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A Bifurcation Model of Quantum State Reduction on
the Unit Circle: a nonlinear unitary extension of the

Schrödinger equation

Helmut J. Efinger∗

In a two-dimensional Cartesian space I first consider a pointP with coordinates(x, y) moving on
S1 s.t. |x(t)|2 + |y(t)|2 = 1, ∀t ∈ [0, τ ], whereτ is some time lapse, together with initial data
{x(0), y(0)}. A certain nonlinear dynamics is established, along with suitable initial conditions, s.t.
the angular speed ofP depends explictly on(x, y): theevolutionof P then bifurcates onS1 at t = 0,
with xy = 0 at t = τ .

Although no example is known in classical mechanics, it is inferred that such a nonlinear model
quite appropriately provides a framework forquantum state reductionin a two-dimensional Hilbert
space: the pointP is then replaced by aquantum state(of unit l2-norm), wherein the Cartesian
data{|x(0)|2, |y(0)|2} are to express the associatedquantum probabilitiesfor mutually exclusive
outcomes.

PACS: 03.65, 42.50, 03.67, 42.79.F Key words: Newtonian mechanics, collapse of quantum states,
measurement process.

1. A nonlinear classical model on the unit circle

In Cartesian space I first consider a pointP with coordinates(x, y), and parametrization:

x = cos φ(t), y = sin φ(t) ,

whereφ depends on the time-variablet, s.t. there exists a vector

V =

(

x
y

)

, with derivative
dV

dt
= MV ; (1)

hereM is a 2x2-matrix, given byω

(

0 −1
1 0

)

, ω = dφ

dt
.

Let MT = −M denote the transpose matrix, then onS1 : V T V = 1, ∀t ∈ [0, τ ], whereτ is some
given time lapse.

Remark:Note thatdV
dt

is linear inV if the angular speedω does not depend onP(x, y). Indeed, this
model is nonlinear ifω depends explicitly onP(x, y), for example [1]:

ω = −
g0

(x2 − y2)
, t ∈ (0, τ) ,
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whereg0 is, for the sake of simplicity, some real valued constant; byassuming the followinginitial
condition

∫ τ

0
g0 dt = x(0)y(0), then :

φ =
1

2
sin−1

(

2

∫ τ

t

g0 dt

)

, ∀t ∈ [0, τ ];

incidentally, one could choose, instead ofg0, a more general functiong(x, y, t).

Let us operate within the first quadrant, thenφ is either0 or π
2

at t = τ , i.e. the initial point with
coordinates{x(0), y(0)} is a bifurcation-point: fort > 0 the evolution ofP is thendeterminedby the
nonlinear differential equation

dV

dt
= −

g0

(x2 − y2)

(

0 −1
1 0

)

V, (2)

yetV is not computable, i.e.: the pointP ∈ S1 is developingparallel histories, one history ending at
φ = 0 and the other atφ = π

2
.

Remark:No such evolution is known in classical physics, where one associates withP amassive par-
ticle abiding with Newtonian mechanics. However, development ofparallel historieshas come about
in quantum mechanics within the realm ofquantum state reduction(see ref. [1] and the references
therein); thenτ would be thecollapsing timefor this reduction!

2. A nonlinear unitary quantum model of reduction

Transition to Hilbert space: Let us associate withP a quantum state,|p〉, say (replacing the above
Cartesian vectorV ) in a two-dimensional Hilbert space, s.t. [1]

i
d |p〉

dt
= R |p〉 , t ∈ (0, τ), (3)

whereR = ω

(

0 −i
i 0

)

, being a Hermitian matrix (replacing the aboveM); then there exists adual

description

−i
d 〈p|

dt
= 〈p|R, t ∈ (0, τ)

with the choice〈p|p〉 = 1, ∀t ∈ [0, τ ] (replacing the above Cartesian normV T V = 1).

Note that this model, eq.(3), admits the following formal solution:

|p〉 =

(

ξ
η

)

, s.t. forreal amplitudes: ξ = cos φ, η = sin φ,

whereφ is time-dependent, withω = dφ

dt
; then, for example, eq.(2) is replaced by the nonlinear

evolutionequation

i
d |p〉

dt
= −

g0

(ξ2 − η2)

(

0 −i
i 0

)

|p〉 , with
∫ τ

0

g0 dt = ξ(0)η(0); (4)
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this integral-condition on[0, τ ] ensures that suitable detectors will select a single outcome from a
set of two alternatives (see below, eq.(6)). Also note that ageneralization tocomplex amplitudes
(accounting for interference-effects: see appendix) is not difficult, i.e. [1]

i
d |p〉

dt
= −

1

|ξ|2 − |η|2

(

0 −i g0

i g0 0

)

|p〉 , t ∈ (0, τ), with
∫ τ

0

g0 dt = ξ(0)η(0)

whereg0 is a complex valued constant. This equation can be made even more general ifg0 is replaced
by some appropriate complex functiong(ξ, η, t) .

Remark:Notice that eq.(3) bears resemblance to theSchr̈odingerequation

i
d |p〉

dt
= H |p〉 (5)

where theHamiltonianH is a linear Hermitian operator; however, this fundamental equation of quan-
tum theory only holds prior to measurement, fort ∈ (−∞, 0), say.

