.

The solution of eq.(5) is then given by

__—2mivt COS (bU 7 — I —
B =e (m%)wm%—yw6<m%

s.t. in this case the quantum probabilities for detectinha@tgn are the same, i.e. equalli@®.

Now, as to the problem of reduction, we employ eq.(3) andiggs(t. att = 7 (also see [1]):

Ip>=(é>, or |p>=((1)), (6)

i.e.: the final state is natomputable

Probability and bifurcationWWhen one tosses fair coin the probability for either outcome (heads
or tails) is 50%. In fact, according to Newtonian mechanitsye would know all the physical
details at some given time, we could actually compute theame in advance. However, no such
computation for mutually exclusive outcomes is logicaltyspible in quantum theory: Principally,
there is a lack oadditional information as is the case when we try to computeraque number
from a transcendental equation, like (see above)

1
¢ = §sirf1 Q(t), (0<t<7)att=7,stQ(r)=0.
(there is no such single numbertat 7, even though this might be a solution ofdaterministic

evolutionequation !)



So, it appears that the conceptopfantum probabilitys ultimately related to that dfifurcationin the
present sense (see appendix in [1]).

Interferometry:According to the figure below, in a Mach-Zehnder interfertend2] an incident
beam of photons is split by a splittér (as above), and then reflected by a pair of equidistant nsirror
(M, M) onto a second identical beam splitfer(diagonally located and installed parallel/&). At

/
the location ofB’ we get a new staté zfs i,o ) , Whereg| = 2¢, (all we need to know is, fop, = 0

0
there is 100% reflection d@’, and for¢ = 7 there is 100% transmission A&t).
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1/
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Figure 1. lllustrating interference in the Mach-Zehnder Int erferometer.

Here the meaning of complex amplitudes becomes apparerit|pC#he incoming state, then at the
first splitter B we simply write down a linear superposition, spanned byamtinmal base-vactors:

Ip) — cosap|l) +singg|2);

however, at the second splitté’ we ought to introduce complex amplitudes (with primed base-
vectors):

1) — e cosgg|l’) + ¥ sin gy |2,
12) — e7singg|1) + e” cos g |2');

for the sake of simplicity, putv = § = § = 0 also observing1|2) = 0, with v = 7 (indicating
destructive interference in the direction Bf with the probability amplitude also depending ©y),
then the desired result follows:

[p) — cos2¢q |1') + sin 2y [2) ;
thus, when these beam splitters are semi-transpaggnt (7), then the final state of a photon, leaving

B, is exactly( ? ) i.e. photons leave the splittd?’ in the same direction they came into the
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apparatus (from a different viewpoint, this particularrsm@o has also been discussed in [3], [4] and
recently again in [5], with the same result):

Due tointerferenceof the split beam af3’, we cannot compute the path of a photon after it had
passed the first beam splitt8r, so, when detectors are suitably placed betwBeand B’ we expect
theinitial state of an incoming photon (incident &) to collapseunpredictably, according to eq.(6),
say.

Final RemarkBy making use of a rather simple bifurcation scheme, this papgresses a unifying
aspect within different areas of quantum mechanics thrau§lchbdinger-type evolution equation

[1] i)

a4 |p

i—— =Qlp)
hereQ is eitherH (the linear Schidinger-Hamiltonian), oR (the nonlineareduction operatoy,
according to whether € (—o0,0), ort € (0,7), say; eq.(5) only holds up to the time of measure-
ment which sets about at= 0, whereas eq.(3) relates to the acto@asurement procesghich is
completed at = 7.

Note that we are dealing with differeatements of realityThere are photons at the quantum-level,
and secondly there are macroscopic gadgets (beam spétidrdetectors); so we expect thatle-
pends onv, as well as on thadmissible sizef these devices [1]. | also suspect thatfor v, where

vy is some cutoff, there is no coherent splitting into rays ahparable amplitudes; for frequencies
beyond this cutoff | would not expect that quantum-mechaniterference (as in interferometry) can
be resolved by any kind of experiment. Also note that theeevarious views on thdividing line
betweemmicro-and macrabjects as discussed in [6] and very recently in [7].
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