A simple example:Consider a photon beam incident on a semi-transparent mirror, this beam splits up
into a reflected ray and a second one (of equal amplitude) thatpasses through the mirror; the overall
quantum state, denoted by|p〉, will satisfy eq.(5) with a Hamiltonian given by

H = 2πν

(

1 0
0 1

)

, whereν is the frequency of the beam.

The solution of eq.(5) is then given by

|p〉 = e−2πiνt

(

cos φ0

sin φ0

)

, with φ0 =
π

4
, ∀t ∈ (−∞, 0],

s.t. in this case the quantum probabilities for detecting a photon are the same, i.e. equal to1/2.

Now, as to the problem of reduction, we employ eq.(3) and eq.(4), s.t. att = τ (also see [1]):

|p〉 =

(

1
0

)

, or |p〉 =

(

0
1

)

, (6)

i.e.: the final state is notcomputable.

Probability and bifurcation:When one tosses afair coin the probability for either outcome (heads
or tails) is 50%. In fact, according to Newtonian mechanics,if we would know all the physical
details at some given time, we could actually compute the outcome in advance. However, no such
computation for mutually exclusive outcomes is logically possible in quantum theory: Principally,
there is a lack ofadditional information- as is the case when we try to compute aunique numberφ
from a transcendental equation, like (see above)

φ =
1

2
sin−1 Ω(t), (0 ≤ t ≤ τ), at t = τ , s.t.Ω(τ) = 0.

(there is no such single number att = τ , even though this might be a solution of adeterministic
evolutionequation !)
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So, it appears that the concept ofquantum probabilityis ultimately related to that ofbifurcationin the
present sense (see appendix in [1]).

Interferometry:According to the figure below, in a Mach-Zehnder interferometer [2] an incident
beam of photons is split by a splitterB (as above), and then reflected by a pair of equidistant mirrors
(M1,M2) onto a second identical beam splitterB′ (diagonally located and installed parallel toB). At

the location ofB′ we get a new state

(

cos φ′

0

sin φ′

0

)

, whereφ′

0
= 2φ0 (all we need to know is, forφ0 = 0

there is 100% reflection atB′, and forφ = π
2

there is 100% transmission atB′).

in

out

out

B

B′

1

1′

2

2′

M1

M2

Figure 1. Illustrating interference in the Mach-Zehnder Int erferometer.

Here the meaning of complex amplitudes becomes apparent: Call |p〉 the incoming state, then at the
first splitterB we simply write down a linear superposition, spanned by orthonormal base-vactors:

|p〉 → cos φ0 |1〉+ sin φ0 |2〉 ;

however, at the second splitterB′ we ought to introduce complex amplitudes (with primed base-
vectors):

|1〉 → eiα cos φ0 |1
′〉+ eiβ sin φ0 |2

′〉 ,

|2〉 → eiγ sin φ0 |1
′〉+ eiδ cos φ0 |2

′〉 ;

for the sake of simplicity, putα = β = δ = 0 also observing〈1|2〉 = 0, with γ = π (indicating
destructive interference in the direction of1′, with the probability amplitude also depending onφo),
then the desired result follows:

|p〉 → cos 2φ0 |1
′〉+ sin 2φ0 |2

′〉 ;

thus, when these beam splitters are semi-transparent (φ0 = π
4
), then the final state of a photon, leaving

B′, is exactly

(

0
1

)

, i.e. photons leave the splitterB′ in the same direction they came into the
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apparatus (from a different viewpoint, this particular scenario has also been discussed in [3], [4] and
recently again in [5], with the same result):

Due to interferenceof the split beam atB′, we cannot compute the path of a photon after it had
passed the first beam splitterB; so, when detectors are suitably placed betweenB andB′ we expect
the initial state of an incoming photon (incident onB) to collapseunpredictably, according to eq.(6),
say.

Final Remark:By making use of a rather simple bifurcation scheme, this paper expresses a unifying
aspect within different areas of quantum mechanics througha Schr̈odinger-type evolution equation
[1]

i
d |p〉

dt
= Q |p〉

hereQ is eitherH (the linear Schr̈odinger-Hamiltonian), orR (the nonlinearreduction operator),
according to whethert ∈ (−∞, 0), or t ∈ (0, τ), say; eq.(5) only holds up to the time of measure-
ment which sets about att = 0, whereas eq.(3) relates to the actualmeasurement processwhich is
completed att = τ .

Note that we are dealing with differentelements of reality: There are photons at the quantum-level,
and secondly there are macroscopic gadgets (beam splittersand detectors); so we expect thatτ de-
pends onν, as well as on theadmissible sizeof these devices [1]. I also suspect that forν > ν0, where
ν0 is some cutoff, there is no coherent splitting into rays of comparable amplitudes; for frequencies
beyond this cutoff I would not expect that quantum-mechanical interference (as in interferometry) can
be resolved by any kind of experiment. Also note that there are various views on thedividing line
betweenmicro-and macroobjects as discussed in [6] and very recently in [7].
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